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ABSTRACT

Background and Aims: The high prevalence of internet addiction (IA) has become a worldwide problem
that profoundly affects people’s mental health and executive function. Empirical studies have suggested
trait anxiety (TA) as one of the most robust predictors of addictive behaviors. The present study
investigated the neural and socio-psychological mechanisms underlying the association between TA and
IA. Methods: Firstly, we tested the correlation between TA and IA. Then we investigated the longitu-
dinal influence of TA on IA using a linear mixed effect (LME) model. Secondly, connectome-based
predictive modeling (CPM) was employed to explore neuromarkers of TA, and we tested whether the
identified neuromarkers of TA can predict IA. Lastly, stressful life events and default mode network
(DMN) were considered as mediating variables to explore the relationship between TA and IA.
Findings: A significant positive correlation between TA and IA was found and the high TA group
demonstrated higher IA across time. CPM results revealed that the functional connectivity of cognitive
control and emotion-regulation circuits and DMN were significantly correlated with TA. Furthermore,
a significant association was found between the neuromarkers of TA and IA. Notably, the CPM results
were all validated in an independent sample. The results of mediation demonstrated that stressful life
events and correlated functional connectivity mediated the association between TA and IA. Conclusions:
Findings of the present study facilitate a deeper understanding of the neural and socio-psychological
mechanisms linking TA and IA and provide new directions for developing neural and psychological
interventions.
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INTRODUCTION

The internet has reached more than 40% of the global population, and this phenomenon has
been promoted with the development of mobile devices (Montag et al., 2018; Wolniewicz,
Tiamiyu, Weeks, & Elhai, 2018). The development of the internet has played a positive role in
education, leisure and information dissemination, although it has also been accompanied by
the emergence of more widespread addiction disorders, such as IA and online gaming
addiction (Aziz, Nordin, Abdulkadir, & Salih, 2021; Y. C. Pan, Chiu, & Lin, 2020), with an
estimated prevalence of approximately 2% in the world’s adult population (Kuss & Lopez-
Fernandez, 2016; Poli, 2017; Wu et al., 2022). IA is a behavioral addiction characterized by
compulsive, uncontrollable internet use that interferes with daily life (Poli, 2017). Previous
studies have concluded that this disorder is associated with interpersonal problems (Chou
et al., 2017), depression (Dieris-Hirche et al., 2017), anxiety (Arcelus et al., 2016), perceived
stress (Canale et al., 2019), and problems with executive function such as suppression of
cognitive, emotional, and behavioral (central executive) responses and that it also affects
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attention (Argyriou, Davison, & Lee, 2017; Nikolaidou,
Fraser, & Hinvest, 2019). In the present study, we sought to
characterize the relationship between TA and IA.

TA is a personality trait considered as a permanent psy-
chological characteristic (Spielberger, 1966). It refers to a
stable tendency to focus on and experience negative emotions
in a variety of situations (Gidron, 2013). Previous studies have
revealed a link between a higher level of TA and substance use
disorders, such as alcohol, drug (Kushner, Krueger, Frye, &
Peterson, 2008; Lai, Cleary, Sitharthan, Hunt, & dependence
a, 2015; Litt, Cooney, & Morse, 2000). Similarly, recent studies
have shown that TA is a strong personality factor for online
gaming and social media addictions (Mehroof & Griffiths,
2010; Nikbin, Iranmanesh, & Foroughi, 2021). Thus, TA is
widely considered to be a robust predictor of addictive
behavior. However, these findings mostly indicate a positive
relationship between TA and behavior disorders but have yet
to establish the underlying mechanisms reliably (Kim et al.,
2019; Y. Li, Li, Liu, & Wu, 2020; Yang, Zhou, Liu, & Fan,
2019; R. Zhang & Volkow, 2019).

