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ABSTRACT

Antimicrobial disinfectants have been extensively used to control hospital-acquired infections world-
wide. Prolonged exposure to bacteria could promote resistance to antimicrobial disinfectants. This study
evaluated the antimicrobial activity of four commonly used disinfectants; triclosan, chlorhexidine
digluconate, benzalkonium chloride, and formaldehyde against Acinetobacter baumannii clinical isolates.
This study also determined the prevalence and association of efflux pumps encoding genes qacE,
qacED1, emrA, and aceI with tolerance to disinfectants. A total of 100 A. baumannii isolates were
included in the current study. The antimicrobial disinfectants’minimum inhibitory concentration (MIC)
was determined using an agar dilution method. Genes involved in resistance to disinfectants were
investigated by PCR method. The benzalkonium chloride MICs ranged between 32 and 128 μg mL�1,
chlorhexidine digluconate 8–64 μg mL�1, triclosan 1–32 μg mL�1, and formaldehyde 128 μg mL�1.
Overall, the highest MIC90 value was identified for formaldehyde (128 μg mL�1), followed by benzal-
konium chloride and chlorhexidine digluconate (64 μg mL�1, each one) and triclosan (4 μg mL�1).
In the present study, the qacE, qacED1, emrA, and aceI genes were found in 91%, 55%, 100%, and 88%
of isolates, respectively. The qacG gene was not identified in our A. baumannii isolates. The qacED1
gene was associated with higher MICs for all disinfectants tested (P < 0.05), while the qacE and
aceI genes were associated with higher MICs for benzalkonium chloride and chlorhexidine. This study
indicated that triclosan is the most effective disinfectant against A. baumannii isolates.
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INTRODUCTION

Hospital-acquired infections (HAIs) are a pervasive challenge accounting for a significant
burden of infectious diseases worldwide [1]. It has been estimated that 7% of patients in high-
and 15% in low-/middle-income countries (LMIC) will acquire at least one HAI in acute care
hospitals [2]. HAIs are usually associated with increased mortality, as infected patients are
mostly debilitated individuals with multiple predisposing factors [1]. Of note, HAIs caused by
drug-resistant organisms are associated with higher mortality [1]. Acinetobacter baumannii is
one of the most drug-resistant bacteria, along with others such as methicillin-resistant

Acta Microbiologica et
Immunologica Hungarica

70 (2023) 4, 311–317

DOI:
10.1556/030.2023.02087
© 2023 Akadémiai Kiadó, Budapest

RESEARCH ARTICLE

pCorresponding author. Medical
Microbiology, Department of
Microbiology, School of Medicine,
Ardabil University of Medical Sciences,
Ardabil, 5166614711, Iran.
E-mail: m.arzanlou@arums.ac.ir,
arzanlo53@gmail.com

Brought to you by Library and Information Centre of the Hungarian Academy of Sciences MTA | Unauthenticated | Downloaded 02/13/24 07:24 AM UTC

https://orcid.org/0000-0002-4233-9497
https://doi.org/10.1556/030.2023.02087
mailto:m.arzanlou@arums.ac.ir
mailto:arzanlo53@gmail.com


