
Shannon capacity, Lovász theta number and the
Mycielski construction1

Bence Csonka2 Gábor Simonyi3

1Some of the results in this paper were presented at the Szeged Workshop on Discrete Struc-
tures (SWORDS2023) held in Szeged, Hungary, in November 2023.

2Department of Computer Science and Information Theory, Faculty of Electrical Engineering
and Informatics, Budapest University of Technology and Economics and MTA-BME Lendület
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Abstract

We investigate the effect of the well-known Mycielski construction on the Shannon ca-
pacity of graphs and on one of its most prominent upper bounds, the (complementary)
Lovász theta number. We prove that if the Shannon capacity of a graph, the distinguisha-
bility graph of a noisy channel, is attained by some finite power, then its Mycielskian has
strictly larger Shannon capacity than the graph itself. For the complementary Lovász
theta function we show that its value on the Mycielskian of a graph is completely de-
termined by its value on the original graph, a phenomenon similar to the one discovered
for the fractional chromatic number by Larsen, Propp and Ullman. We also consider the
possibility of generalizing our results on the Sperner capacity of directed graphs and on
the generalized Mycielsky construction. Possible connections with what Zuiddam calls
the asymptotic spectrum of graphs are discussed as well.
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of graphs, graph coloring
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1 Introduction

The zero-error capacity of a noisy channel was introduced by Shannon [26] who showed
that it can be expressed as an asymptotic parameter of a graph G. If G is the distin-
guishability graph of a noisy channel, that is, its vertex set is the input alphabet of the
channel and two letters form an edge if they cannot result in the same output letter, then
the maximum number of pairwise ditinguishable input letters is equal to ω(G), the clique
number of graph G. The distinguishability relation is extended to sequences of letters by
the OR-product of graphs which is defined as follows.

Definition 1. For two graphs F and G their OR-product F ·G is defined by

V (F ·G) = V (F )× V (G)

and
E(F ·G) = {{(f, g), (f ′, g′)} : f, f ′ ∈ V (F ), g, g′ ∈ V (G),

{f, f ′} ∈ E(F ) or {g, g′} ∈ E(G)}.
The tth OR-power Gt of a graph G is the t-fold OR-product of G with itself.

Since two sequences of length t consisting of the input letters cannot result in the same
output sequence exactly if in at least one coordinate they cannot result in the same output
letter, the maximum number of pairwise distinguishable sequences of length t is given by
ω(Gt). Thus the (logarithmic) zero-error capacity of the channel with distinguishability
graph G is cOR(G) := limt→∞

1
t
log2 ω(G

t). It is somewhat more convenient for our dis-
cussion if we do not have to normalize all our bounds by taking the logarithm, so we will
use the non-logarithmic version.

Definition 2. The (non-logarithmic) Shannon OR-capacity of graph G is defined by

COR(G) := lim
t→∞

t
√
ω(Gt).

It is easy to see that for every graph G and any fixed k we have k
√

ω(Gk) ≤ COR(G). This
relation already implies the well-known fact that the above limit always exists by Fekete’s
Lemma. We remark that Shannon [26] used a complementary language when defining
graph capacity, modelling the channel by its confusability graph which is just the com-
plement of the distinguishability graph. The above definition is, however, more adequate
for our discussion, just as it is the case in Chapter 11 of the book [5]. Nevertheless, we
use the “OR” subscript in the above definition to signify this difference.

It is easy to show that Shannon OR-capacity satisfies

ω(G) ≤ COR(G) ≤ χ(G),
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where χ(G) denotes the chromatic number of the graph.
Thus if χ(G) = ω(G), then COR(G) also shares their value. The smallest graph for

which χ(G) > ω(G) is C5, the cycle of length 5. Shannon [26] has shown that its capacity
value is at least

√
5 by presenting a clique of size 5 in its second OR-power (though in

a complementary language, as remarked above). The matching upper bound was proven
only more than two decades later by Lovász [18] as a first application of his ϑ-number
introduced in [18]. The value of Shannon OR-capacity is still unkonwn for longer odd
cycles and their complements.

It is well-known that the gap between χ(G) and ω(G) can be arbitrarily large and one
of the best-known constructions producing a sequence of graphs with that gap going to
infinity is due to Mycielski [20]. This construction works iteratively. For any graph G it
produces a graph M(G), called its Mycielskian, with the property that ω(M(G)) = ω(G)
while χ(M(G)) = χ(G) + 1.

Definition 3. Let G be a simple graph. Its Mycielskian M(G) is defined on the vertex
set

V (M(G)) = V (G)× {0, 1} ∪ {zM(G)}

with edge set

E(M(G)) = {{(v, 0)(w, i)} : {v, w} ∈ E(G), i ∈ {0, 1}} ∪ {{zM(G), (v, 1)} : v ∈ V (G)}.

Note that C5 is isomorphic to M(K2), where Kn is the complete graph on n vertices.

In this paper we investigate the effect of the Mycielski construction on the value of Shan-
non OR-capacity and on one of its most prominent upper bounds, the complementary
Lovász theta number. For the former we will prove the following theorem.

Theorem 1. If G is a graph that attains its Shannon capacity in finite length, i.e., there
exists some positive integer k for which COR(G) = k

√
ω(Gk), then

COR(M(G)) > COR(G).

Larsen, Propp and Ullman [16] proved the notable fact that the fractional chromatic
number χf (M(G)) of the Mycielskian of a graph G is determined by the value of the
fractional chromatic number of the original graph. In fact, they showed the validity of
the neat formula

χf (M(G)) = χf (G) +
1

χf (G)
.

For the definition and basic properties of the fractional chromatic number we refer to
[24]. Here we only note that χf (G) is also an upper bound of COR(G) that satisfies
χf (G) ≤ χ(G), similarly to the complementary Lovász theta number ϑ(G) (which actually
also satisfies ϑ(G) ≤ χf (G) for every graph G as proven by Lovász [18]) that we will
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introduce in the next section. Our main result on the latter will be that ϑ(M(G)) is also
determined by the value of ϑ(G). Although more complicated than in case of the fractional
chromatic number, we also provide a formula giving this dependence. In particular, we
will prove the following statement.

Theorem 2. For every nonempty graph G

ϑ (M(G)) =
4

3
ϑ(G) cos

(
1

3
arccos

(
1− 27

4ϑ(G)
+

27

4ϑ
2
(G)

))
− 1

3
ϑ(G) + 1.

Remark 1. It is worth noting the case ϑ(G) = 3 which gives us a simple expression, for
example, for G = K3 we get

ϑ(M(K3)) = 4 cos

(
2π

9

)
.

The paper is organized as follows. In the next two sections we give the proof of Theorem 1
and Theorem 2, respectively. In Section 4 we discuss some further related problems, in
particular about Sperner capacity and about the so-called generalized Mycielski construc-
tion. We also elaborate on the question whether our Theorem 2 may have anything to do
with the complementary Lovász theta number belonging to what Zuiddam [36] calls the
asymptotic spectrum of graphs. The paper is concluded with some open problems.

2 Shannon capacity of the Mycielskian

The main observation needed for proving Theorem 1 is the following Lemma.

Lemma 3. There is a clique of size nn in [M(Kn) \ {zM(Kn)}]n every vertex of which
has a coordinate belonging to the set V (Kn)× {1}.

Proof. Let the vertices of Kn be 0, 1, . . . , n − 1. Consider the set Bn :=
{(0, 0), (1, 0), . . . , (n−1, 0)}n, that is the set of all sequences of length n formed by vertices
of the V (Kn)× {0} part in our graph M(Kn). Clearly, these sequences form a complete
subgraph in [M(Kn)]

n.

