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ABSTRACT

Background and aims: Decisions and learning processes are under metacognitive control, where
confidence in one’s actions guides future behaviour. Indeed, studies have shown that being more
confident results in less action updating and learning, and vice versa. This coupling between action
and confidence can be disrupted, as has been found in individuals with high compulsivity symptoms.
Patients with Gambling Disorder (GD) have been shown to exhibit both higher confidence and
deficits in learning. Methods: In this study, we tested the hypotheses that patients with GD display
increased confidence, reduced action updating and lower learning rates. Additionally, we investigated
whether the action-confidence coupling was distorted in patients with GD. To address this, 27 pa-
tients with GD and 30 control participants performed a predictive inference task designed to assess
action and confidence dynamics during learning under volatility. Action-updating, confidence and
their coupling were assessed and computational modeling estimated parameters for learning rates,
error sensitivity, and sensitivity to environmental changes. Results: Contrary to our expectations,
results revealed no significant group differences in action updating or confidence levels. Nevertheless,
GD patients exhibited a weakened coupling between confidence and action, as well as lower learning
rates. Discussion and conclusions: This suggests that patients with GD may underutilize confidence
when steering future behavioral choices. Ultimately, these findings point to a disruption of meta-
cognitive control in GD, without a general overconfidence bias in neutral, non-incentivized volatile
learning contexts.
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INTRODUCTION

Gambling Disorder (GD) is a recognized psychiatric disorder characterized by a loss of
control and an inability to stop gambling despite known adverse consequences (American
Psychiatric Association, 2022; World Health Organization, 2022). This behavior has spurred
numerous studies to investigate the decision-making processes underlying this behavior,
including reinforcement learning.

Learning in GD has frequently been investigated by feedback-based learning tasks, such as
reinforcement learning, reversal learning and model-based learning, revealing various im-
pairments. Using reinforcement learning tasks, patients with GD have shown to have less
strategic exploration of choice options, lower non-decision time, more decision noise, and
lower learning rates for losses, but higher learning rates for rewards (for a review, see (Hales,
Clark, & Winstanley, 2023)). There is also evidence of impairments in probabilistic reversal
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learning (Boog et al., 2014; de Ruiter et al., 2009; Perandrés-
Gómez, Navas, van Timmeren, & Perales, 2021; van Tim-
meren, Daams, van Holst, & Goudriaan, 2018). Studies
focusing on model-based learning have also suggested that
patients with GD rely more on model-free than model-based
learning than control participants (Bruder, Wagner, Mathar,
& Peters, 2021; Wyckmans et al., 2019), however not all
studies showed this (Van Timmeren, Van Holst, & Gou-
driaan, 2023; Wagner, Mathar, & Peters, 2022). In all, there
is evidence that GD is associated with deficits in (rein-
forcement) learning and decision-making.

Decision-making and learning processes are guided by
metacognitive control, a process rooted in metacognition –
our capacity to monitor and reflect upon our thoughts and
actions. This capacity can be assessed by prompting
individuals to evaluate their level of confidence in the ac-
curacy of their choices. Indeed, research has demonstrated
that confidence has a guiding role in information seeking,
impacting decision-making, reassessment of choices, and
learning (Balsdon, Wyart, & Mamassian, 2020; Desender,
Boldt, & Yeung, 2018; Meyniel, Schlunegger, & Dehaene,
2015). Moreover, confidence contributes to the adaptable
adjustment of behavior, influencing the balance between
exploration and exploitation (Boldt, Blundell, & De Martino,
2019; Heilbron & Meyniel, 2019). Thus, a sense of confi-
dence about one’s choices has been demonstrated to be
indispensable for optimal decision-making.