Staphylococcus aureus (MRSA), vancomycin-resistant
Enterococcus (VRE), extended-spectrum beta-lactamase
(ESBL) producing Enterobacterales, carbapenem-resistant
Enterobacterales and multi-drug resistant Pseudomonas
aeruginosa, responsible for HAIs [3–5]. A. baumannii causes
a variety of HAIs, including pneumonia, bacteremia, urinary
tract infections, meningitis, and wound infections [6]. In-
fections caused by A. baumannii are usually associated with
significant mortality, ranging from 8% to 35% [7]. Venti-
lator-associated pneumonia and bloodstream infections are
the most critical A. baumannii nosocomial infections asso-
ciated with the highest mortality rates [8]. In addition to
being resistant to antibiotics, it can withstand dry conditions
and is resistant to antimicrobial disinfectants. This makes it
a persistent and successful hospital pathogen. Extensive use
of antibiotics in hospitals, particularly ICUs, creates a se-
lective advantage for Multidrug-resistant (MDR) A. bau-
mannii to persist in the hospital environment [9]. Globally,
resistant strains of A. baumannii have become more prev-
alent. They are responsible for the majority of hospital
outbreaks [6]. The ability to resist desiccation enhances the
prolonged viability of organisms on healthcare equipment
surfaces. This could serve as a secondary reservoir and a
transmission route in hospital outbreaks of MDR-A. bau-
mannii [10, 11]. Therefore, to successfully control the MDR-
A. baumannii HAIs, healthcare workers’ compliance with
hand hygiene and environment disinfection to prevent
endemic strains is particularly critical [12]. There are plenty
of chemicals used as disinfectants and antiseptics. Quater-
nary ammonium compounds (QACs), hydrogen peroxide,
biguanides, chlorine-releasing agents, peroxygenase, alco-
hols, and phenolic compounds are the most commonly used
agents [13]. While disinfectants are essential for controlling
HAIs in the healthcare sector [12], they are also widely used
for disinfection in households, veterinary and industrial
environments [14]. Disinfectants usage increased intensively
during the Covid-19 pandemic in the healthcare and public
sectors worldwide [13]. It has been shown that increased
bacteria exposure to disinfectants could result in tolerance or
resistance [15–17]. The reduced susceptibility of antibiotic-
resistant A. baumannii strains to detergents and alcohol
disinfectants has been reported [18]. Disinfectants have been
linked to the A. baumannii HAI outbreak [19]. On the other
hand, cross-resistance to antibiotics was observed in disin-
fectant non-susceptible bacteria frequently [15, 20]. Resis-
tance to disinfectants is mainly mediated by efflux pumps
which expel disinfectants from bacterial cells [21, 20]. Efflux
pumps are rather unspecific and can extrude a variety of
structurally different compounds [22]. Therefore, antibiotics
may also be co-extruded with disinfectants from bacterial
cells, thereby leading to the co-occurrence of resistance to
antibiotics and even facilitating the selection of higher
levels of antibiotic resistance. It is crucial to monitor the
susceptibility of A. baumannii to disinfectants in order to
choose the right agents and use them effectively in con-
trolling nosocomial infections [19]. There is no information
about A. baumannii isolates’ susceptibility to common dis-
infectants and antiseptics in Iran, and scarce information

is available worldwide. This study aimed to investigate the
susceptibility of A. baumannii isolates collected from pa-
tients in Iran to common antiseptic/disinfectant compounds
used in hospitals. These compounds included benzalkonium
chloride (BZC), chlorhexidine di-gluconate (CHDG), tri-
closan (TRE), and formaldehyde (FOR). Moreover, the fre-
quency of disinfectant tolerance-associated (BTA) genes,
qacA/B, qacED1, emeA, and aceI were investigated.

MATERIALS AND METHODS

Bacterial isolates

In this study, 100 clinical isolates of A. baumannii were
included. The isolates were collected and characterized
during 2017–2019 from patients admitted to hospitals affil-
iated with Ardabil University of Medical Sciences, previously
[23]. According to ERIC-PCR analysis, the isolates belonged
to 24 heterogeneous clusters. More than half (57%) of the
isolates were from tracheal specimens, while the remaining
were from specimens such as wound, urine, blood, urinary
catheter, pleural fluid, lung secretions, and synovial fluid.
The isolates were resistant to various antibiotics, including
cefazolin, ciprofloxacin, imipenem, cefotaxime, meropenem,
ceftazidime, cefepime, gentamicin, and amikacin. The resis-
tance rates ranged from 78% to 100%. However, all strains
were sensitive to polymyxin B (100%). Furthermore, 99% of
the isolates were multidrug-resistant (MDR).