Many previous studies have focused on the neural basis of
anxiety. Generally, affective and cognitive control-related net-
works, such as the DMN, have been shown to be dysregulated
in anxiety disorders (Janiri et al., 2020; Kolesar, Bilevicius,
Wilson, & Kornelsen, 2019; McTeague et al., 2017). A meta-
analysis concluded that task-related brain activity converges in
regions associated with inhibitory control among anxiety dis-
orders (Janiri et al., 2020). Additionally, the insular, prefrontal,
and subcortical regions (particularly the hippocampus) as well
as the anterior cingulate regions are the regions displaying
significant neural phenotypes for anxiety disorders (Etkin,
2009; Janiri et al., 2020; Phillips, Drevets, Rauch, & Lane, 2003).
Specifically, these regions significantly support the function of
adaptive regulation (Kenwood, Kalin, & Barbas, 2022; Klumpp
et al., 2017; Korotkova et al., 2018; Kouneiher, Charron, &
Koechlin, 2009; Shackman et al., 2011; Teicher, Samson,
Anderson, & Ohashi, 2016). Taken together, the evidence
indicated that brain regions associated with TA are involved in
the processes of executive control and emotional regulation.
These processes have been emphasized to be impaired in
studies on addictive behavior (Christensen et al., 2023;
Marchica, Mills, Derevensky, & Montreuil, 2019). Accordingly,
it would be valuable to explore the neural markers of TA and
verify the predictive ability of these markers for IA.

Stressful life events have been proven to impair cognitive
control (Wolff et al., 2021). Notably, some researchers have
proposed a theory of compensatory internet use to explain the
mechanism of IA (Kardefelt-Winther, 2014). This theory
holds that negative life conditions will generate the motiva-
tion to use the internet to relieve negative emotions
and emphasizes that negative life conditions are the root of
the problem (Kardefelt-Winther, 2014). Accordingly, we
are intrigued to speculate that high TA individuals are prone
to perceive more negative impact introduced by adverse
life experiences and thus further trigger more IA to cope with
these stressful events. Moreover, stressful experiences modu-
late neuro-circuitry function heavily, which depends on pro-
cesses that are engaged during resting-state, through active

recollection of past experiences and anticipation of future
events, all known to involve the DMN. A review of addictive
behaviors revealed that aberrant patterns of brain functional
connectivity in the DMN are associated with craving and
relapse related to addictive behaviors, and that the resting
functional connectivity of the anterior DMN, which is
involved in impaired emotion regulation, was found to have
decreased in addicted individuals (R. Zhang & Volkow, 2019).
Thus, we further explored whether the functional connectivity
of the DMN mediates the relationship between TA and IA.

Overall, despite extensive research investigating the
neural basis of TA, few studies have explored the neural
mechanisms by which TA predicts IA (Weinstein &
Lejoyeux, 2010). Identifying neurobiological markers that
can explain the mechanisms above-mentioned could
contribute to improved approaches for predicting the
emergence and development of addictive behaviors. Notably,
most previous studies focusing the relationship between TA
and IA employed a small sample size, and thus, the in-
terpretations of the findings should be treated with caution.
Moreover, the most previous studies focused on a cross-
sectional design, which can hardly achieve the purpose of
examining the direction of effects in a relationship between
variables. Thus, we collected the resting-state functional
MRI (fMRI) data for a longitudinal sample in this study.

Based on the aforementioned literature, the present study
aimed to investigate the neural and socio-psychological
mechanisms underlying the association between TA and IA.
We first evaluated the predictive role of TA on IA and
determined the difference of dynamic trajectory of addictive
behavior across time for different severity of TA. In addition,
we identified neuromarkers of TA and subsequently tested
whether the discovered neuromarkers of TA can predict IA.
Lastly, we paid particular attention to the role of stress life
events and the functional connectivity of the DMN between
TA and IA to reveal the socio-psychological mechanism
of the effect of TA on IA. We hypothesized that high TA is
a risk factor for addictive behaviors and that expression
of neuromarkers of TA in regions related to the abilities of
control and emotion regulation can predict IA as well.
Moreover, we speculated that stress life events and the
functional connectivity of the DMN might play key roles in
the relationship between TA and IA.