Define B
(j)
n ⊆ Bn for all j ∈ {0, . . . , n− 1} as follows:

B(j)
n := {(x1, 0)(x2, 0) . . . (xn, 0) ∈ Bn :

n∑
i=1

xi ≡ j (mod n)}.

Then let B̂
(0)
n = {(x1, 1)(x2, 0) . . . (xn, 0) : (x1, 0) . . . (xn, 0) ∈ B

(0)
n } and in general

B̂(j)
n := {(x1, 0) . . . (xj, 0)(xj+1, 1)(xj+2, 0) . . . (xn, 0) : (x1, 0) . . . (xn, 0) ∈ B(j)

n }.
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Furthermore, we let
B̂n := B̂(0)

n ∪ · · · ∪ B̂(n−1)
n .

We claim that B̂n induces a clique of size nn in [M(Kn)]
n. Indeed, if

(x1, 0) . . . (xh+1, 1) . . . (xn, 0) ∈ B̂
(h)
n , (y1, 0) . . . (yr+1,1) . . . (yn, 0) ∈ B̂

(r)
n for h ̸= r (that

is, the coordinates where we “lifted” the corresponding entry of two sequences from
V (Kn)× {0} to V (Kn)× {1} are different), then the two new sequences are adjacent in
the same coordinate where they were adjacent before the “lifting”. If, on the other hand,
we consider two sequences from the same subset B̂

(j)
n like (x1, 0) . . . (xj+1, 1) . . . (xn, 0)

and (y1, 0) . . . (yj+1, 1) . . . (yn, 0), then there must be some i ̸= j + 1 where xi ̸= yi and
therefore these two sequences are also adjacent in [M(Kn)]

n. The latter is true because

the sequences (x1, 0) . . . (xj+1, 0) . . . (xn, 0), (y1, 0) . . . (yj+1, 0) . . . (yn, 0) ∈ B
(j)
n must have

at least two coordinates where they differ, otherwise we could not have
∑n

i=1 xi ≡
∑n

i=1 yi
(mod n). So even if one of these two coordinates was the (j+1)th (and thus (xj+1, 1) and
(yj+1, 1) are not adjacent any more), the two sequences will still be adjacent because of
the other coordinate where they differed.

So B̂n induces a clique of size nn in [M(Kn)]
n and the sequences forming the vertices in

it all have a “lifted” coordinate, that is one representing a vertex in the V ((Kn) × {1}
part of the vertex set of M(Kn). This completes the proof of the Lemma. □

Note that the above lemma has the following immediate consequence, a special case of
Theorem 1, which may be of some interest on its own right.

Corollary 4. For the complete graph Kn on n vertices we have

COR(M(Kn)) ≥ n
√
nn + 1 > n.

Proof. Consider the clique of size nn in [M(Kn) \ {zM(Kn)}]n whose existence is shown
in Lemma 3. Since all the sequences that are vertices of this clique contain a coordinate
from V (Kn) × {1} = N(zM(Kn)) (where N(v) stands for the neighborhood of vertex v),
the all-zM(Kn) sequence of length n is adjacent to all vertices of this clique in [M(Kn)]

n.
So adding this sequence to our clique of size nn we obtain a clique with nn + 1 vertices,
thus showing ω([M(Kn)]

n) ≥ nn+1. This implies COR(M(Kn)) ≥ n
√
nn + 1 as stated. □

We remark that for n = 2 this gives COR(C5) = COR(M(K2)) ≥
√
5, which is exactly

Shannon’s lower bound for the capacity of the 5-cycle that Lovász [18] proved to be tight.

To complete the proof of Theorem 1 the following simple lemma will be useful.

Lemma 5. For every graph G and positive integer t we have

M(Gt) ⊆ [M(G)]t.

Proof. Using the notation v = v1v2 . . . vt ∈ V (Gt) the following function φ is an embed-
ding of M(Gt) into [M(G)]t:
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φ : (v, h) 7→ (v1, h)(v2, h) . . . (vt, h) for h ∈ {0, 1},
while zM(Gt) is mapped to the sequence of length t given by zM(G) . . . zM(G) ∈ [V (M(G))]t.

It is straightforward to check that the image φ(V (M(Gt))) of V (M(Gt)) induces a sub-
graph isomorphic to M(Gt) in [M(G)]t. □

Proof of Theorem 1. Let G be a graph with COR(G) = k
√
ω(Gk) = k

√
N where k ≥ 1 is

a positive integer and N = ω(Gk). Since KN ⊆ Gk, we also have M(KN) ⊆ M(Gk) ⊆
[M(G)]k, where the last relation is by Lemma 5. This further implies

[M(KN)]
N ⊆ [M(Gk)]N ⊆ [M(G)]kN ,

so by the proof of Corollary 4 we can write

NN + 1 ≤ ω([M(KN)]
N) ≤ ω([M(Gk)]N) ≤ ω([M(G)]kN).

The latter implies

COR(M(G)) ≥ kN
√

ω([M(G)]kN) ≥ kN
√
NN + 1 >

k
√
N = COR(G)

completing the proof. □

Remark 2. We note that although the above lower bound is tight for M(K2) = C5, we
have no reason to believe that it would be tight in general. In fact, for COR(M(C5)) it
gives the lower bound 10

√
55 + 1 ≈ 2.23614, and for this specific graph the somewhat larger

lower bound 4
√
28 ≈ 2.30036 is proven in [28].

3 Complementary Lovász ϑ-number of the Myciel-

skian

Definition 4. An orthonormal representation of a simple graph G on vertex set V =
{1, . . . , n} assigns to each i ∈ V a unit vector ui ∈ Rd (for some appropriate positive
integer d) such that ⟨ui, uj⟩ = 0, whenever ij /∈ E(G). An orthonormal representation of
the complementary graph is called a dual orthonormal representation.

Definition 5. The complementary Lovász ϑ-number of a graph G is

ϑ(G) := minmax
i∈V

1

⟨c, ui⟩2
,

where the minimum is taken over all dual orthonormal representations {ui : i ∈ V } ⊆ Rd

of G and all unit vectors c ∈ Rd. (The dimension d is also chosen so that the minimal
value could be attained.)
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In the proof of Theorem 2 we will use some equivalent definitons of ϑ. First we recall
the definition of the invariant called strict vector chromatic number that was defined and
shown to be equivalent to the complementary Lovász ϑ-number in [14]1, for the proof of
equivalence see also [19].

Definition 6. ([14]) A strict vector t-coloring of graph G in Rd assigns to each i ∈ V (G)
a unit vector ui ∈ Rd such that ⟨ui, uj⟩ = − 1

t−1
, whenever ij ∈ E(G). The strict vector

chromatic number of a graph G is

χv(G) := min {t ∈ R : G admits a strict vector t-coloring for some positive integer d}.

Theorem 6. ([14])

ϑ(G) = χv(G)

for every graph G.

To give another known expression of ϑ(G) we need the following notions.

Definition 7. Let A ∈ Rn×n and let Sp(A) denote the set of eigenvalues of the matrix A.
Furthermore, let λmax(A) and λmin(A) be the maximal and minimal elements in Sp(A),
respectively.

The following formula for ϑ(G) is given as Theorem 6 in [18], see also in Proposition 11.9
of [19].

Theorem 7. (Lovász [18]) For every graph G

ϑ(G) = 1 + max
T

λmax(T )

|λmin(T )|
,

where T ∈ Rn×n ranges over all symmetric nonzero matrices with Tij = 0 for ij /∈ E(G).

Note that since we deal with simple graphs only, we will always have Tii = 0 for the
matrices feasible for Theorem 7. This implies that the trace, that is the sum of eigenvalues
of these matrices is equal to 0. This implies that the smallest eigenvalue λn of the matrix
attaining the maximum above is always negative.