Determination of disinfectant susceptibility

The minimum inhibitory concentrations (MICs) of 4 anti-
microbial disinfectant agents; formaldehyde (Acros, Belgium
38%), Benzalkonium chloride (Sigma Aldrich, USA 95%),
triclosan (BioBasic, Canada 98% <), and chlorhexidine
digluconate (Sigma Aldrich, USA 20%) were determined
using an agar dilution method according to the CLSI
guideline. Briefly, serial 2-fold dilutions of disinfectants in a
concentration range between 0.125 and 1,024 μg mL�1 were
prepared on Mueller–Hinton agar (Himedia, India) me-
dium. Then, 1–2 μL of each bacterial suspension containing
104 CFU was spotted on the agar surface. The plates were
incubated at 37 8C for 18–24 h. The MIC was considered the
lowest concentration of antimicrobial disinfectants that
inhibit the growth of the organisms [24]. The MIC50 and
MIC90 were scored as the lowest concentrations of com-
pounds that inhibit the growth of 50% and 90% of isolates,
respectively.

Screening for disinfectant tolerance-associated genes

The presence of disinfectant tolerance-associated genes,
including qacE, qacED1, emrA, and aceI which encode efflux
pumps in A. baumannii was investigated using PCR testing.
Template DNA was extracted using the boiling method ac-
cording to previous reports [25]. The genes were amplified
using specific primer nucleotides designed in this study
(Table 1) in a 25 μL PCR reaction mixture. The reaction
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mixture consisted of 12.5 μL of Premix Taq® mix, 2 μL of
extracted template DNA, l μL (10 μmol) of each forward and
reverse primers, and 9.5 μL deionized nuclease-free water.
The amplification program comprised following steps: initial
denaturation: 4 min at 94 8C, denaturation: 1 min at 94 8C,
annealing: 1 min (temperatures are shown in Table 1),
extension: 1 min at 72 8C for 30 cycles, and final extension:
1 min at 72 8C. PCR products were visualized with 1.5%
agarose gel electrophoresis. PCR products were electro-
phoresed at 100 V over 1 h in a 1% agarose gel (Sinaclon,
Tehran, Iran) in a 0.5X TBE buffer. Then, the samples were
stained with DNA safe stain (Sinaclon, Tehran, Iran), and
DNA bands were inspected by UV illumination (Uvi Tec,
Cambridge, UK).

The identity of the representative amplified genes was
confirmed by sequencing technique (Microsynth Company,
Switzerland). Genomic DNA from isolates containing target
genes was used as a positive control for PCR testing.

Statistical analysis

The association between disinfectant tolerance-associated
genes and MICs of antimicrobial disinfectants in A. bau-
mannii isolates were evaluated using the Chi-square test.
A p-value of <0.05 was used to indicate statistically signifi-
cant results.

RESULTS

Table 2 shows the MICs of disinfectant agents against
A. baumannii isolates. The MIC range for disinfectant
compounds was as follows: formaldehyde 128 μg mL�1,
benzalkonium chloride 32–128 μg mL�1, chlorhexidine
digluconate 8–64 μg mL�1, and triclosan 1–32 μg mL�1.
Overall, the highest MIC90 value was identified for formal-
dehyde (128 μg mL�1), followed by benzalkonium chloride
and chlorhexidine digluconate (64 μg mL�1, for each one)
and triclosan (4 μg mL�1).

In the present study, the qacE, qacED1, emrA, and aceI
genes were found in 91% (n 5 91), 55% (n 5 55), 100%
(n 5 100) and 88% (n 5 88) of isolates, respectively. The
qacG gene was not identified in our A. baumannii isolates.

As shown in Table 3, the qacED1 gene was found to
be associated with higher MICs for all disinfectants tested
(P < 0.05). In contrast, the presence of the qacE and aceI
genes was associated with increased MICs for only benzal-
konium chloride and chlorhexidine.

Overall, 6 tolerance-associated gene profiles were iden-
tified. The isolates simultaneously harboring aceI þ emrA þ
qacE þ qacED1 genes (46%) and aceI þ emrA þ qacE genes
(34%) were more prevalent among A. baumannii isolates in
the present study (Table 4).

Table 2. Minimum inhibitory concentration of antimicrobial disinfectants against clinical isolates of A. baumannii.