METHODS

Participants

Participants recruited as part of two larger investigations
were included in this study to be considered as two inde-
pendent samples. The recruiting program and exclusion
procedures for these larger investigations were described in
detail elsewhere (Q. Chen et al., 2018; W. Liu et al., 2017).
Participants with excessive head motion and who did not
have behavioral data were excluded. The test sample con-
sisted of 666 healthy undergraduates who completed the TA
assessment. Of these, 446 and 483 also completed the IA and
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the stressful life events assessments, respectively. The vali-
dation sample included 127 students who completed all
sessions, 538 participants who completed TA questionnaires
and MRI scanning and 376 participants who completed IA
questionnaires at time point 1. The average interval between
the first scan and the second scan was 817.87 days.

In this study, TA was measured using the Spielberger State-
TA Inventory (S-TAI) questionnaire (Spielberger, 1983) and
the Adolescent Self-Rating Life Events Check-List (ASLEC)
was used to evaluate the stressful life events (X. Liu, Liu, Yang,
& Zhao, 1997). IA severity of participants measured by the
Questionnaire of internet Addiction Tendency among the
undergraduates (IUS) in the test sample and the Internet
Addiction Test (IAT)in the validation sample respectively.
Details of each test and the comparison of the IUS and IAT are
provided in supplementary material Method S1 and S2.

All participants from the test and validation samples
were right-handed, and none of them had a history of
psychiatric or neurological illnesses and provided informed
consent in writing prior to the experiment and were
compensated with money at the end of the study.

fMRI data acquisition and analysis

Image acquisition and preprocessing. At the Southwest
University Brain Imaging Center, 8 min of resting-state fMRI
scanning was completed for all participants on a 3T Trio
scanner (Siemens Medical Systems, Erlangen, Germany). The
resting-state fMRI data were analyzed using the Data Pro-
cessing Assistant for resting-state fMRI on SPM8 (Chao-Gan
& Yu-Feng, 2010). The processing procedure included the
following steps: removal of the first 10 volumes, correction of
slice timing and head motion, spatial normalization, nuisance
signal regression, data scrubbing, spatial smoothing, and
band-pass filtering. The detailed scanning parameters are
provided in the supplementary material (see Method S3).

Functional connectivity. Whole-brain functional connectiv-
ity was analyzed on the Graph Theoretical Network Analysis
(GRETNA) platform for each participant (Wang et al., 2015).
Power, Schlaggar, Lessov-Schlaggar, and Petersen (2013)
defined a 264 putative functional area template that was used
to identify nodes in the whole-brain network. The time
courses for each region of interest (ROI) were extracted, and
the Pearson correlation coefficients between each pair of ROIs
were calculated to generate a 2643 264 correlation matrix for
each participant. We constructed a brain network consisting
of the 264 brain regions connected by 34,716 functional
connectivity links. Additionally, Power’s 264-region atlas
divided all 264 nodes into 13 functional networks, and the
DMN was chosen to enter into the follow-up mediation
analysis. Detailed information regarding how the within-
network connectivity of the DMN was calculated is provided
in the supplementary material (Method S4).

CPM-based prediction

CPM is a data-driven protocol for developing predictive
models of brain–behavior relationships from connectivity

data using cross-validation. The final result is a generaliz-
able model that uses brain connectivity data to predict
behavioral indicators for individual participants (Shen
et al., 2017). In this study, CPM was implemented with
an example MATLAB code that allowed us to identify
neuromarkers of TA and test whether the neuromarkers
could predict IA. Subjects with missing information for
sex and age were excluded, and finally, 572 subjects
(195 males, aged 16–26 years) were included in the analysis
of CPM. We briefly summarize the CPM processing here
(Fig. 1b).

Firstly, a vector of behavioral value (here, TA) was
correlated with each edge (i.e., Pearson correlation coeffi-
cient between each pair of ROIs) in the functional connec-
tivity matrix of each participant. Similar to the original
paper, a threshold (here, thresh 5 0.001) was applied to the
matrix to retain only connections that were significantly
correlated with TA scores. Thus, edges correlated with TA
scores were defined as the TA network. Note that we used a
leave-one-out approach to identify the sets of edges that
make up TA network, in each case generated by repeating
the edge identification process while leaving one participant
out of the dataset. The sum of the strength of connections
within the TA network was then calculated for each
participant, which provides a quantitative summary of the
overall strength of functional connectivity each participant
has in the relevant connections that have been identified to
either effectively predict the TA scores.