We will need the following well-known theorem from linear algebra (cf. e.g. Section 6.2
in [25]).

1The authors of [14] mention in their paper that the equality of the strict vector chromatic number
and ϑ(G) was proven “with the help of Éva Tardos and David Williamson”.
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Theorem 8. Let A be a real symmetric matrix. Then A is orthogonally diagonalizable,
that is, A = PΛP⊤, where Λ = diag(λ1, ..., λn) is a real diagonal matrix having the
eigenvalues of A in its main diagonal and the ith coulumn of P is a unit length eigenvector
corresponding to the eigenvalue λi. In this case the eigenvectors give an orthonormal basis
of Rn.

In the proof of Theorem 2 we will have to find the solutions of a cubic equation, therefore
the following well-known formula will be useful for us (see e.g. in [34]).

Theorem 9. Given the cubic equation ax3 + bx2 + cx+ d = 0 let

p :=
3ac− b2

3a2
,

q :=
2b3 − 9abc+ 27a2d

27a3
.

Then the solutions of the equation can be written as

xk = 2

√
−p

3
cos

(
1

3
arccos

(
3q

2p

√
−3

p

)
− 2πk

3

)
− b

3a
where k = 0, 1, 2.

Proof of Theorem 2. First we show the upper bound, i.e. the inequality

ϑ (M(G)) ≤ 4

3
ϑ(G) cos

(
1

3
arccos

(
1− 27

4ϑ(G)
+

27

4ϑ
2
(G)

))
− 1

3
ϑ(G) + 1. (1)

Let V (G) = {1, ..., n} , t := χv(G) and let {vi : i ∈ V } ⊆ Rd be an optimal strict vector

t-coloring of G, where vi = (v
(1)
i , .., v

(d)
i ). Now we construct a strict vector coloring of

M(G) in Rd+1. Let the axis of the last coordinate be the z-axis.

In our strict vector coloring of M(G) let us assign to each (i, 0) ∈ V (M(G)) the vector

v∗i := (αv
(1)
i , ..., αv

(d)
i , x) ∈ Rd+1 where the appropriate non-negative real values of α and

x are to be chosen later. Similarly, we assign to each “twin” vertex (i, 1) the vector

u∗
i = (βv

(1)
i , ..., βv

(d)
i ,−y) ∈ Rd+1, where the appropriate non-negative real values of β

and y are also to be chosen later. Finally, the vector e := (0, 0, ..., 0, 1) ∈ Rd+1 is assigned
to zM(G) ∈ V (M(G)). (See Figure 1 for an illustration.)

We have to verify that x, y, α, β can be chosen so that the system of the vectors
{v∗1, ..., v∗n, u∗

1, .., u
∗
n, e} gives a strict vector coloring for M(G). This means that these

vectors should satisfy the following conditions for some parameter t̂:

1. For every i, |v∗i | = |u∗
i | = 1.

2. If ij ∈ E(G), then ⟨v∗i , v∗j ⟩ = − 1
t̂−1

.

7



3. If ij ∈ E(G), then ⟨v∗i , u∗
j⟩ = − 1

t̂−1
.

4. For all i, ⟨u∗
i , e⟩ = − 1

t̂−1
.

If these conditions are satisfied then the given system of vectors forms a strict vector
t̂-coloring.

Figure 1: The location of the vectors of our strict vector t̂-coloring of M(G) in Rd+1. It
may be instructive to think about the special case of G = K2 with the optimal strict vector
coloring consisting of the two vectors being 1-dimensional with their unique coordinate
being equal to −1 and 1, respectively. Then the five vectors on the picture are in R2

giving an optimal strict vector coloring of M(K2) ∼= C5 if the values of α, β, x, y are
chosen appropriately. In the more general case when G has several vertices, we can think
about this picture so, that the two dotted lines represent d-dimensional hyperplanes. The
one defined by z = x contains all the vectors assigned to vertices (i, 0) and the one defined
by z = −y contains all the vectors assigned to the “twin” vertices (i, 1). (Note that y is
considered to be a non-negative value, so in the picture it means the distance from the
origin.)

8



The two equations in 1. give us

1 = |v∗i |2 =
d∑

j=1

(
αv

(j)
i

)2
+ x2 = α2

d∑
j=1

(
v
(j)
i

)2
+ x2 = α2 + x2,

1 = |u∗
i |2 =

d∑
j=1

(
βv

(j)
i

)2
+ y2 = β2

d∑
j=1

(
v
(j)
i

)2
+ y2 = β2 + y2.

The second condition and the fact that the vectors vi gave a strict vector t-coloring of G
give that for ij ∈ E(G) we have

− 1

t̂− 1
= ⟨v∗i , v∗j ⟩ =

d∑
k=1

α2v
(k)
i v

(k)
j + x2 = α2⟨vi, vj⟩+ x2 = − 1

t− 1
α2 + x2.

Furthermore, for ij ∈ E(G) the third condition gives

− 1

t̂− 1
= ⟨v∗i , u∗

j⟩ =
d∑

k=1

αβv
(k)
i v

(k)
j − xy = − 1

t− 1
αβ − xy.

Finally, it is straightforward from the fourth condition that − 1
t̂−1

= ⟨u∗
i , e⟩ = −y. To

summarize, we have obtained the following system of equations:

α2 + x2 = 1

β2 + y2 = 1

1

t− 1
α2 − x2 =

1

t̂− 1
1

t− 1
αβ + xy =

1

t̂− 1

y =
1

t̂− 1
.

(2)

This system of equations provides a solution for t̂ that depends only on t. After calculation
that is presented in Appendix 1, we arrive to the following cubic equation.

t̂3 + (t− 3)t̂2 + (3− 2t− t2)t̂+ (−t3 + 5t2 − 3t− 1) = 0. (3)

According to the formula presented in Theorem 9 this equation has three solutions that
can be given as

t̂k =
4

3
t cos

(
1

3
arccos

(
1− 27

4t
+

27

4t2

)
− 2πk

3

)
− 1

3
t+ 1 for k = 0, 1, 2. (4)
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Since ϑ is monotone in the sense that F ⊆ F ′ ⇒ ϑ(F ) ≤ ϑ(F ′), G ⊆ M(G) implies
ϑ(G) ≤ ϑ(M(G)). Hence if for some solution t̂ of the above equation we have t̂ < ϑ(G)
then t̂ cannot be an upper bound on ϑ(M(G)) and thus it cannot be the value of a strict
vector coloring of M(G). The case of ϑ(G) = 1 is trivial since ω(G) ≤ ϑ(G), therefore G
is an empty graph or a graph without edges. If G does not have any edge and it is not an
empty graph, then M(G) is a star graph with isolated vertices so ϑ(M(G)) = 2. Hence
we can assume that 2 ≤ ϑ(G).

We need to show that among the above three solutions of our cubic equation only t̂0
is relevant for us. We can actually show that for k = 1, 2 we have t̂k ≤ 1 and the
above observations already imply that this fact makes those solutions uninteresting for
us. Details of this calculation are given in Appendix 2. So we are interested only in x0

that is what we obtain by substituting k = 0.

Substituting k = 0 we obtain the expression on the right hand side of (1), thus the claimed
upper bound is proven.