Antimicrobial disinfectant

MICs (μg mL�1)

1 2 4 8 16 32 64 128 256 MIC50 MIC90

Formaldehyde
N 5 100 n (%)

- - - - - - - 93 (93) 7 (7) 128 128

Benzalkonium chloride
N 5 100 n (%)

- - - - - 14 (14) 81 (81) 5 (5) - 64 64

Triclosan
N 5 100 n (%)

28 (28) 55 (55) 8 (8) - - 9 (9) - - - 2 4

Chlorhexidine digluconate
N 5 100 n (%)

- - - 4 (4) 21 (21) 1 (1) 74 (74) - - 64 64

Table 1. Primer sequences and PCR conditions

Gene name Primer name Primer sequence (50–30) Annealing 8C Product size

qacED1 qacED1 F AATCCATCCCTGTCGGTGTT 53 190
qacED1 R CGCAGCGACTTCCACGATGGGGAT

qacE qacE F TTAGGATGGAGACGAAATTTTCA 59 240
qacE R CGCTTAACACCTAGTATTATTACCGT

fabI FabI F ATGCTGAAAATTGTTTTGAGTGAGA 59 830
FabI R TTCATCATCCTTCATAGATTGGCTC

aceI AceI F ATGTTGATTTCCAAGAGAAGACTCA 59 420
AceI R TGCTTTAGCATTTGGGAAAAACTTA

qacG qacG F TTGAATAATTGGTTATTTCTGGCT 59 333
qacG R TTAGTGAACACTTGCCTTAGATAG

emrA EmrA F TTAAACATCGATATTAGAGTATTGCGC 59 354
EmrA R ATGTTCGCATTAATCTCAAAAATAAAT
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DISCUSSION

A. baumannii is a prevalent hospital pathogen responsible
for HAIs worldwide [23]. To maintain hand hygiene and
disinfect medical equipment and the hospital environment,
it is essential to use antimicrobial disinfectants such as an-
tiseptics and disinfectants [26]. Triclosan was found to be
the most effective disinfectant against A. baumannii clinical
isolates in this study, with an MIC90 value of 4 μg mL�1. In
contrast, previous studies in China reported a wide range of
MIC90 values for triclosan against A. baumannii isolates,
ranging from 0.5 μg mL�1 to 128 μg mL�1 [27–29].
Currently, there are no established standard breakpoints for
interpreting the results of the disinfectants’ susceptibility
tests. However, some studies provide a provisional resistance
breakpoint as ≥ 64 μg mL�1 for triclosan in A. baumannii
isolates [28]. In our isolates, the MIC90 value of triclosan is
less than 64 μg mL�1 and falls within the current in-use
concentration range of triclosan (2,000–20,000 μg mL�1). It
has been shown that triclosan is stable in the environment
and remains on surfaces, and releases slowly [27]. So,
exposure of bacteria to sub-MIC concentrations may induce
triclosan resistance encoding genes and causes the devel-
opment of isolates with elevated MIC levels [28]. Studies

have shown that the antibacterial action of triclosan is due to
the inhibition of enoyl-acyl carrier protein reductase (ENR)
(involved in type II fatty acid synthesis). Four isoenzymes
FabL, FabV, FabI, and FabK were described for ENR. Only
FabI is targeted by triclosan. Genes encoding FabI and FabV
are common among bacteria, including A. baumannii.
Mutations and increased expression levels in the fabI gene
and the presence of the fabV gene may lead to elevated
triclosan MIC [16].

In this study, benzalkonium chloride and chlorhexidine
digluconate were found to be the second most effective
antimicrobial agents against A. baumannii isolates
(MIC90 5 64 μg mL�1). Reduced susceptibility of A. bau-
mannii isolates to benzalkonium chloride and chlorhexidine
digluconate was reported previously [19, 30, 28, 31, 32]. As
antiseptics, chlorhexidine and benzalkonium have been
widely used in healthcare settings for a long time [33].
Therefore, the higher MICs of benzalkonium chloride and
chlorhexidine digluconate against A. baumannii isolates
could be attributed to constant exposure to these agents. It
has been shown that exposure of A. baumannii to chlor-
hexidine sub-MIC concentrations increases the expression
of A. baumannii efflux pumps [34]. In A. baumannii iso-
lates, reduced susceptibility to chlorhexidine and benzalko-
nium chloride has been linked to the activity of several efflux
pumps [28, 34]. In this study, the efflux pump encoding
genes qacE, qacED1, and qacG were present in 91%, 55%,
and 0% of the isolates, respectively. The qacE gene and its
modified variant, the qacED1 gene, are primarily found in
gram-negative bacteria and are located on plasmids. [35].
In similar studies, the frequency of qacE ranges from 40% to
52%, while the frequency of qacED1 ranges from 68% to
93% in A. baumannii isolates [36–38]. Akin to our study, a
study conducted in China reported the absence of the qacG
gene in A. baumannii isolates. The correlation of qacG genes
and reduced susceptibility to biguanides has been observed
in methicillin-resistant S. aureus isolates [32]. In this study,