Secondly, fed these summed network strengths into the
predictive models with TA scores assuming linear relation-
ships. A leave-one-out approach was used in this step.

After each iteration of these regression models are
completed, the resulting models are used to generate pre-
dicted TA scores for the left-out participant. Summing the
network strengths of the left-out participant and entered
these strengths into the regression models, and the regres-
sion models output predicted TA scores.

Thirdly, aim to determine the prediction performance,
which was accessed by correlating predicted TA scores and
observed TA scores. Significant correlation suggests that the
CPM was successful in its prediction. Next, we randomly
shuffled TA scores 1,000 times and ran the above prediction
procedure, which resulted in a null distribution of the
Pearson correlation coefficient between the predicted and
observed scores. The number of the null r values was greater
than or equal to the observed r value plus one and then
divided by 1,001 providing an estimated p value.

Thus, we trained a predictive model of TA using the
CPM and then identified the neuromarkers of TA. Then we
wanted to further explore whether the neuromarkers of TA
could predict IA. Specifically, we conducted a correlation
analysis between the predicted scores of TA generated by the
predictive model and the observed scores of IA in test
sample. Matching the completion of S-TAI and IUS, a total
of 416 subjects were included in this analysis. Notably, to
examine whether this effect is driven by the relationship
between TA and IA, we statistically controlled TA score as
covariate.
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Fig. 1. Flowchart for prediction of individual TA scores using whole-brain functional connectivity
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Finally, to test the generalization of the predictive model,
we applied it to an independent validation sample. We
performed external validation of the neuromarkers of TA
identified in the test sample by testing whether the neuro-
markers could predict TA significantly in an independent
validation sample (Shen et al., 2017). The detailed infor-
mation of the external validation method is provided in the
supplementary material Method S5. Similarly, we analyzed
the correlation of the observed IA with the predicted TA
in the validation sample to estimate the validity of these
predictions.

Statistical analysis

Demographic and correlation analysis. We used SPSS 26.0
software for all analyses of outliers, descriptive statistics,
t-test and correlations. The stressful life events scores of
39 participants were detected as outliers and excluded from
the sample. We used t-test to examine whether there were
gender differences in TA and IA scores. The relationships
between all behavior variables and the within-network
connectivity of the DMN were analyzed in the test sample.
To control for the influence of confounding factors, we
employed partial correlation analysis, gender and age were
controlled.

Linear mixed-effect (LME) model. In the validation sample,
we used a LME with the ‘lme4’ package in R (version 4.2.1)
to examine the changing trajectory of individuals’ IA across
two time points. In addition, we determined whether the TA
level could be used to identify groups at high or low risk of
IA. Specifically, the mean of TA scores was used here as a
grouping basis. Then, the LME was used to estimate the
group difference (low-TA group vs. high-TA group) in the
change trajectory of IA over the two time points. Group,
time, and the time3 group interaction was included in the
model.

Mediation analysis. To examine whether the stressful life
events could explain the relationship between TA and IA, a
mediation analysis was conducted for 362 participants in the
test sample by applying the indirect macro designed for SPSS
(Preacher & Hayes, 2008). In this algorithm, 5,000 boot-
strapped samples were drawn, and bias corrected 95%
bootstrap confidence intervals (CI) were reported. CI that
does not include zero indicate a significant indirect effect
of the independent variable on the dependent variable
through the mediators. Additionally, we explored whether
the within-network connectivity of the DMN could explain
the association between TA and IA, and the same mediating
analyses was performed for 446 participants in the test
sample.

Ethics

Ethical approval of this study was granted by the Ethics
Committee of Southwest University, and all procedures
involved were in accordance with the sixth revision of the
Declaration of Helsinki.

