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The matroidal version of the Merino–Welsh conjecture states 
that the Tutte polynomial TM (x, y) of any matroid M without 
loops and coloops satisfies that

max(TM (2, 0), TM (0, 2)) � TM (1, 1).

Equivalently, if the Merino–Welsh conjecture is true for 
all matroids without loops and coloops, then the following 
inequalities are also satisfied for all matroids without loops 
and coloops:

TM (2, 0) + TM (0, 2) � 2TM (1, 1),
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Tutte polynomial
Merino–Welsh conjecture

and

TM (2, 0)TM (0, 2) � TM (1, 1)2.

We show a counter-example for these inequalities.
© 2024 The Authors. Published by Elsevier Inc. This is an 

open access article under the CC BY-NC-ND license 
(http://creativecommons .org /licenses /by -nc -nd /4 .0/).

1. Introduction

For a connected graph G, let τ(G), α(G) and α∗(G) denote the number of spanning 
trees, the number of acyclic orientations and the number of strongly connected orien-
tations, respectively. Merino and Welsh [18] conjectured that if G is a connected graph 
without loops and bridges, then

max(α(G), α∗(G)) � τ(G).

Note that α(G), α∗(G), and τ(G) are all evaluations of the Tutte polynomial, namely, 
TG(2, 0) = α(G), TG(0, 2) = α∗(G), and TG(1, 1) = τ(G), where the Tutte polynomial 
TG(x, y) is defined as

TG(x, y) =
∑
A⊆E

(x− 1)k(A)−k(E)(y − 1)k(A)+|A|−v(G),

with k(A) denoting the number of connected components of the graph (V, A), see [22]. 
There is a vast amount of literature on the properties of the Tutte polynomial and its 
applications, for instance, [2,5,6,23], or the book [7].

Conde and Merino [4] also suggested the following “additive” and “multiplicative” 
versions of the conjecture:

TG(2, 0) + TG(0, 2) � 2TG(1, 1),

and

TG(2, 0)TG(0, 2) � TG(1, 1)2.

It is easy to see that the multiplicative version implies the additive version which in turn 
implies the maximum version.

The Merino–Welsh conjecture and its variants triggered considerable attention. 
Thomassen [21] proved that the conjecture is true if the graph G is sufficiently sparse 
or sufficiently dense. Lin [15] proved it for 3-connected graphs satisfying certain de-
gree conditions. Noble and Royle [19] proved the multiplicative version for series-parallel 
graphs.

http://creativecommons.org/licenses/by-nc-nd/4.0/
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The Tutte polynomial naturally extends to matroids. Recall that a matroid M is a 
pair (E, I) such that I ⊆ 2E , called the independent sets, satisfying the axioms (i) ∅ ∈ I, 
(ii) if A′ ⊆ A ∈ I, then A′ ∈ I, and (iii) if A, B ∈ I such that |B| < |A|, then there 
exists an x ∈ A \B such that B∪{x} ∈ I. Given a set S ⊆ E, the maximal independent 
subsets of S all have the same cardinality, and this cardinality is called the rank of the 
matroid, denoted by r(S). The maximum size independent sets of M are called bases, 
and their set is denoted by B(M). The dual of a matroid M is the matroid M∗ whose 
bases are {E \B | B ∈ B(M)}. For further details on matroids, see for instance [20]

Given a graph G = (V, E), the edge sets of the spanning forests of G form the in-
dependent sets of a matroid MG called the cycle matroid of G. If G is connected, then 
the basis of MG is the spanning trees of G. One can define the Tutte polynomial of a 
matroid as

TM (x, y) =
∑
S⊆E

(x− 1)r(E)−r(S)(y − 1)|S|−r(S),

where r(S) is the rank of a set S ⊆ E. When M = MG, then TMG
(x, y) = TG(x, y). A 

loop in a matroid M is an element x ∈ E such that r({x}) = 0, that is, {x} /∈ I, and 
a coloop is an element that is a loop in the dual M∗ of the matroid M . Equivalently, a 
coloop is an element that is in every base of M . For a cycle matroid MG, loops correspond 
to loop edges and coloops correspond to bridges in the graph G.

Hence it was suggested that the inequalities

max(TM (2, 0), TM (0, 2) � TM (1, 1),

TM (2, 0) + TM (0, 2) � 2TM (1, 1),

TM (2, 0)TM (0, 2) � TM (1, 1)2

may hold true for all matroids M without loops and coloops. (These versions appear 
explicitly in [10], but were treated much earlier without explicitly calling them conjec-
tures.) Note that for general matroids, all these versions are equivalent in the following 
sense: if one of them is true for all matroids, then the others are also true for all matroids. 
Applying the maximum version to M ⊕M∗ with M∗ being the dual of M leads to the 
multiplicative version of the conjecture. (Here M ⊕N denotes the disjoint union of the 
matroids M and N .)