Now we have to show the reverse inequality, that is

4

3
ϑ(G) cos

(
1

3
arccos

(
1− 27

4ϑ(G)
+

27

4ϑ
2
(G)

))
− 1

3
ϑ(G) + 1 ≤ ϑ (M(G)) . (5)

The left hand side here in (5) is a function of t = ϑ(G) that we will denote by m(t).
To prove (5) we will use Theorem 7. Let t := ϑ(G) and assume that T ∈ Rn×n is a
matrix obtaining the maximum in said theorem for graph G, that is, T is a symmetric
matrix with Tij = 0 for ij /∈ E(G) such that t = 1 + λmax(T )

|λmin(T )| . Let λ1 ≥ λ2 ≥ ... ≥ λn

be the eigenvalues of T and let the corresponding orthonormal system of eigenvectors
be {v1, .., vn}. We look for the optimizing matrix T̂ ∈ R(2n+1)×(2n+1) for M(G) in the
following form. We consider two parameters (that are taken as variables for the moment)
δ and η and write the matrix T̂ in the following form (where 0k×ℓ stands for a k × ℓ,
meaning k rows and ℓ columns, all-0 submatrix).

T̂ =

 δ
|λn|T

1
|λn|T 0n×1

1
|λn|T 0n×n (t− 1)

√
ηv1

01×n (t− 1)
√
ηv⊤1 0

 .

We can see that this matrix satisfies the conditions in Theorem 7 for M(G), so if we can
choose δ and η so that the right hand side of the formula in Theorem 7 becomes equal to
the left hand side of (5) that proves the required lower bound.
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Now we define some auxiliary matrices, a 3× 3 one denoted T1 and n− 1 smaller, 2× 2
matrices that will be T2, . . . , Tn. They are given as

T1 :=

(t− 1)δ t− 1 0
t− 1 0 (t− 1)

√
η

0 (t− 1)
√
η 0

 and Ti :=

[
λi

|λn|δ
λi

|λn|
λi

|λn| 0

]
for 2 ≤ i ≤ n.

The following lemma, which was inspired by the proof of Theorem 3.1 in [3], will be useful.

Lemma 10.

Sp(T̂ ) =
n⋃

i=1

Sp(Ti).

Proof. Since T is a symmetric matrix we can write it in the form A = PΛP⊤ according
to Theorem 8, where P = [v1|...|vn] and Λ = diag(λ1, ..., λn). Moreover, every vi is a
unit vector and they are pairwise orthogonal. Now we use the main idea of the proof of
Theorem 3.1 in [3] for writing our matrix T̂ in the following form. δ

|λn|T
1

|λn|T 0n×1
1

|λn|T 0n×n (t− 1)
√
ηv1

01×n (t− 1)
√
ηv⊤1 0

 =

 δ
|λn|PΛP⊤ 1

|λn|PΛP⊤ 0n×1
1

|λn|PΛP⊤ 0n×n (t− 1)
√
ηv1

01×n (t− 1)
√
ηv⊤1 0

 =

P 0 0
0 P 0
0 0 1

 δ
|λn|Λ

1
|λn|Λ 0n×1

1
|λn|Λ 0n×n (t− 1)

√
ηP⊤v1

01×n (t− 1)
√
ηv⊤1 P 0

P⊤ 0 0
0 P⊤ 0
0 0 1



Since v1 is a unit vector and it is orthogonal to all other eigenvectors, v⊤1 P = (1, 0, ..., 0)⊤

and P⊤v1 = (1, 0, ..., 0). Hence

T̂ =

P 0 0
0 P 0
0 0 1

 δ
|λn|Λ

1
|λn|Λ 0n×1

1
|λn|Λ 0n×n ((t− 1)

√
η, 0, .., 0)

01×n ((t− 1)
√
η, 0, .., 0)⊤ 0

P⊤ 0 0
0 P⊤ 0
0 0 1


The spectra of

Λ̂ :=

 δ
|λn|Λ

1
|λn|Λ 0n×1

1
|λn|Λ 0n×n ((t− 1)

√
η, 0, .., 0)

01×n ((t− 1)
√
η, 0, .., 0)⊤ 0


is identical to the spectra of T̂ because P is an orthonormal matrix.
So we need to prove

Sp(Λ̂) =
n⋃

i=1

Sp(Ti).
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We can write Λ̂− µI in the following form.

δ
|λn|λ1 − µ 0 ... 0 1

|λn|λ1 0 ... 0 0

0 δ
|λn|λ2 − µ ... 0 0 1

|λn|λ2 ... 0 0
...

...
. . .

...
...

...
. . .

...
...

0 0 ... δ
|λn|λn − µ 0 0 ... 1

|λn|λn 0
1

|λn|λ1 0 ... 0 −µ 0 ... 0 (t− 1)
√
η

0 1
|λn|λ2 ... 0 0 −µ ... 0 0

...
...

. . .
...

...
...

. . .
...

...
0 0 ... 1

|λn|λn 0 0 ... −µ 0

0 0 ... 0 (t− 1)
√
η 0 ... 0 −µ


Note that the exchanging of two rows or two columns does not change the 0 value of a
determinant and thus it leaves the roots of the characteristic polynomial unchanged. To
obtain a more convenient version of Λ̂ for seeing the roots of its characteristic polynomial
we move its (n + 1)th row to become the second row and move the (n + 1)th column to
become the second column. Similarly, we move the (2n + 1)th row to become the third
row and the (2n + 1)th column to become the third column. (We do this so that the ith

row/column becomes the (i+ 2)nd when i /∈ {1, n+ 1, 2n+ 1}.)

The resulting matrix then looks like this:

δ
|λn|λ1 − µ 1

|λn|λ1 0 0 ... 0
1

|λn|λ1 −µ (t− 1)
√
η 0 ... 0

0 (t− 1)
√
η −µ 0 ... 0

0 0 0
...

...
... M2

0 0 0


where

M2 =



δ
|λn|λ2 − µ 0 ... 0 1

|λn|λ2 0 ... 0

0 δ
|λn|λ3 − µ ... 0 0 1

|λn|λ3 ... 0
...

...
. . .

...
...

...
. . .

...
0 0 ... δ

|λn|λn − µ 0 0 ... 1
|λn|λn

1
|λn|λ2 0 ... 0 −µ 0 ... 0

0 1
|λn|λ3 ... 0 0 −µ ... 0

...
...

. . .
...

...
...

. . .
...

0 0 ... 1
|λn|λn 0 0 ... −µ


.
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Let

M1 :=

 δ
|λn|λ1 − µ 1

|λn|λ1 0
1

|λn|λ1 −µ (t− 1)
√
η

0 (t− 1)
√
η −µ

 ,

.

Since the matrix obtained from Λ̂ − µI with row and column order changes is block
diagonal with blocks M1 and M2 we have det(Λ̂− µI) = (−1)sdet(M1)det(M2) for some
appropriate positive integer s that has no effect on the equation when both sides are zero.
This already shows Sp(T1) ⊆ Sp(Λ̂). Now we manipulate further M2 to get a similar
product for det(M2). To this end we move the nth row of M2 (this is the one starting
with 1

|λn|λ2) to become the second row and the nth column (also starting with 1
|λn|λ2) to

become the second column. This results in the following matrix
δ

|λn|λ2 − µ 1
|λn|λ2 0 ... 0

1
|λn|λ2 −µ 0 ... 0

0 0
...

... M4

0 0

 ,

Letting M3 to be the 2× 2 block in the upper left corner and

M4 :=



δ
|λn|λ3 − µ 0 ... 0 1

|λn|λ3 0 ... 0

0 δ
|λn|λ4 − µ ... 0 0 1

|λn|λ4 ... 0
...

...
. . .

...
...

...
. . .

...
0 0 ... δ

|λn|λn − µ 0 0 ... 1
|λn|λn

1
|λn|λ3 0 ... 0 −µ 0 ... 0

0 1
|λn|λ4 ... 0 0 −µ ... 0

...
...

. . .
...