An influential Bayesian framework of learning shows
that confidence in actions influences behavior (Knill &
Pouget, 2004; Meyniel, Sigman, & Mainen, 2015; Parr &
Friston, 2017). Crucially, this framework predicts that the
impact of new information on subsequent actions depends
on the epistemic confidence of the decision-maker. When
one is more confident, new information has less impact,
resulting in less action updating and less learning.
Conversely, lower confidence motivates gathering additional
evidence to increase confidence in possible actions and also
facilitates learning. Thus, in healthy populations, there is a
strong link between confidence and subsequent action and
learning. However, in many psychiatric disorders, confi-
dence judgments are distorted, showing underconfidence or
overconfidence relative to performance (Hoven et al., 2019).
Specifically, patients with GD have exhibited over-
confidence, particularly in contexts involving monetary
gains (Goodie, 2005; Hoven et al., 2022). Studies investi-
gating the coupling between confidence and action, and their
relationship with psychiatric symptoms have shown that
individuals with high compulsive (but not gambling)
symptoms have a weakened confidence-action coupling
(Seow & Gillan, 2020). This suggests that highly compulsive
individuals tend to consider their confidence to a lesser
extent when informing their future actions. However, it is
currently unknown whether the relationship between con-
fidence and action, and subsequent learning, is affected
in GD.

Based on earlier findings, we hypothesized that patients
with GD, relative to control participants, show higher con-
fidence, less action-updating and lower learning rates. With

regard to the coupling of confidence and subsequent actions,
we posited two hypotheses. First, patients with GD could
have an intact coupling between confidence and action,
in line with the Bayesian framework. The alternative hy-
pothesis posited that GD patients (similar to findings of
individuals with highly compulsive symptoms) have a
weakened confidence-action coupling.

To test these hypotheses, we investigated confidence,
action, their coupling and learning by using a predictive
inference task originally described by (Nassar, Wilson,
Heasly, & Gold, 2010), and used in many studies since
(Hoven, Mulder, Denys, van Holst, & Luigjes, 2023; Seow &
Gillan, 2020; Vaghi et al., 2017) in patients with GD and
matched control participants. Our results revealed that pa-
tients with GD have a weaker action-confidence coupling
but exhibit similar confidence levels and action updating
compared to control participants. Moreover, patients
demonstrated lower learning rates than control participants.

METHODS

Participants

27 (4 women) patients with GD and 30 (6 women) healthy
control participants (HCs) were included in this study,
matched on age, sex and education. Patients with GD were
recruited through patient clinics in the Netherlands and HCs
via an online participation pool. All patients with GD had
been in treatment for their gambling problems at least once
and had gambled regularly within the past 12 months prior
to participating. Information about the onset of GD and
gambling game preference were not assessed. The HCs did
not currently or in the 6 months prior to participation
suffer from any psychiatric disorders and did not use any
psychotropic medication. No a-priori power analysis was
performed, as our sample size was based on earlier clinical
studies using the same paradigm in OCD (Vaghi et al., 2017).

Experimental procedure

Predictive inference task. All participants performed a
predictive inference task, similar to the one reported in
(Vaghi et al., 2017), implemented using Psychtoolbox in
MATLAB.

This task allows for the investigation of the relationship
between error-driven learning and confidence, by letting
participants infer the landing location of a particle based on
its previous landing locations. A circle with a dot in the center
was shown to participants, after which they had to place a
“bucket” (represented by a curved rectangle) at the location at
which they predicted a particle (i.e. a ‘coin’) would land. The
position of the bucket could be updated every trial in response
to new information. After confirming the location of the
bucket, participants were asked to rate their confidence that
they would catch the particle in the bucket on a scale of 1 (not
at all confident) to 100 (extremely confident) (Fig. 1).

After the confidence rating was confirmed, the particle
would fly from the center dot to the edge of the circle.
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The landing location of the particle was sampled from a
Gaussian distribution with a fixed standard deviation (SD)
of 12. At certain ‘change-point’ (CP) trials a new mean for
the particle landing location was drawn from a uniform
distribution over the full range of the circle U(1,360), with a
fixed probability of 0.125 (hazard rate, H). Performing
accurately on this task thus required participants to distin-
guish between actual signals of change (i.e. CP trials) and
noise (SD of the generative Gaussian distribution). When
the particle landed in the bucket, participants received
points, and they were penalized for missing the particle.