Knauer, Martínez-Sandoval, and Ramírez Alfonsín [13] proved that the class of lattice 
path matroids satisfies the multiplicative version. Ibañez, Merino and Rodríguez [16]
proved the maximum version for some families of graphs and matroids. Chávez-Lomelí, 
Merino, Noble and Ramírez-Ibáñez [3] proved the additive version for paving matroids 
without coloops. In fact, they showed that the polynomial TM(x, 2 − x) is convex on 
the interval [0, 2] for these matroids. Recently, Ferroni and Schröter [10] proved the 
multiplicative version of the conjecture for split matroids. Kung [14] proved the additive 
version for some special matroids based on their size and rank. Jackson [11] proved that
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TM (3, 0)TM (0, 3) � TM (1, 1)2

for matroids without loops and coloops. He phrased it for graphs but he also noted that 
his proof extends to matroids.

The aim of this short note is to give a counter-example for these inequalities for general 
matroids.

Theorem 1.1. There are infinitely many matroids M without loops and coloops for which

TM (2, 0)TM (0, 2) < TM (1, 1)2.

In fact, we show the following slightly stronger result. Let x0 be the largest root of 
the polynomial x3 − 9(x − 1). We have x0 ≈ 2.22668...

Theorem 1.2. If 0 � x < x0, then there are infinitely many matroids M without loops 
and coloops for which

TM (x, 0)TM (0, x) < TM (1, 1)2.

It is interesting to compare this result with the above inequality of Jackson. In the 
paper [1], the authors of this paper show that 3 can be improved to 2.9243.

Organization of the paper. In the next section, we prove Theorems 1.1 and 1.2. Then 
we give some insight into where the counter-example came from. We end the paper with 
some concluding remarks.

2. Counter-examples

The counter-example for the multiplicative version of the Merino–Welsh conjecture 
is surprisingly simple. Let Un,r be the uniform matroid on n elements with rank r. Let 
U

(2)
n,r be the 2-thickening of Un,r, that is, we replace each element of Un,r with 2 parallel 

elements. We will show that if x < x0, then Mn = U
(2)
n, 23n

satisfies the theorem for large 
enough n if n is divisible by 3, hence concluding Theorems 1.2 and 1.1.

The computation of the Tutte polynomial of U (2)
n,r relies on two well-known lemmas.

Lemma 2.1 (Formula (2.24) in [17]). The Tutte polynomial of the matroid Un,r is the 
following:

TUn,r
(x, y) =

r∑
i=1

(
n− i− 1
n− r − 1

)
xi +

n−r∑
j=1

(
n− j − 1
r − 1

)
yj

if 0 < r < n, and TUn,n
(x, y) = xn and TUn,0(x, y) = yn.
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Lemma 2.2 (Jaeger, Vertigan and Welsh [12], formula (3.47) of [17]). Let M be a ma-
troid, and let M (k) be its k-thickening, that is, we replace each element of M with k
parallel elements. Then

TM(k)(x, y) = (yk−1 + yk−2 + · · · + 1)r(M)TM

(
yk−1 + yk−2 + · · · + y + x

yk−1 + yk−2 + · · · + y + 1 , y
k

)
.

By Lemma 2.2 we have

TM(2)(x, 0) = TM (x, 0),

TM(2)(0, x) = (x + 1)r(M)TM

(
x

x + 1 , x
2
)
,

and

TM(2)(1, 1) = 2r(M)TM (1, 1).

Clearly, these expressions together with the exact formula for TUn,r
(x, y) make the com-

putation of T
U

(2)
n,r

(x, y) very fast for specific values of n, r, x, y.
The matroid with the smallest number of elements that we are aware of being a 

counter-example to the multiplicative version of the Merino–Welsh conjecture is M =
U

(2)
33,22 with 66 elements. For this matroid, we have TM(2, 0) = 8374746166, TM (0, 2) =

64127582356390782814, TM (1, 1) = 811751838842880, and

TM (2, 0)TM (0, 2)
TM (1, 1)2 ≈ 0.815...

To prove Theorem 1.2, our next goal is to understand the exponential growth of 
TUn,r

(x, 0).