...
...

. . .
...

0 0 ... 1
|λn|λn 0 0 ... −µ


.

we get det(M2) = (−1)s
′
det(M3)det(M4) (where again, s′ is irrelevant when both sides

are equal to 0) and since det(M2) is just the characteristic polynomial of T2, this shows
Sp(T2) ⊆ Sp(Λ̂). Continuing in a similar fashion until the last remaining block has also
size 2× 2 we obtain ∪n

i=1Sp(Ti) = Sp(Λ̂), completing the proof of the lemma. □

Observe that T1 and Tn can be written in the simpler forms T1 = (t− 1)T ∗
1 , where

T ∗
1 =

δ 1 0
1 0

√
η

0
√
η 0

 ,
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and

Tn =

[
−δ −1
−1 0

]
.

Our plan is to show that there exist some δ, η, γ ∈ R+ such that λmax(T̂ ) = γ(t − 1)

and λmin(T̂ ) = −γ t−1
m(t)−1

. If these two conditions are satisfied, then m(t) = 1 + λmax(T̂ )

|λmin(T̂ )| .

In order to determine the appropriate δ, η, γ, we need to calculate the characteristic poly-
nomials of these matrices, however, as we will see that is not quite necessary. It will be
sufficient if we determine the characteristic polynomials of T ∗

1 and Tn,

Let p∗1(µ) = det(T ∗
1−µI), pn(µ) := det(Tn−µI). We will also use p1(µ) := det (T1 − µI) as

an auxiliary polynomial. The roots of p∗1(µ) are the solutions of µ
3−δµ2−(η+1)µ+ηδ = 0

(the left hand side being just −p∗1(µ)). These values and the solutions of pn(µ) =
µ2 + δµ− 1 = 0 will be the eigenvalues of T̂ that we need.

We want the minimum and maximum eigenvalues of T̂ to be λmin(T̂ ) = −γ t−1
m(t)−1

and

λmax(T̂ ) = γ(t − 1), respectively. This would be enough for completing the proof, since
by Theorem 7 it would give us ϑ(G) ≥ m(t), while ϑ(G) ≤ m(t) we have already shown.

We will see that the minimum and maximum eigenvalues will be as chosen above if the
following equations are satisfied.

1. pn

(
−γ t−1

m(t)−1

)
= 0;

2. p1 (γ(t− 1)) = 0 ⇔ p∗1(γ) = 0;

3. p1

(
−γ t−1

m(t)−1

)
= 0 ⇔ p∗1

(
−γ 1

m(t)−1

)
= 0.

This means that we fix −γ t−1
m(t)−1

to be an eigenvalue of both T1 and Tn, while γ(t − 1)
is also an eigenvalue of T1. On the way it will also be made sure that γ > 0 and that no
matrix Ti in our collection has a smaller eigenvalue than −γ t−1

m(t)−1
, that is the absolute

value of λmin is indeed what this value provides. By this the maximality of the other

eigenvalue γ(t− 1) will already be guaranteed, since otherwise we would get 1 + λmax(T̂ )

|λmin(T̂ )|

larger than m(t), which is impossible by m(t) ≥ ϑ(G) and Theorem 7.

Assume that µ1 and µ2 are the two roots of pn(µ), therefore µ1µ2 = −1 and−(µ1+µ2) = δ.
Thus fixing µ2 to be equal to −γ t−1

m(t)−1
gives µ1 =

1
γ t−1

m(t)−1

from which we can calculate δ:

δ = γ
t− 1

m(t)− 1
− 1

γ t−1
m(t)−1

.
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Now we have to make sure that the choice of δ still lets the value µ2 = −γ t−1
m(t)−1

being

the smallest eigenvalue of T̂ , that is, that no eigenvalue of Ti for 2 ≤ i ≤ n− 1 becomes

smaller than µ2. So we want to guarantee Sp(Ti) ⊆
[
−γ t−1

m(t)−1
,∞
[
.

Recall that λ1 ≥ · · · ≥ λn are the eigenvalues of T .

Case 1: If λi ≤ 0, then using that

Ti =

[
λi

|λn|δ
λi

|λn|
λi

|λn| 0

]
= − λi

|λn|

[
−δ −1
−1 0

]
=

λi

λn

Tn

and that λn ≤ λi ≤ 0 we can write λmin(Ti) =
λi

λn
λmin(Tn) = γ λi

|λn|
t−1

m(t)−1
≥ γ λn

|λn|
t−1

m(t)−1
=

−γ t−1
m(t)−1

.

Case 2: Assume that λi > 0. Then we have λi

λn
< 0 by λn < 0 (for the latter cf. the

discussion after Theorem 7), so we can write λmin(Ti) = − λi

λn
λmax(Tn) = − λi

|λn|
1

γ t−1
m(t)−1

≥

− λ1

|λn|
1

γ t−1
m(t)−1

= −(t− 1) 1
γ t−1

m(t)−1

. Thus the required inequality λmin(Ti) ≥ λmin(Tn) follows

if the following inequality holds.

−(t− 1)
1

γ t−1
m(t)−1

≥ −γ
t− 1

m(t)− 1

The latter inequality will follow from (m(t) − 1)2 ≤ γ2(t − 1) if γ > 0 also holds. The
proof of these two inequalities we postpone to the final part of the proof, see Lemma 11
and its proof in Appendix 3.

We continue by determining the value of η and γ. Let µ1, µ2, µ3 be the solutions of the
µ3 − δµ2 − (η + 1)µ + ηδ = 0 equation we obtained from p∗1 = 0. We know that µ1 = γ
and µ3 = −γ 1

m(t)−1
. Thus by Viete’s formulas describing the relationship of the roots and

coefficients of a polynomial, we get the following system of equations.
µ1µ2µ3 = −ηδ

µ1 + µ2 + µ3 = δ

µ1µ2 + µ1µ3 + µ2µ3 = −(η + 1).

(6)

From the first equation, we have µ2 =
1
γ2 (m(t)− 1)ηδ, which gives 0 ≤ µ2 if we also have

0 ≤ η and 0 ≤ δ both of which will be shown at the end of the proof. (See Lemma 11
and its proof in Appendix 3.) Taking this for granted now, we know that µ2 is surely not
the minimal eigenvalue of T̂ . Now we substitute the above value of µ2 into the second
equation and solve it for η. That gives us

η =
1

δ(m(t)− 1)

(
γ2δ + γ3 1

m(t)− 1
− γ3

)
.
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(For the last equation to make sense we will actually need the strict inequality δ > 0. To
see that this will be satisfied we refer again to Lemma 11 and its proof in Appendix 3.)

Substituting the above expressions for µ2 and η into the third equation we obtain

γδ + γ2 1

m(t)− 1
− γ2 − γ2 1

m(t)− 1
− 1

m(t)− 1
γδ − γ2 1

(m(t)− 1)2
+ γ2 1

m(t)− 1
=

− 1

δ(m(t)− 1)

(
γ2δ + γ3 1

m(t)− 1
− γ3

)
− 1.

We have already seen that δ = γ t−1
m(t)−1

− 1
γ t−1

m(t)−1

, so this equation depends only on γ, t

and m(t). (Although m(t) is just a function of t, here we handle it as a parameter itself.)
The last equation can be transformed into one having a polynomial with variable γ

and coefficients depending solely on t and m(t) on the left had side and 0 on the right
hand side. The details of this calculation can be found in Appendix 4. To give the
resulting equation we use the notation v := t − 1 and w := 1

m(t)−1
. What we obtain is

aγ4 + bγ2 + c = 0, where

a =− v4w5 + v4w4 − v3w5 + 2v3w4 − v3w3 + v2w4 − v2w3,

b =v3w3 + 2v2w3 − 2v2w2 + vw3 − 2vw2 + vw,

c =− vw − w + 1.