The task consisted of 4 blocks of 75 trials, with a practice
round that was not included in the analyses. Participants
were instructed to earn as many points as possible, which
would be converted to a bonus up to V5. Confidence ratings
were not directly incentivized, but participants were
instructed to rate their confidence as accurately as possible.

Moreover, a subset of the sample (24 GD, 15 HC)
additionally performed the predictive inference task at a
higher hazard rate of 0.20, corresponding to higher task
volatility. As the main focus of this paper is on the results of
the original task, analyses pertaining to the higher volatility
task can be found in the Supplementary Materials.

Task-based exclusions

Based on exclusion criteria set by (Seow & Gillan, 2020) and
our previous study using this task (Hoven, Mulder, et al.,
2023), we excluded participants when their mean confidence
after hits was lower than their mean confidence after misses

(n5 6, of which 2 GD). Since this current version of the task
(lab-based instead of online (Seow & Gillan, 2020)) did not
randomly initialize the confidence rating every trial, we
cannot use previously used exclusion criteria pertaining to
the deviation of participants’ confidence ratings compared
to the initialized confidence rating. After applying the sub-
ject-based exclusion criteria, the final dataset included data
from 51 participants (25 GD (4 females), 26 HC (6 fe-
males)). For one participants with GD, data for one out of
four blocks was corrupted and thus this subject has data for
225 instead of 300 trials. Since previous studies did not use
any exclusion criteria based on accuracy on the task, here we
also did not apply accuracy-based exclusion criteria. How-
ever, when inspecting the data, one participant with GD
showed an average accuracy of around 18%, and analyses
excluding this subject are detailed in the Supplementary
Materials. In addition to subject-based exclusions, we also
performed trial-based exclusions (see section ‘Computa-
tional Model’).

Analyses

All data analyses were conducted using MATLAB (version
2018b) and R (version 4.2.1) using packages lme4, lmerTest,
nlme and emmeans (Bates, Mächler, Bolker, & Walker,
2015; Kuznetsova, Brockhoff, & Christensen, 2017; Lenth,
Singmann, Love, Buerkner, & Herve, 2018; Pinheiro, Bates,
& R Core Team, 2022), and were similar to our previous
case-control work in OCD for consistency (Hoven, Mulder,
et al., 2023).

Fig. 1. Predictive Inference Task. (A) Trial of the predictive inference task. Participants positioned their bucket (i.e. yellow bar) to catch a
flying particle that was released from the center dot to the edge of the circle. After positioning their bucket, participants indicated their
confidence in catching the particle. The particle was either caught (bar turned green) or missed (bar turned red), which resulted in gaining or
losing points, respectively. The number of points obtained is shown in the right upper corner. (B) In every trial, the landing positions of the
particles were sampled from a random Gaussian distribution with a standard deviation. This noise resulted in the particles to land close
together with a small amount of noise. Current trial particle trajectory is marked in black, while previous trials particle trajectories are
marked in blue. Over time participants learn about the Gaussian distribution from which the particle trajectories are drawn. (C) During a
change-point the mean of the Gaussian distribution of the landing position changes. After a change point, the landing positions are again
sampled using the new Gaussian distribution, until a new change-point occurs. Figure was adapted with permission from Seow et al. (2020)
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Action and confidence. First, to compare action updating
and confidence between groups, separate linear-mixed
effects models were fitted with either action update (absolute
difference in bucket position from trial (t) to trial (tþ1)) or
confidence as dependent variable and a fixed effect of group,
together with random intercepts per subject.

Action-confidence coupling. Second, differences in the
strength of action-confidence coupling between groups were
assessed using a mixed-effects model with action update as
the dependent variable and confidence (z-scored), group
and their interaction as fixed effects together with random
intercepts and random slopes of confidence per subject.

In addition, we conducted two Pearson’s correlation tests
to examine the relationship between the strength of action-
confidence coupling (using subject-level β coefficients of
the action-confidence coupling model) and PGSI and GBQ
scores in the GD group.