Lemma 2.3. Let r = nα and x > 1, then

TUn,r
(x, 0) =

{
f(n) exp(nH(α)) if x < 1

α ,

f(n)(x(x− 1)α−1)n if x � 1
α ,

where nK > f(n) > n−K for some fixed K, and H(α) = −α ln(α) − (1 − α) ln(1 − α).

Proof. We can determine the dominating term of TUn,r
(x, 0) by comparing two neigh-

boring terms:

(
n− i− 1

)
xi �

(
n− i− 2

)
xi+1 if and only if n− i− 1 � x.
n− r − 1 n− r − 1 r − i
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Hence, 
(
n−i−1
n−r−1

)
xi is maximized at 

⌈
xr−(n−1)

x−1

⌉
. If the right-hand side is negative, then 

the dominating term is at i = 1 and 
(

n−2
n−r−1

)
∼

(
n

n−r

)
∼ exp(nH(α)), where ∼ means 

the estimation is valid up to some nK . When x = 1
α , then exp(H(α)) = x(x − 1)α−1, 

so we can assume that x � 1
α in the rest of the proof since then on the whole interval (

1, 1
α

)
we have TUn,r

(x, 0) ∼ exp(nH(α)).
For the sake of simplicity, we carry out the estimation of the dominating term at

i = xr − n

x− 1 = xα− 1
x− 1 n

and we drop the integer part. All these changes affect our computation up to a term n−K. 
In the forthcoming computation, we also estimate m! ∼

(
m
e

)m as the terms 
√

2πm(1 +
o(1)) can be integrated into f(n):

(
n− i− 1
n− r − 1

)
xi ∼

(
n− i

n− r

)
xi

∼
(
n−i
e

)n−i(
n−r
e

)n−r ( r−i
e

)r−i
xi

=

(
n
(
1 − xα−1

x−1

))n
(
1− xα−1

x−1

)

(n(1 − α))n(1−α)
(
n
(
α− xα−1

x−1

))n
(
α− xα−1

x−1

)xi

=

⎛⎜⎜⎝
(

x(1−α)
x−1

) x(1−α)
x−1

(1 − α)1−α
(

1−α
x−1

) 1−α
x−1

⎞⎟⎟⎠
n

xi

=
(
x

x(1−α)
x−1 (x− 1)α−1

)n

xi

=
(
x

x(1−α)
x−1 (x− 1)α−1

)n

x
xα−1
x−1 n

= (x(x− 1)α−1)n,

and the result follows. �
Lemma 2.4. Let r = αn and assume that x � 1

α and x2 � 1
1−α . Then for the matroid 

M = U
(2)
n,r, we have

TM (1, 1)2

TM (x, 0)TM (0, x) = g(n)
(

22α

α2α(1 − α)2(1−α) · x− 1
x3

)n

,

where nK > g(n) > n−K for some fixed K.
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Proof. We have

TM (1, 1) = 2rTUn,r
(1, 1)) = 2r

(
n

r

)
∼

(
2α

αα(1 − α)1−α

)n

.

Furthermore,

TM (x, 0) = TUn,r
(x, 0) ∼ (x(x− 1)α−1)n

as x ≥ 1
α . Finally,

TM (0, x) = (x+1)rTUn,r

(
x

x + 1 , x
2
)

= (x+1)rTUn,r

(
x

x + 1 , 0
)

+(x+1)rTUn,r

(
0, x2) .

Here, the second term will dominate the first one as TUn,r

(
x

x+1 , 0
)

< TUn,r
(1, 1) ∼

exp(nH(α)), while

TUn,r

(
0, x2) = TUn,n−r

(x2, 0) ∼ (x2(x2 − 1)(1−α)−1)n

as x2 � 1
1−α . Putting everything together, we get that

TM (1, 1)2

TM (x, 0)TM (0, x) ∼
(

22α

α2α(1 − α)2(1−α)

)n

(x(x− 1)α−1(x + 1)αx2(x2 − 1)−α)−n

∼
(

22α

α2α(1 − α)2(1−α) · x− 1
x3

)n

. �

Proof of Theorem 1.2. The maximum of the function 22α

α2α(1−α)2(1−α) is at α = 2
3 , where 

it takes value 9. We can assume by monotonicity that 2 � x < x0. Then x � 1
α = 3