Let us substitute γ̂ := γ2 to make our equation quadratic:

aγ̂2 + bγ̂ + c = 0.

The discriminant D(t,m(t)) = b2 − 4ac of this quadratic equation turns out to be equal
to 0. In fact, the discriminant is equal to

(v3w3 + 2v2w3 − 2v2w2 + vw3 − 2vw2 + vw)2

−4(−v4w5 + v4w4 − v3w5 + 2v3w4 − v3w3 + v2w4 − v2w3)(−vw − w + 1) = .

v6w6 − 2v4w6 + 4v4w5 − 2v4w4 + 4v3w5 − 4v3w4 + v2w6 − 2v2w4 + v2w2 =

v2w2(vw + w − 1)(v3w3 − v2w3 + v2w2 − vw3 + 2vw2 − vw + w3 + w2 − w − 1).

Hence D(t,m(t)) = 0 will follow if we have v3w3− v2w3+ v2w2− vw3+2vw2− vw+w3+
w2 − w − 1 = 0.

Substituting back t−1 for v and 1
m(t)−1

for w in the last equation, after some manipulation

we get the equation m(t)3 + (t − 3)m(t)2 + (3 − 2t − t2)m(t) + (−t3 + 5t2 − 3t − 1) = 0
which is the same as equation (3) in the first half of the proof if we exchange m(t) to t̂.
Since m(t) was defined as its solution for t̂, we know that this equation holds, therefore
we indeed have D(t,m(t)) = 0.
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Since D(t,m(t)) was the discriminant of the quadratic equation aγ̂2+ bγ̂+ c = 0, we now
know that this equation has a unique real solution which is the following.

γ̂ = − b

2a
= − v3w3 + 2v2w3 − 2v2w2 + vw3 − 2vw2 + vw

2(−v4w5 + v4w4 − v3w5 + 2v3w4 − v3w3 + v2w4 − v2w3)
=

− (m(t)− 1)2(t−m(t) + 1)2

2(t− 1)t(m(t)− 2)(t−m(t))
.

Since γ̂ was defined as γ2, we have to check that we obtained a non-negative value for it.
Since t ≥ 2 and m(t) ≥ t, this will follow if we show that the last inequality is a strict
one, that is, m(t) > t. To exclude m(t) = t it is enough to observe that the value of the
left hand side of our cubic equation (3) for m(t) = t is constant −1. Therefore there does
not exist any t such that t = m(t). So we obtained a meaningful solution for γ̂. In fact,
we also see from the formula for it, that it is strictly positive. Since we have the right
to choose the positive root of γ̂ to be γ, the inequality γ > 0 we needed earlier is also
settled.

We still owe the proof of some inequalities we have taken for granted on the way postponing
their proof to the end. These are the following.

Lemma 11. The following inequalities are true:

1. 0 < η;

2. (m(t)−1)2

t−1
≤ γ2;

3. 0 < δ.

The proof of this Lemma is given in Appendix 3.

By the above we have completed the proof of Theorem 2. □

4 Further variants

4.1 Sperner capacity of a Mycielskian

Sperner capacity, first defined in [7], generalizes the notion of Shannon capacity to directed
graphs. It also has an operational meaning in terms of information transmission with
zero-error over a compound channel, see [21] for details.

To give the definition of Sperner capacity we have to generalize the OR-product to directed
graphs (often called simply digraphs). This is rather straightforward.
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Definition 8. For two digraphs F and G their OR-product F ·G is defined by

V (F ·G) = V (F )× V (G)

and
E(F ·G) = {((f, g), (f ′, g′)) : f, f ′ ∈ V (F ), g, g′ ∈ V (G),

(f, f ′) ∈ E(F ) or (g, g′) ∈ E(G)}.
The tth OR-power Gt of a digraph G is meant to be the t-fold OR-product of G with itself.

It can be seen that the difference between Definition 1 and Definition 8 is only that
unordered pairs of vertices are exchanged to ordered ones. Note that even if both F and
G are oriented graphs (meaning digraphs that have no cycles of length 2, that is, for no
edge its reversed edge is present), their product may contain 2-cycles. Let Tn denote the
transitive tournament on n vertices, that is the oriented complete graph, whose vertices
can be labeled by 1, 2, . . . , n so that (i, j) ∈ E(Tn) ⇔ i < j. The subdigraph of a digraph
D induced by U ⊆ V (D) will be denoted D[U ]. A subdigraph isomorphic to the transitive
tournament Tm is called a transitive clique of size m.

Definition 9. For a digraph D its symmetric clique number is defined as

ωs(D) := max{|Q| : Q ⊆ V (D),∀u, v ∈ Q, (u, v), (v, u) ∈ E(D)}.

The transitive clique number of D is defined as

ωtr(D) := max{|Q| : Q ⊆ V (D), T|Q| ⊆ D[Q]}.

Note that we have ωs(D) ≤ ωtr(D) for any digraph D. The straighforward generalization
of Shannon OR-capacity to digraphs is obtained if we consider undirected graphs as
directed ones where all edges are present in both directions, thus exchange ω(G) to ωs(G)
in Definition 2. This is how Sperner capacity is defined in [7]. It is not hard to see,
however, that the so defined limit remains the same if we change ωs(D

t) to ωtr(D
t) in

the definition. This alternative definition of Sperner capacity appears already, e.g., in [1].
For us this way of defining it is also more convenient.

Definition 10. The (non-logarithmic) Sperner capacity of the digraph D is defined by

CSp(D) := lim
t→∞

t
√
ωtr(Dt).

Like in case of Shannon capacity, it is straightforward to see that k
√
ωtr(Dk) ≤ CSp(D)

holds for any fixed positive integer k and any digraph D, from which the existence of
the limit follows again by Fekete’s Lemma. We say that the Sperner capacity of digraph
D is attained in finite length if there exists some positive integer k for which CSp(D) =
k
√
ωtr(Dk).

Now we define the Mycielskian of a digraph.
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Definition 11. Let D be a digraph. Its Mycielskian M(D) is defined on the vertices

V (M(D)) = V (D)× {0, 1} ∪ {zM(D)}

with edge set

E(M(D)) = {((v, 0)(w, i)) : (v, w) ∈ E(G), i ∈ {0, 1}}∪

{((v, 1)(w, 0)) : (v, w) ∈ E(G)}} ∪ {(zM(D), (v, 1)) : v ∈ V (D)}.

Thus the edges between the “levels” V (D)× {0} and V (D)× {1} inherit the orientation
of the corresponding edges in E(D) while all edges between the vertices in V (D) × {1}
and the vertex zM(D) are oriented outward from zM(D). (Note that although orienting all
the edges between zM(D) and its neighbors towards zM(D) would be equally natural, so
this choice is just a matter of convention, it will not alter essentially anything in what
follows. The reason is the simple observation that if we reverse all the edges of a directed
graph then its Sperner capacity does not change.)

With this definition the following extension of Theorem 1 to Sperner capacity is almost
straightforward.

Theorem 12. If D is a digraph that attains its Sperner capacity in finite length, then

CSp(M(D)) > CSp(D).

The directed generalization of Lemma 3 is the following.

Lemma 13. There is a transitive clique of size nn in [M(Tn) \ {zM(Tn)}]n every vertex
of which has a coordinate belonging to the set V (Tn)× {1}.