RESULTS

Participant characteristics and correlations among
variables

Table 1 shows the distribution range, mean and standard
deviation (SD) values for the IA, TA, and stressful life events
scores. Results of the t-test indicated that the IA scores of
males were significantly higher than females (see Fig. 2a).
Additionally, our results revealed that the IA was positively
correlated with the TA (r 5 0.33, p < 0.001; see Fig. 2b).
Figure 3a and b show separately that the stressful life
events were significantly positively correlated with TA
(r 5 0.12, p < 0.05) and IA (r 5 18, p < 0.001). Similarly, the
negative correlations between the within-network
connectivity of the DMN and TA, IA were shown in Fig. 3c
and d respectively.

Group difference in the change trajectory of IA in the
validation sample

It is clearly showed in Fig. 4 that many participants seem to
have high IA scores at baseline. As shown in Table 2 and
Fig. 4, the LME model revealed significant time3 group
interaction. Specifically, a lower decrease in IA was seen in the
high-TA group across the two time points, compared with the
low-TA group. However, the high-TA group did not show
significantly higher levels of IA than the low-TA group.

CPM results

We defined the TA network as the edges that appeared in
the TA network, and the TA network had 47 edges (see
Table S1). The results of other thresholds of CPM were
presented in the supplementary material Figure S1.

Table 1. Basic characteristics of participants in the test sample and
validation sample

Variable n Range Mean SD

Test sample
Age, years 16–26 19.57 1.56
TA (S-TAI score) 666 23–64 39.89 7.89
IA (IUS score) 446 48–164 101.01 19.46
Stressful life events
(ASLEC score)

444 3–83 40.56 14.79

Validation sample
Age, years 17–27 19.89 2.26
TA1 (S-TAI score T1) 551 13–79 39.89 8.53
TA2 (S-TAI score T2) 207 20–67 40.16 9.06
IA1 (IAT score T1) 401 0–79 40.23 12.64
IA2 (IAT score T2) 129 0–68 31.86 16.91

Abbreviations: IUS score, score on the Questionnaire of internet
addiction tendency among undergraduates; S-TAI score, last
20 items of Spielberger State-TA Inventory representing the level
of trait anxiety; ASLEC score, Adolescent Self-Rating Life Events
Check-List score; IAT score, Internet Addiction test score; T1,
time 1; T2, time 2.
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We then calculated the TA network strength for each
participant. The results indicated that all sets of edges in
the TA network significantly correlated with observed TA
scores, as evidenced by positive correlations between the

model predicted TA scores and actual observed TA scores
(TA network: r 5 0.19, p < 0.001), which suggested that the
TA network all effectively predicted individual differences
in TA scores. The scatter plot for the model is shown in

Fig. 2. Shows the results of t-test and partial correlation analysis for TA and IA scores. a) Results of t-test analysis indicated that the IA
scores of males were significantly higher than those of females. b) Scatter plots showing a positive correlation between TA and IA scores

Fig. 3. Scatter plots shows the results of partial correlation analysis among the variables. a) and b) showing that the stressful life events scores
are positively correlated with the TA and IA scores respectively. c and d showing that the within-network connectivity of the DMN are

positively correlated with the TA and IA scores respectively
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Fig. 5a. We then identified the neuroanatomy of the TA
network. Figure 6a shows the visualization of all the edges
of the TA network, and Fig. 6b shows the perspectives of
all relevant nodes found in the TA network. Specifically,
the predicted TA connection was mainly distributed in
the DMN.

Additionally, we input the mask of the TA network into
GRETNA to calculate the degree center number of all nodes
in the mask. Table 3 shows the top 10 nodes with the highest
contribution values that were most well-represented in the
TA network. The regions with the largest number of these
connections were the left parahippocampal gyrus (PhG),
right cuneus, right precuneus, and left middle cingulate
gyrus (MCG).

Finally, we tested the neuromarkers of TA could
predict IA successfully. The results indicated that the com-
bination of TA-associated features predicted IA significantly
(r 5 0.11, p < 0.05). The scatter plots for the best predicting
models are shown in Fig. 5b.