Table 4. Combination pattern of efflux pump encoding genes
among A. baumannii isolates

Genes profile
No. (%) of isolates

N 5 100

aceI þ emrA 2 (2)
emrA þ qacE 8 (8)
emrA þ qacED1 7 (7)
aceI þ emrA þ qacE 34 (34)
aceI þ emrA þ qacED1 3 (3)
aceI þ emrA þ qacE þ qacED1 46 (46)

Table 3. Association between antimicrobial disinfectant MICs and antimicrobial disinfectant tolerance associated genes in clinical isolates of
A. baumannii

Gene

Disinfectant (MICs μg mL�1)

Formaldehyde
Benzalkonium

chloride Triclosan Chlorhexidine

≤128 256 ≤ ≤64 128 ≤ ≤4 8 ≤ ≤32 64 ≤

qacED1þ 48 7 50 5 47 8 8 47
qacED1- 45 0 45 0 44 1 18 27
p value 0.013 0.037 0.032 <0.01
qacEþ 84 7 86 5 82 9 17 74
qacE- 9 0 9 0 9 0 9 0
p value 0.38 0.47 0.32 <0.01
aceIþ 83 5 84 4 79 9 14 74
aceI- 10 2 11 1 12 0 12 0
p value 0.16 0.57 0.24 <0.01
emrAþ 93 7 95 5 91 9 26 74
emrA- 0 0 0 0 0 0 0 0
p value - - - -
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the presence of the qacE gene showed a positive correlation
(P ≤ 0.05) with reduced susceptibility to benzalkonium
chloride and chlorhexidine digluconate in A. baumannii
isolates. Our results are supported by previous reports
indicating the diminished antimicrobial activity of chlor-
hexidine and benzalkonium in the presence of qac genes in
A. baumannii isolates [36–38]. The aceI, chlorhexidine-
specific efflux pump AceI, encoding gene was identified in
88% of our isolates. AceI contributed to adoptive tolerance
to chlorhexidine in A. baumannii [39]. In this study, a
positive correlation was observed between the presence of
aceI and increased MIC to benzalkonium chloride and
chlorhexidine digluconate. This finding potentiates previous
studies showing that inactivation or inhibition of the AceI
efflux pump reduces the MICs of chlorhexidine and ben-
zalkonium in A. baumannii standard isolates [28, 34].

The highest MICs (MIC90 5 128 μg mL�1) were ob-
tained for formaldehyde against A. baumannii isolates
compared to other disinfectants investigated in the current
study. Similar results were previously reported in Iran for
Enterococcus spp and P. aeruginosa isolates, with an MIC90

value of 512 μg mL�1 [15, 16]. This substance is used to
disinfect or sterilize medical equipment in hospitals [40].
Formaldehyde mediates its toxic effects by the creation of
DNA-DNA and DNA-protein cross-links, as well as cova-
lent DNA mono-adducts [41]. Increased tolerance of bac-
teria to formaldehyde has been reported due to inactivation
by formaldehyde dehydrogenase and alterations in cell en-
velope proteins in bacteria [40]. Our data show a correlation
between the presence of the qacED1 gene and increased
formaldehyde MICs in A. baumannii isolates.

CONCLUSION

In summary, high MIC levels were detected for all anti-
microbial disinfectants against A. baumannii isolates. Tri-
closan was the most effective agent in this study.
Furthermore, disinfectant tolerance genes were observed in
isolates. We recommend the prudent use of disinfectants
and continuous monitoring of the changes in their anti-
microbial activity to slow the development and spread of
disinfectant resistance and better infection control prac-
tices in hospitals.
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