Computational model. Third, a computational approach
was employed, similar to earlier work (Hoven, Mulder, et al.,
2023; Marzuki et al., 2022; Seow & Gillan, 2020; Vaghi et al.,
2017), in order to examine whether and how the relationship
between behavior on the task (i.e. action or confidence) and
various parameters describing the volatile environment
differed between groups. In a volatile setting, where the
environment is subject to frequent changes, participants
need to adjust their learning rate based on recent informa-
tion to update their beliefs about the generative distribution.
When significant discrepancies between predicted and
observed outcomes occur (i.e., large prediction errors),
indicating a substantial shift in the environment, belief up-
dates need to be strong and learning rates should be higher.
Conversely, when prediction errors are small and likely due
to random fluctuations, belief updates are less necessary,
resulting in lower learning rates.

For each trial, the human prediction error bδt (PE) was
calculated as the difference between the current bucket po-
sition bt and the particle landing location Xt .

bδt ¼ Xt – bt

Subsequently, the human learning rate bαt (LR) was
calculated as the proportion of PE used for the subsequent
action update, which was calculated as the absolute differ-
ence in bucket position from trial (t) to trial (tþ1):

bαt¼
jbtþ1 – bt

��
bδt

Following earlier studies, trials were excluded from all
analyses if the LR exceeded the 99th percentile which was
calculated separately for each group (Seow & Gillan, 2020;
Vaghi et al., 2017). In addition, trials where PE 5 0 were
excluded, since these trials do not drive error-driven learning
(1.95% of GD trials, 1.97% of HC trials). Additionally, the
first and last trials within each block were excluded from
analyses; in the first trials, there is no error-driven learning
yet, and for the last trials no learning rate could be calculated.

In total, 5.49% of GD trials and 5.52% of HC trials were
excluded from analyses.

Error sensitivity. To assess group differences in error
sensitivity in terms of learning, a linear mixed model with
human LR as the dependent variable and human PE, group
and their interaction as predictors was run. For visualization
purposes, PE was binned into 20 quantiles with each an
equal fraction of trials, for which the average LR was
computed per subject.

Bayesian observer model analyses. Following previous
research (Marzuki et al., 2022; Seow & Gillan, 2020; Vaghi
et al., 2017), behavior of participants was analyzed using a
quasi-optimal Bayesian observer model that approximates
optimal task behavior (Nassar et al., 2010). Using the model
code that is publicly available (Vaghi et al., 2017), we fitted
the particle landing locations of all participants to obtain
individual-level model parameters. These parameters repre-
sent various statistical characteristics of the environment
experienced by participants during the task. They include, on
a trial-by-trial basis, the prediction error δ (PE, the absolute
difference between model belief and location of the coin), the
probability that a change-point occurred (CPP, the likelihood
that the sampling distribution of the coin’s location has
changed, thus that a change-point has occurred), and relative
uncertainty (RU, the fraction of uncertainty about the
generative mean that is not due to noise). RU was expressed
as its inverse, termed model confidence (MC, the precision of
the model’s beliefs about the mean), to allow for a more
direct comparison with confidence judgments from the task.
For more detail on the model see supplementary materials.

After fitting the model to the task data and obtaining the
latent parameters for each subject, we assessed how these
parameters related to participant behavior (action and
confidence), and whether these relationships differed be-
tween the groups. Following previous studies, two separate
mixed-effects models were assessed, where participant
behavior (either action or confidence) was regressed against
three model parameters: absolute PE, CPP and (1-CPP)
(1-MC), and the categorical variable hit, indicating whether
the particle was caught or not. Here, PE represents infor-
mation regarding the most recent observation, while CPP
and (1-CPP) (1-MC) represent the model’s estimation that a
change-point did or did not occur, given the sequence of
past observations, respectively. For the action model, the
dependent variable was calculated as: LR p PE, which is
equal to the bucket update, and the predictors were also
interacted with PE, following previous work (McGuire,
Nassar, Gold, & Kable, 2014; Nassar, McGuire, Ritz, &
Kable, 2019; Seow & Gillan, 2020; Vaghi et al., 2017). For
both models, all fixed-effects were z-scored and interacted
with group. Random intercepts and slopes of all predictors
were also included in the models.