External validation

An independent validation sample was used to test the
generalizability of the predictive model. Significant correla-
tion between the observed TA scores in the validation
sample and the predicted TA scores generated from the
regression model using parameters from the test sample

would provide strong evidence of the generalizability. The
results indicated a significant association between the TA
scores in the validation sample and the neuromarkers
identified in the test sample (r 5 0.01, p < 0.05, Fig. 5c).
Additionally, we found that the neuromarkers of TA could
predict the IA scores in the validation sample (r 5 0.13,
p < 0.01, Fig. 5d).

Mediating results

As shown in Fig. 7a, the first mediation analysis indicated
that ASLEC mediated the relationship between IA and TA
[β 5 0.03, 95% confidence interval (CI) [0.008,0.058],
p < 0.05]. Standardized coefficients are present in the path
diagram, which represent the covariant relationship between
two variables. In addition, the second mediation analysis
indicated that the within-network connectivity of the DMN
mediated the association between IA level and TA (β 5 0.02,
95% CI [0.005, 0.037], p < 0.05, see Fig. 7b).

DISCUSSION

The present study aimed to explore the underlying neural
and socio-psychological mechanisms of the effect of TA on
IA. Firstly, we obtained results that TA is positively corre-
lated with IA. Secondly, LME modeling suggested the
different change trajectories of IA in individuals with
different levels of anxiety. Specifically, the high-TA group
had a higher risk of IA. Thirdly, our study determined
neuromarkers of TA from their unique whole-brain func-
tional connectivity profile by CPM, and the results showed
that TA-related connectomes predicted IA relatively well. In
addition, our results demonstrated the successful generaliz-
ability of the CPM in an independent validation sample.
Lastly, we estimated the mediating role of stressful life events
and the within-network connectivity of the DMN in the
relationship between TA and IA.

Fig. 4. (a) Scatter plot for the predictive model. Each dot denotes one participant at each scan. Each line connects the repeated scans for the
same individual. The orange line represents the results for female participants, and the green line represents the results for male participants.
(b) Change trajectories for internet addiction. The orange line represents the results for the high-TA group, and the green line represents the

results for the low-TA group

Table 2. LME model estimates for time, group, and time3 group
effects on IA

Parameters Estimate
Standard
error t-value p-value

Time �13.54 1.68 �8.08 <0.01
Group (low vs.
high)

�3.94 3.05 �1.29 0.19

Time3 group 8.47 2.32 3.66 <0.01
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Predictive role of TA for IA

Our study revealed that TA could predict IA in college
students significantly. This finding is consistent with previ-
ous studies in which participants with high TA were more
inclined to experience IA. We examined the different change
trends in a LME model, and the results showed that par-
ticipants with high TA exhibited high IA scores at baseline
and less decrease in IA across the time. Indeed, previous
studies indicated that on average self-control increases
during adolescence, which in turn contributes to the pre-
vention or intervention in internet gaming disorder as well
(Xiang, Gan, Jin, Zhang, & Zhu, 2022; Zondervan-Zwij-
nenburg et al., 2020). Similar results suggested that greater
self-control of adolescents is associated with negative
network coupling between the limbic and right fronto-pa-
rietal resting state networks (Rubin et al., 2016). However, it
has been proven that less involvement of the brain circuitry

that supports top-down attentional control predicts more
problematic drinking among college students (Cohen-
Gilbert et al., 2022). Thus, subjects showed higher levels
of IA at a younger baseline time point. Additionally,
more mature participants use a wider variety of emotion
regulation strategies compared to younger participants
(Puente-Martínez, Prizmic-Larsen, Larsen, Ubillos-Landa, &
Páez-Rovira, 2021). In summary, individuals experience
maturity of self/attention control and emotional regulation
abilities. Therefore, the participants reported lower IA at
the second time point. However, these abilities were
impaired in high TA individuals, who showed smaller de-
creases in addictive behavior over a longer period.