2 and 

x2 � 1
1−α = 3, whence for M = U

(2)
n, 23n

, we get that

TM (1, 1)2

TM (x, 0)TM (0, x) � n−K

(
9(x− 1)

x3

)n

> 1

for large enough n as 9(x−1)
x3 > 1. �

3. Intuition behind the counter-examples

In this section, we try to explain the underlying intuition behind the counter-examples.
It turns out that the Merino–Welsh conjecture is strongly related to the “local struc-

ture” of a matroid. To make this statement more precise, we need the concept of the 
local basis exchange graph. This is a bipartite graph associated with a basis B ∈ B(M)
of the matroid M whose parts are the elements of B on one side, and the non-elements 
on the other side. We connect an element b ∈ B with c ∈ E \B if (B \ {b}) ∪{c} is again 
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a basis. Let us call this bipartite graph HM [B]. It turns out [1] that one can associate a 
polynomial T̃HM [B](x, y) to each local basis exchange graph such that

TM (x, y) =
∑
B∈B

T̃HM [B](x, y).

We call the polynomial T̃H(x, y) the permutation Tutte polynomial of the graph H in 
the paper [1]. We do not go into details about the actual definition of this polynomial 
as we only need one key observation about it: if for all B ∈ B(M) we have

T̃HM [B](2, 0)T̃HM [B](0, 2) � T̃HM [B](1, 1)2,

then

TM (2, 0)TM (0, 2) � TM (1, 1)2.

For the balanced complete bipartite graph Kn,n, we have

T̃Kn,n
(2, 0)T̃Kn,n

(0, 2)
T̃Kn,n

(1, 1)2
≈ nπ

4 ,

which shows that the required inequality holds, but the ratio is not exponential in n. 
Most probably, the same is true for every sufficiently dense balanced bipartite graph.

It turns out that gluing pendant edges to one side of a bipartite graph may actually 
decrease the studied ratio. So it is natural to study bipartite graphs that are obtained 
from balanced complete bipartite graphs by gluing a pendant edge to each vertex on 
one side. For sufficiently large n these bipartite graphs indeed violate the inequality 
T̃H(2, 0)T̃H(0, 2) � T̃H(1, 1)2.

The next question is whether we can construct a matroid M with the desired local 
basis exchange graphs. For the matroid Un,r, the local basis exchange graph is Kr,n−r. 
When we apply the 2-thickening transformation to any matroid M , then we obtain 
HM(2) [B] from HM [B] as follows: each vertex b ∈ B gets a pendant edge, and each 
c ∈ E \ B gets a twin c′, i.e. a vertex that is connected to the same vertices as c. So in 
this way Kr,n−r is transformed into Kr,2(n−r) with a pendant edge attached to each of 
the r basis elements. If we choose r = 2

3n, then we get a balanced complete bipartite 
graph with a pendant edge attached to each vertex on one side of the graph. This is 
exactly the bipartite graph that we needed, and we get this graph as the local basis 
exchange graph associated with every basis.

Let us mention that there are graphical matroids where some of the local basis ex-
change graphs are isomorphic to the above bipartite graphs, but unfortunately, not all 
of them.

We believe that the theory of the permutation Tutte polynomial developed in the 
paper [1] can attack successfully variations of the Merino–Welsh conjecture, or help 
identify critical structures.
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4. Concluding remarks

Ferroni and Schröter [9] lists five major open problems concerning invariants of ma-
troids on the fourth page. The fifth one is the matroidal version of the Merino–Welsh 
conjecture. Interestingly, another conjecture of this list has been disproved too, Ferroni 
[8] provided counter-examples for the Ehrhart positivity of matroids. This shows that 
one should be careful with these conjectures, matroids are much more versatile than we 
may expect them, and small examples may be misleading. The program initiated by 
Ferroni and Schröter [9] generating many examples may lead to more counter-examples 
for various conjectures.

Though the counter-examples given in this note are not graphical matroids, they still 
advise caution concerning the Merino–Welsh conjecture. It is also important to note that 
the three forms of the Merino–Welsh conjecture are not equivalent for graphs, and it may 
occur, for instance, that the original version is true, while the multiplicative version is 
false. Below we collected several variants of the conjecture that are still open, including 
the original conjecture for graphs.

Problem 4.1 (Graphs). Is the Merino–Welsh conjecture true for graphs?

Problem 4.2 (Binary matroids). Is the Merino–Welsh conjecture true for binary ma-
troids?

Problem 4.3 (Simple and cosimple matroids). Is the Merino–Welsh conjecture true for 
matroids that are simple and cosimple at the same time?

In all these cases it would be interesting to determine the smallest x for which

TM (x, 0)TM (0, x) � TM (1, 1)2

for every matroid M in the given class.
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