In the Bayesian model, the hazard rate is a constant of
0.125, which is equal to the hazard rate in the task. As
additional sensitivity analyses we furthermore calculated the
perceived hazard rate as a free parameter for each subject
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based on the best fit of the model on the participant’s
behavior (see Supplementary Material for more information).

Ethics

The study was approved by the Ethics Board of the Behav-
ioral Science Laboratory at the University of Amsterdam
(2018-DP-9420). All participants provided written informed
consent and were reimbursed for their time.

RESULTS

There were no differences in age (t49 5 0.42, p 5 0.68),
gender distribution (X2 5 0.40, p 5 0.52) or education level
(t49 5 �0.38, p 5 0.71) between HC and GD groups. For
details on demographics, clinical and task data, see Table 1.

No group differences in action updating or confidence

Mixed-model analyses were conducted to test group differ-
ences in task behavior (i.e. action and confidence). No dif-
ferences in the amount of action updating (β 5 �1.02
(1.24), t 5 �1.82, p 5 0.415, group difference 5 1.03
degrees of bucket placement), nor differences in confidence
(β 5 �2.67 (6.54), t5 �0.41, p5 0.684, group difference5
2.68) were found between groups (Table 1, Fig. 2). Accuracy
was equal between the groups as well (t49 5 �0.95,
p 5 0.345, group difference 5 2.11 percent accuracy). The
proportion of trials in which no action update was per-
formed was higher in GD, however (t49 5 2.48, p 5 0.017;
GD 5 60.1%, HC 5 50.5%).

Weaker action-confidence coupling in GD

Next, we evaluated whether the coupling between action
update and confidence differed between the groups. As ex-
pected, a significant negative relationship between confidence
and action update existed across groups, such that higher
confidence was related to less action updating (i.e. action-
confidence coupling) (β 5 �8.26 (1.14), t 5 �7.23,
p < 0.001). Moreover, there was evidence for a distortion of

this action-confidence coupling in GD, as a significant
interaction between group and confidence was found
(β 5 3.28 (1.63), t 5 2.01, p 5 0.045), indicating a weaker
action-confidence coupling in GD (estimated marginal
slope 5 �4.98 (1.17)) than in HC (estimated marginal
slope 5 �8.26 (1.14)) (Figure 2).

Within the GD group, no significant correlation was
found between action-confidence coupling and PGSI score
(r 5 �0.23, p 5 0.266), or GBQ score (r 5 �0.07,
p 5 0.754).

Lower learning rates in GD

We also assessed differences in learning rates and the error
sensitivity in terms of learning between the GD and HC groups.
Across both groups, learning rates increased as a function
of prediction error magnitude (β 5 0.006 (0.0002), t 5 39.51,
p < 0.001), and thus learning rates were highest after large
errors. Moreover, learning rates were found to be significantly
lower overall in the GD group (β 5 �0.13 (0.05), t 5 �2.39,
p5 0.021, group difference5 0.10), but no evidence was found
for an interaction effect between PE and group (Fig. 3).

To look at the group differences in cases of low, middle
or high error magnitude, following previous research
(Hoven, Mulder, et al., 2023; Vaghi et al., 2017), a mixed-
model analysis binning the prediction error in 3 quantiles
(i.e., low, medium or high error magnitude) was run. This
indicated that patients with GD specifically had decreased
learning rates when error magnitude was small (HC-GD
estimate 5 0.13 (0.05), Z-ratio: 2.60, p 5 0.009) and
medium (HC-GD estimate 5 0.19 (0.05), Z-ratio: 3.79,
p < 0.001). This indicates that when errors were of small or
medium size, the influence of the most recent outcome on
subsequent action (i.e. PE) was lower in the GD compared to
the HC group, whilst this did not differ for larger PEs.