Emotion regulation circuit

Among the top 10 nodes we observed, the PhG had the
highest centrality index. The functional connectivity

Fig. 5. Scatter plots showing the predicted and observed scores from the best predictive combination of edges in the following CPM models;
a and c) correlations between the predicted TA value and actual TA value in the test sample and validation sample; and b and d) neu-

romarkers of TA predicting IA in the test sample and validation sample
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between the postcentral gyrus and PhG was found
frequently in our results. A study of voxel-based morpho-
metric analysis to determine the relationship between
brain regions and high negative emotions indicated that
altered activation of the PhG and precuneus regions in high
TA individuals can have a detrimental effect on their
emotion regulation ability (L. Zhang et al., 2022). Similarly,

depression patients with increased posterior cingulate cor-
tex–PhG connectivity were shown to experience a sadder
mood and more rumination in daily life (Zamoscik, Huff-
ziger, Ebner-Priemer, Kuehner, & Kirsch, 2014). These re-
sults may provide neurophysiological evidence for the
pathway via which TA can predict IA based on emotion
regulation impairment.

Fig. 6. Functional connections predicting individual TA. (a) The functional connections in TA networks, plotted as the number of con-
nections within each lobe. PhG 5 parahippocampa gyrus; PCG 5 post cingulate gyrus; PC 5 precuneus; MSFG 5 medial superior frontal
gyrus; SFG 5 superior frontal gyrus; MCG 5 middle cingulate gyrus; MFG 5 middle frontal gyrus; ACC 5 anterior cingulate cortex;

(b) The brain network patterns in TA networks. DAN 5 dorsal attention network; FPN 5 fronto-parietal task control network;
CON 5 cingulo-opercular task control network; DMN 5 default mode network; SMN 5 sensory/somatomotor hand network

Note: The nodes in the a and b are colored according to the different brain networks they belong to, as shown in the legend at the bottom
right. In addition, the legend at the top right explains the rule for setting the font color of the labels in this figure, which are different for

nodes belonging to emotion regulation circuit and control-circuit.

Table 3. Nodes in the TA network with the most connections that contributed to predicting TA

Node number Node name Network X Y Z

6 ParaHippocampal_L Uncertain �21.38 �22.22 �19.97
159 Cuneus_R Visual 15.18 �76.68 31.00
94 Cingulum_Mid_L Default mode �2.2 �36.68 43.85
93 Precuneus_R Default mode 15.12 �63.09 25.98
88 Precuneus_L Default mode �6.84 �54.9 27.05
92 Cingulum_Post_R Default mode 7.94 �48.37 30.57
156 Occipital_Sup_R Visual 15.27 �87.09 36.89
95 Precuneus_R Default mode 10.77 �53.83 17.09
97 Frontal_Sup_R Default mode 23.33 33.07 47.68
102 Frontal_Sup_Medial_R Default mode 12.73 54.87 38.19

Fig. 7. (a) Mediating effects of stressful life events on the relationship between TA and IA on test sample. (b) Mediating effects of the
within-network connectivity of DMN on the relationship between TA and IA on test sample
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Control-circuit

The neuromarkers of TA involved the precuneus, frontal
gyrus and MCG. Previous studies underscored the key role
of the precuneus regions in facilitating vigilance (Castellanos
et al., 2008; R. Chen et al., 2022; B. Li, Zhang, et al., 2020;
Nagahama et al., 1999). Clinical studies have suggested that
the attention deficit in attention deficit hyperactivity disor-
der (ADHD) is correlated with activation of the precuneus.
Specifically, individuals with ADHD had lower connectivity
in regions of the default-mode (precuneus) and dorsal
attention (superior parietal cortex) networks (Christakou
et al., 2013; Tomasi & Volkow, 2012). Empirical studies have
found similar results indicating important roles of the
cuneus, precuneus and right frontal gyrus in attention
regulation (R. Chen et al., 2022; Mahayana, Tcheang, Chen,
Juan, & Muggleton, 2014; Song et al., 2019). The frontal
gyrus has been shown to be a key region of dorsal and
ventral attention networks and for the reorientation of
attention from exogenous to endogenous attentional
control (Japee, Holiday, Satyshur, Mukai, & Ungerleider,
2015; B. Li, Zhang, et al., 2020; Song et al., 2019). In the
same line of thinking, we speculate that the decrease of
functional connections involving the precuneus, cuneus
and frontal gyrus regions was associated with deficient
attention, and thus, might contribute to the loss of attention
control, which represents a key symptom across addictive
disorders.