Proof. Let the vertices of Tn be 0, 1, . . . , n − 1 so that (i, j) ∈ E(Tn) if i < j. Define
the set B̂n the same way as it is done in the proof of Lemma 3. We claim that the
subdigraph induced by B̂n contains a transitive clique of size nn. For a vertex (x, i) :=
(x1, i1)(x2, i2) . . . (xn, in) with ij ∈ {0, 1} ∀j let s(x, i) =

∑n
j=1 xj. If for (x, i), (x′, i′) ∈

B̂n we have s(x, i) < s(x′, i′) then we have the directed edge ((x, i)(x′, i′)) present in
(M(Tn))

n[B̂n]. This can be seen as follows. Either s(x, i) ≡ s(x′, i′) (mod n) or not. In
the latter case there must exist a coordinate j where xj < x′

j and at most one of ij and
i′j is equal to 1, therefore ((xj, ij)(x

′
j, i

′
j)) ∈ E(M(Tn)). In the former case there must be

at least two coordinates j where xj < x′
j, since s(x′, i′) − s(x, i) ≥ n in this case, while

x′
j −xj can be at most n−1. But one of these two coordinates will also satisfy ij = i′j = 0

and so ((xj, ij)(x
′
j, i

′
j)) ∈ E(M(Tn)) follows again.

Taking into account the above, it is enough to prove that all vertices (x, i) ∈ B̂n for
which s(x, i) = k for an arbitrary constant k also induce a subdigraph of [M(Tn)]

n which
contains a transitive tournament on all these vertices. Note that s(x, i) = k = s(x′, i′) for
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vertices in B̂n implies that i = i′, thus there is a unique coordinate r for which ir = i′r = 1
while ij = i′j = 0 for all j ̸= r. The s(x, i) = s(x′, i′) relation also implies that x and x′

differs at least at two coordinates, so there is some j ̸= r where xj ̸= x′
j. Now we define

an ordering of the vertices just considered for which an earlier vertex in this order always
sends an edge to the ones coming later in this order, thus the transitive tournament we
seek for is found. Put (x, i) in front of (x′, i′) if for the first j ̸= r where they differ,
xj < x′

j. Since for such a j we have ij = i′j = 0 we will have ((x, i), (x′, i′)) ∈ E([M(Tn)]
n)

as we need. Note that by this rule we also do not put any three vertices into cyclic order,
that is, if (x, i) precedes (x′, i′) and (x′, i′) precedes (x′′, i′′) then (x, i) also precedes
(x′′, i′′). The definition of B̂n also ensures that each vertex (x, i) in it has a coordinate j
with ij = 1. This completes the proof. □

The above lemma implies the following generalization of Corollary 4, which is a special
case of Theorem 12.

Corollary 14. For the transitive tournament Tn on n vertices we have

CSp(M(Tn)) ≥ n
√
nn + 1 > n.

Proof. Consider the transitive clique of size nn in [M(Tn) \ {zM(Tn)}]n whose existence
is shown in Lemma 13. Since all the sequences that are vertices of this clique contain a
coordinate from V (Tn)×{1} = N+(zM(Tn)) (where N+(v) stands for the outneighborhood
of vertex v), the all-zM(Tn) sequence of length n sends an edge to all vertices of this clique
in [M(Tn)]

n. So adding this sequence to our transitive clique of size nn we obtain a
transitive clique with nn + 1 vertices, thus showing ωtr([M(Tn)]

n) ≥ nn + 1. This implies
CSp(M(Tn)) ≥ n

√
nn + 1 as stated. □

Remark 3. We remark that for n = 2 M(T2) is a 5-cycle with exactly one vertex having
outdegree equal to 1 while all the other four vertices have outdegree 2 or 0. This is the
unique orientation of the 5-cycle C5 having Sperner capacity strictly larger than 2 =
CSp(T2) and, in fact, its Sperner capacity is equal to

√
5 = COR(C5). The latter is shown

in [6], cf. also [23] for a generalization. The fact, that all other orientations have Sperner
capacity 2 is already remarked in [6], for the proof of a more general theorem see [15].

Note that Lemma 5 remains true for directed graphs, so

M(Dt) ⊆ [M(D)]t

for all directed graphs D. (The proof is literally the same, so we omit the details.)

From here it is easy to complete the proof of Theorem 12 analogously to that of Theorem 1.
(It is essentially the same argument as that proving Theorem 1 that we repeat only for
the sake of clarity and completeness.)

Proof of Theorem 12. Let D be a digraph with CSp(G) = k
√
ωtr(Dk) = k

√
N where k ≥ 1

is a positive integer and N = ωtr(D
k). Since TN ⊆ Dk, we also have M(TN) ⊆ M(Dk) ⊆
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[M(D)]k, where the last relation is by the digraph version of Lemma 5. This further
implies

[M(TN)]
N ⊆ [M(Dk)]N ⊆ [M(D)]kN ,

so by the proof of Corollary 14 we can write

NN + 1 ≤ ωtr([M(TN)]
N) ≤ ωtr([M(Dk)]N) ≤ ωtr([M(D)]kN).

The latter implies

CSp(M(D)) ≥ kN
√

ωtr([M(D)]kN) ≥ kN
√
NN + 1 >

k
√
N = CSp(D)

completing the proof. □

4.2 Generalized Mycielskian

The generalized Mycielski construction was first considered by Stiebitz [30], cf. also
[10, 31] and the book [13]. Below we give the definition to directed graphs that simplifies
for undirected graphs if we disregard the orientation of the edges.

Definition 12. Let D be a digraph. Its r-level generalized Mycielskian Mr(D) is defined
on the vertices

V (M(D)) = V (D)× {0, 1, . . . , r − 1} ∪ {zMr(D)}

with edge set
E(M(D)) = {((v, 0)(w, 0)) : (v, w) ∈ E(D)}∪

{((v, i)(w, i+ 1)) : (v, w) ∈ E(D), i ∈ {0, 1, . . . r − 2}}∪

{((v, i+ 1)(w, i)) : (v, w) ∈ E(D), i ∈ {0, 1, . . . r− 2}} ∪ {(zMr(D), (v, r− 1)) : v ∈ V (D)}.

Note that we get back the Mycielskian M(D) for r = 2, while M1(D) can be considered
as a copy of D with all its vertices connected to a new vertex (and all these edges oriented
towards the vertex in V (D) in the directed case). An interesting fact about the generalized
Mycielskian Mr(G) of an undirected graph is that although for several graphs G we have
χ(Mr(G)) = χ(G) + 1 for all r ≥ 1, there are also examples of graphs G for which
χ(Mr(G)) = χ(G) for large enough r > 2. An example of the latter is the complementary
graph of the 7-cycle already with r = 3, see [31]. (Cf. also [22] or the conference paper
[9] written to popularize a special case of the more general result in the former paper.)
Note that Mr(K2) ∼= C2r+1. This immediatley implies that the chromatic number does
increase for every generalized Mycielskian of a bipartite graph (since it will contain an
odd cycle) and Stiebitz proved that the generalized Mycielskian of any odd cycle will have
chromatic number 4, that is 1 larger than the chromatic number of the odd cycle itself.
(All this is related to the topological lower bound on the chromatic number introduced
by Lovász [17], cf. [13] for more details.)