Stronger effect of uncertainty about the generative
mean of the distribution on action in GD

Finally, we assessed whether task behavior (action and con-
fidence) was differently predicted by the latent model pa-
rameters that represent different forms of uncertainty and
feedback in the volatile environment. As expected, action was
significantly predicted by all model-derived parameters and
hit, such that increases in PE, CPP and (1-CPP)p(1-MC)
predicted an increase in action, while a successful catch of the
particle predicted a decrease in action. Moreover, a signifi-
cant interaction between group and the (1-CPP)p(1-MC)
parameter indicated a stronger effect of relative uncertainty
of the belief about the mean of the distribution in the
GD group (estimated marginal slope 5 3.81 (0.52))
compared to the HC group (estimated marginal slope 5 2.09
(0.51)) (β 5 1.72 (0.72), t 5 2.37, p 5 0.022) (Fig. 4).

Confidence was, as expected, significantly negatively
predicted by CPP and (1-CPP)p(1-MC), but only marginally
by PE, and significantly increased with a successful catch of
the particle. We did not find any evidence for group dif-
ferences in the strength of these effects (see Supplementary
Materials).

Table 1. Demographic, clinical and task variables. Abbreviations:
GD5 Gambling Disorder, HC5 Healthy Controls, PGSI: Problem
Gambling Severity Index, GBQ: Gamblers Belief Questionnaire.

Data are reported as mean (standard deviation)

Participants with GD HC participants

Age 36.8 (11.4) 35.6 (8.8)
Females (%) 4 (16.0%) 6 (23.1%)
Education Level 3.12 (0.9) 3.23 (1.2)
PGSI 15.1 (4.2)
GBQ 56.4 (21.2)
Accuracy (%) 60.17 (9.78) 62.28 (5.46)
Confidence 47.84 (25.16) 50.52 (21.45)
Confidence Update 15.12 (8.62) 13.35 (7.40)
Learning Rate 0.37 (0.14) 0.47 (0.21)
Action Update 18.59 (4.31) 19.62 (4.57)
Prediction Error 27.22 (10.99) 24.61 (2.29)
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Fig. 2. Task behavior across groups. Mean confidence (A) and action update (B) per group. (C) Regression coefficient from the relationship
between action update and confidence. As expected, regression coefficients were negative indicating that lower confidence was associated with
bigger action updates of the location of the bucket. Dots represent (A) (B) data from individual participants and (C) regression coefficients of
individual participants. Boxplots show median and upper/lower quantile with whiskers indicating the 1.5 interquartile range, distributions show
the probability density function of all data points per group. Significance stars represent the main effects of group in the respective mixed-

effects models. pp < 0.05, ppp < 0 .01, pppp < 0.001. HC 5 healthy control participants, GD 5 patients with gambling disorder

Fig. 3. Learning rates and error sensitivity. (A) Mean learning rates per group (bαt). Patients had significantly decreased learning rates
compared to the HC group. Dots represent learning rates of individual participants, boxplots show median and upper/lower quantile with
whiskers indicating the 1.5 interquartile range, distributions show the probability density function of all data points per group. (B) The
relationship between prediction error magnitude (bδt) and learning rate for both group. Prediction errors were divided in 20 quantiles, of
which 18 quantiles are shown here for visualization purposes. Dots represent mean learning rates per group, error bars represent the SEM.
Overall, learning rates were higher when prediction errors were larger. Learning rates were lower in the GD group compared to the HC

group at low and medium error magnitudes. pp < 0.05, ppp < 0.01, pppp < 0.001
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No group differences in perceived hazard rates

Sensitivity analyses using the subject-specific perceived
hazard rate (see Supplementary Materials) first of all showed
no differences in hazard rate between groups (mean GD:
0.54, mean HC: 0.59: t49 5 �0.61, p 5 0.542). Moreover, in
sensitivity analyses we performed the same analyses as
described above, but including the subject-specific hazard
rate as a covariate. These analyses indicated that none of the
significant group differences that were found were influ-
enced by differences in perceived hazard rate. For more
details, see Supplementary Materials.