Additionally, the MCG is implicated in inhibitory con-
trol (Kana, Keller, Minshew, & Just, 2007). The insula and
MCG have been shown to impair the supervisory attentional
control system (R. Zhang, Geng, & Lee, 2017). A previous
study in heavy smokers discovered deficiencies in some
brain regions including the MCG and precuneus, which are
highly relevant to addiction to chronic smoking (Ye et al.,
2020). We propose that the neural mechanism through
which TA affects IA is associated with the MCG as found in
the negative TA network, which might indicate that the
inhibitory control ability of individuals with high TA is
affected, thereby contributing to IA.

Mediating effects of stressful life events and the DMN

The present study revealed a close relationship between TA
and IA, but our findings cannot prove that TA will lead
to IA. In order to explore the underlying socio-psycho-
logical mechanisms for the influence of TA on IA,
we introduced stressful life events as a mediating variable
between TA and IA. The results of our mediating effect
analysis showed that TA could significantly predict IA
behavior through stressful life events. Specifically, when
individuals with high-TA suffer stressful life events,
internet use offer an easy way for negative emotion regu-
lation induced by these events. Thus, as a way to
compensate stress regulation, individuals will participate
in more problematic internet use.

Consistent with the study by Rebello et al., our results
showed that exposure to stressful life events is related to the

potential neural embodiment in the DMN (Rebello, Moura,
Pinaya, Rohde, & Sato, 2018). The DMN is widely recog-
nized as the neural substrate of self-referential processes.
It has the capacity to integrate salient external or internal
stimuli with current emotional personal experiences and
perceptions. This process is of paramount importance for
resilience in the face of adversity. As for the effect of stressful
life events in the relationship between TA and IA, one
possible neural basis is that reduced within-network con-
nectivity of the DMN might relate to decreased resilience,
which affects the response to adverse experiences.

Similarly, CPM results emphasized the functional con-
nectivity of the DMN in the neuropathology of TA.
Consistent with previous studies, our results indicate that
high TA subjects showed significantly reduced functional
connectivity in the DMN, which might underlie the
emotional regulation (Imperatori et al., 2019; J. Pan et al.,
2018). Aberrant activation of functional connectivity in the
DMN also has been observed in substance addiction and is
related to craving and relapse (R. Zhang & Volkow, 2019). In
addition, our mediation analysis emphasized the role of the
DMN in the relationship between TA and IA. Accordingly,
we speculate that connectivity of the DMN is reduced
in individuals with high TA, which might lead to affect
dysregulation. Eventually, individual with high TA will
experience difficulties in coping with negative emotions and
are more likely to develop addictive behaviors.

LIMITATIONS AND CONCLUSION

The present study has still several limitations. Firstly, the
participants were all university students. Future research
should include additional types of participants (e.g., pri-
mary and secondary school adolescents). Secondly, because
the data in this study were collected at individual time
points, additional approaches, such as the empirical sam-
pling method, should be adopted in future research for
improved ecological validity. Thirdly, the number of sub-
jects available for analysis decreased at time point 2 due
to academic advancement, which should be avoided in
subsequent researches on other samples. Furthermore,
the participants of this study were mostly females, and we
found that males had more severe IA than females.
Therefore, it is necessary for future studies to include
more male subjects. Lastly, exploration of the dynamic
mechanism between negative emotions and IA among
individuals with TA is another valuable direction for
future studies.

Despite these limitations, our findings suggest that TA is
a robust risk factor of IA. Moreover, we demonstrated that
neuromarkers of TA can predict IA and that the control-
circuits and emotion-regulation circuits can explain the
further occurrence of IA. This information may facilitate a
deeper understanding of the specific mechanism by which
TA influences IA. Lastly, we examined the mediating effects
of stressful life events and the within-network connectivity
of the DMN in the relationship between TA and IA. Overall,
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our study provides a promising direction for psychological
intervention and psychological health education, which is
promoting the ability of adolescents to cope with stressful
life events effectively and related psychological ability
training. Because problematic internet use is an increasingly
prevalent problem today, future policy should consider
possible IA rather than the existing IA.
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