DISCUSSION

Drawing on previous observations of increased confidence
and impaired reinforcement learning in GD, here we
extended the literature by investigating the connection be-
tween confidence and action updating and subsequent
learning in patients with GD. Our results showed that pa-
tients with GD demonstrated comparable levels of confi-
dence, action updating, and performance, but had a weaker
coupling between confidence and action. This indicates that
patients with GD assign less significance to their confidence
levels when performing actions under volatility. These
findings support the hypothesis that GD is characterized by
decreased confidence-action coupling.

This dissociation between action and confidence re-
sembles the clinical presentation of GD, where patients
often continue gambling despite knowing it is unwise.
It suggests a disruption in metacognitive control, which
might also be associated with a disruption of model-based
action (Voon et al., 2015), as has been found in GD before
(Bruder et al., 2021; Wyckmans et al., 2019). Though

current models for gambling behaviour do not incorporate
the role of metacognition or confidence, we can draw on a
recent model of obsessive-compulsive disorder (OCD)
(Fradkin, Adams, Parr, Roiser, & Huppert, 2020). This
model describes that compulsive behavior can arise from
overreliance on prior beliefs (e.g., overconfidence in those
beliefs) at the expense of new evidence, leading to less
learning, more stickiness, and habitual behaviour. This kind
of behaviour was indeed observed in highly compulsive
individuals from the general population, indicating lower
learning rates and decreased action-confidence coupling
(Seow & Gillan, 2020), although gambling symptoms were
not explicitly assessed in this study. The current metacog-
nition findings in GD can be contextualized within two
leading models: the pathway model (Nower, Blaszczynski, &
Anthony, 2022) and the I-PACE model (Brand et al., 2019).
The pathway model outlines three unique gambling path-
ways with specific risk factors but lacks detail on (neuro)
cognitive processes, a gap filled by the I-PACE model.
This model illustrates the interplay between personal traits
(like genetics and early experiences) and predisposing
behavioral factors (needs, incentives, values), shaping re-
sponses to triggers and influencing behavior through
cognitive and affective processes. Our suggestion is to
further enrich the I-PACE model by integrating metacog-
nition to better understand (and potentially impact) deci-
sion-making processes in GD.

The current findings indicate overall lower learning rates
in GD, with a specific decrease in learning rates when the
error magnitude was small or medium. GD patients overall
seem to move their bucket position less frequently (i.e.,
significantly lower proportion of trials in which the bucket
was moved), while there was no difference in the degree of
movement (i.e., action update). This suggests that patients
exhibit more sticky behaviour than control participants,

Fig. 4. Model-based results on action and confidence. Regression coefficients of the regressions assessing the relationship between the
parameters from the computational model and (A) human action (i.e. learning rate p absolute prediction error), or (B) human confidence.
Small dots represent individual regression coefficients, big dots represent mean regression coefficients per group, error bars denote SEM per
group. Predictors included absolute prediction error (PE), change-point probability (CPP), model confidence (MC) and a categorical

variable representing hits/misses. pp < 0.05, ppp < 0.01, pppp < 0.001
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which aligns with prior research (Perandrés-Gómez et al.,
2021; van Timmeren et al., 2018; Wiehler, Chakroun, &
Peters, 2021). However, lower learning rates in GD were not
always directly evident in experimental tasks (Hales et al.,
2023). For example, a recent study employing a probabilistic
instrumental learning task with three conditions (reward,
avoidance, neutral) found no overall differences in the
proportion of correct choices between patients with GD and
HCs in reward or avoidance trials. However, employing a
computational model with two separate learning rates
revealed that patients with GD exhibited relatively excessive
sensitivity to positive prediction errors (PEs), but insensi-
tivity to negative PEs (Suzuki et al., 2023). These findings
underscore the notion that GD might be linked to subtle and
specific differences in learning rates, which might not always
be easily discernible without employing sensitive experi-
ments and computational modeling (Hales et al., 2023).

Our study found no evidence of increased confidence
judgements in patients with GD, a finding that aligns with
previous research using a non-incentivized learning task
(Brevers et al., 2014). This contrasts, however, with studies
that have used monetary incentives, where GD patients have
shown higher levels of confidence (Goodie, 2005; Hoven
et al., 2022). As suggested (Hoven, Hirmas, Engelmann, &
Holst, 2023), it appears that overconfidence in GD manifests
mainly in disorder-relevant contexts, such as during gambling
task or when gains or risk are involved. This raises important
questions for future research: under what circumstances do
distortions in confidence occur in GD, and how do these
distortions impact learning and decision-making?

Recent investigations in healthy populations have begun
to elucidate the relationship between learning biases and
confidence biases (Lebreton, Bacily, Palminteri, & Engel-
mann, 2019; Salem-Garcia, Palminteri, & Lebreton, 2023;
Ting, Salem-Garcia, Palminteri, & Engelmann, 2023). These
studies have shown that individuals tend to be more confi-
dent when learning to seek gains as opposed to avoiding
losses. This ’valence-induced confidence bias’ has been
linked to reduced context-dependent learning, while a gen-
eral overconfidence bias correlated with a confirmatory
learning bias (Salem-Garcia et al., 2023; Ting et al., 2023).
Applying this framework to GD, one could hypothesize that
in an incentivized reinforcement learning task, GD patients
would exhibit both elevated confidence and a more pro-
nounced valence-induced confidence bias. This in turn could
be associated with increased confirmatory learning and
decreased context-dependent learning relative to HCs. This
pattern could offer insights into rigid, disadvantageous de-
cision-making in GD. Subsequent research should validate
these hypotheses, potentially providing a more nuanced
understanding of the cognitive biases at play in GD.

Our current study comes with limitations. In line with
prior research, we integrated model-based analyses for
consistency. However, it’s important to note that while
recent findings suggested good internal consistency and test-
retest reliability for the main measures of confidence and
learning rate, the psychometric quality of the Bayesian
model parameters was comparatively lower (Loosen, Seow,

& Hauser, 2023). This implies that the utilization and
interpretation of model-based metrics should be exercised
cautiously, particularly when examining differences between
individuals. Also, the predictive inference task does not
resemble a real-world gambling game. Hence, enhancing the
ecological validity of our approach could involve using a task
that simulates monetary involvement and enforces penalties
for excessive action updating. Furthermore, our study pop-
ulation was drawn from therapy centers, encompassing in-
dividuals who had undergone cognitive-behavioral therapy
(CBT) for their gambling disorder Given that CBT targets
the reduction of irrational gambling-related thoughts to
mitigate the influence of outcome significance on decision-
making (Sylvain, Ladouceur, & Boisvert, 1997; Toneatto,
1999), it’s possible that CBT contributed to a reduction in
overconfidence during the present task. It could be hy-
pothesized that untreated GD patients might exhibit more
pronounced overconfidence and/or a stronger disconnection
between confidence and action. Unfortunately, information
about the onset of GD and gambling game preference were
not assessed in this study, limiting any insight in how
duration of problems and/or gambling preference could
have contributed to the current findings. Finally, the current
sample size of both groups was small, although similar to
previous studies using this task in clinical samples (Vaghi
et al., 2017). In light of the non-significant group differences
observed, we must consider whether a larger sample size
might reveal any distinctions between groups. Conducting
post-hoc power analyses for mixed models is complex;
however, it can be reasonably assumed that the potential
effect sizes of confidence or action-updating differences are
small, restricting the direct clinical implications of these
processes in patients with GD.

In conclusion, our study investigated the connection
between confidence and action in patients with GD in a
volatile learning task. We found a weaker coupling between
confidence and action, suggesting disrupted metacognitive
control in GD, without a general positive confidence bias in
GD. Additionally our findings indicated lower learning rates
in GD, indicating differences in learning under volatile
conditions. All in all, these findings suggest that GD is
associated with disturbance in metacognitive control. Future
research could advance by incorporating metacognitive
ability as an important factor for comprehending disad-
vantageous decision-making in GD.
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