21



In the light of the above it is quite natural to ask what we can say about the effect
of the generalized Mycielski construction on Shannon OR-capacity and Sperner capac-
ity. Below we give some preliminary observations on this likely to be difficult prob-
lem. Probably the very first question that one should be able to answer is whether
COR(C2r+1) = COR(Mr(K2)) > COR(K2) = 2 for every positive integer r. For this ques-
tion an affirmative answer is already known, but even this was far from trivial: it needed
the ingenious construction of Bohman and Holzman that is the main result of [4] (pre-
sented in the usual complementary language). Their construction generalizes the one by
Shannon [26] proving COR(C5) ≥

√
5: for large enough t (in particular, for t = 22

r−1
)

they construct a clique of size 2t in [Mr(K2) \ {zMr(K2)}]t every vertex of which contains
a coordinate from V (K2) × {r − 1}. Therefore the all-zMr(K2) sequence of length t can
be added to it to obtain a clique of size 2t + 1 in the tth OR-power, thereby proving
COR(Mr(K2)) > 2. Note that our proof of Corollary 4 uses a similar idea: we presented a
clique of size nt in [M(Kn)\{zM(Kn)}]t for large enough t (in our case t = n was sufficiently
large) in such a way that all the vertices in it contained a coordinate from V (Kn)× {1}
resulting in the same conclusion, that the all-zM(Kn) sequence of length t could be added
to obtain a clique of size nt + 1 thereby proving COR(M(Kn)) > n = COR(Kn). Our first
observation is that a construction of this type cannot exist for Mr(Kn) if both r > 2 and
n > 2.

Proposition 15. For n, r ≥ 3 there exists no clique of size nt in [Mr(Kn) \ {zMr(Kn)}]t
for any positive integer t such that each of its vertices would contain a coordinate from
V (Kn)× {r − 1}.

Proof. Assume for contradiction that for some n, r ≥ 3 and positive integer t there exists
such a clique Qt. For a vertex (x, ix) ∈ [Mr(Kn) \ {zMr(Kn)}]t, x ∈ [V (Kn)]

t, ix ∈
{0, 1, . . . , r − 1}t let us call x the projection of this vertex to [V (Kn)]

t. Observe that if
we take the projection of all vertices in Qt to [V (Kn)]

t, then they must all be different,
therefore give us every sequence of [V (Kn)]

t exactly once. Consider some (x, ix) ∈ Qt and
assume that j is a coordinate where ix,j = r − 1. Since n ≥ 3 there exists two sequences
(y, iy), (y

′, iy′) ∈ Qt whose projections to [V (Kn)]
t differ from the projection of (x, ix)

(and thus also from the projection of each other) only in the jth coordinate. This means
that for being adjacent in [Mr(Kn)]

t to (x, ix) the j
th coordinate of both iy and iy′ must

be equal to r− 2. But then r− 1 ≥ 2 implies that (y, iy) and (y′, iy′) cannot be adjacent
to each other. This contradicts the assumption that Qt is a clique. □

It is straightforward from the definition of Sperner capacity that if G⃗ is a directed version
of graph G, then CSp(G⃗) ≤ COR(G). Therefore it follows from Proposition 15 that
Lemma 13 cannot be generalized to Tn in place of Kn if n, r ≥ 3. (Note that this does not
mean that Corollary 14 itself cannot be generalized in a different way.) This leaves the
question of whether such a generalization is possible if r ≥ 3, but n = 2, the case for which
the undirected case is settled by the result of Bohman and Holzman [4]. The situation
here is rather puzzling. It is proven in [15] that all oriented versions except possibly
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one of an odd cycle (oriented meaning again that every edge is present in exactly one
direction) has Sperner capacity equal to 2 < COR(C2r+1). The exceptional orientation,
that is called alternating in [15] is just the one that is isomorphic to Mr(T2). (The name
“alternating” refers to the property of this kind of oriented odd cycles that their pairs
of edges meeting at a common vertex are oriented in the opposite direction at as many
vertices as possible, meaning at all vertices but one.) It is already shown in [15] that
for the alternating 7-cycle M3(T2) we do have CSp(M3(T2)) > 2 by just adapting the
Bohman-Holzman construction to the oriented case. (It also works for the alternating C5

but that belongs to the case r = 2 which we already discussed in Remark 3.) The puzzling
fact is that (as also discussed in [15]) the same method fails for C9, that is, for r = 4 and
therefore for all r ≥ 4. (The latter is a consequence of the fact that any alternating odd
cycle maps homomorphically to any shorter alternating odd cycle.) Recently we have put
some more effort into trying to adapt the ideas of Bohman and Holzman for the C9 case
less directly but we still failed. But we also do not have a negative result analogous to
Proposition 15 for the oriented case when n = 2 and r ≥ 4. Let us emphasize that even
if we had that would not imply anything about the question whether CSp(Mr(T2)) can be
larger than 2 for r ≥ 4. These questions remain the subject of further research.

Concerning the generalized Mycielski construction we also mention that Tardif [31] proved
a generalization of the Larsen-Propp-Ullman theorem of [16] and showed that the frac-
tional chromatic number of Mr(G) is also determined by the value of the fractional chro-
matic number of G. Whether an analogous generalization of Theorem 2 is possible also
remains an open problem.

4.3 Asymptotic spectrum of graphs

The categorical (also called direct or tensor) product F × G of two graphs F and G is
defined as follows.

V (F ×G) = V (F )× V (G)

and
E(F ×G) = {{(f, g), (f ′, g′) : {f, f ′} ∈ E(F ) and {g, g′} ∈ E(G)}.

Let F → G denote that there exists a homomorphism of graph F to graph G, which
means an edge-preserving map from V (F ) to V (G). It is easy to see that if p(G) is a
graph parameter (a function from graphs to the real numbers) which is homomorphism
monotone increasing, that is, for which F → G implies p(F ) ≤ p(G), then

p(F ×G) ≤ min{p(F ), p(G)}.

We say that the parameter p satisfies the Hedetniemi-type equality, if the previous in-
equality holds with equality for every pair of graphs F,G. The name refers to Hedetniemi’s
conjecture which stated that the chromatic number is such a parameter. Although this
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was refuted after more than half a century (see [27] for the first and [32] for the strongest
counterexample to date), some interesting graph parameters do satisfy this equality non-
trivially. These include the fractional chromatic number and the complementary Lovász
theta number by the results in [35] and [8], respectively. Let CHedet denote the family of
all graph parameters that satisfy the Hedetniemi-type equality.

Note that the (generalized) Mycielski construction is closely related to the categorical
product in the sense that Mr(G) can be defined (as it is done in fact in [31], for example)
by taking the categorical product of G with an r-length path on vertices 0, 1, . . . , r that
has a loop at vertex 0 and then identify all vertices of the form (v, r) (where v ∈ V (G)).
Let CMyc denote the family of graph parameters p for which there exists some function
g : R → R satisfying p(M(G)) = g(p(G)). We can also define similarly CgenMyc as the
family of graph parameters for which there exists a function gr for every r such that
p(Mr(G)) = gr(p(G)). Obviously CgenMyc ⊆ CMyc directly follows from the definitions.
The already quoted result of Larsen-Propp-Ullman [16] gives that the fractional chromatic
number belongs to CMyc while our Theorem 2 gives that ϑ(G) also belongs to it. Tardif’s
result in [31] also shows that χf (G) is also a member of CgenMyc, while we do not know
whether the analogous statement is true for ϑ(G).

Using a theory of Strassen developed to investigate the complexity of matrix multiplica-
tion Zuiddam [36] defines (in a complementary language) what he calls the asymptotic
spectrum of graphs that we will denote by AS. A graph parameter p belongs to this
family of functions if it satisfies the following four requirements.

1. Homomorphism monotonicity: G → H ⇒ p(G) ≤ p(H);

2. multiplicativity for the OR-product: ∀G,H : p(G ·H) = p(G)p(H);

3. additivity for complete join: ∀G,H : p(G ⊕H) = p(G) + p(H), where V (G ⊕H)
is the disjoint union of V (G) and V (H) and E(G⊕H) = E(G) ∪ E(H) ∪ {{g, h} :
g ∈ V (G), h ∈ V (H)};

4. normality: p(K1) = 1.

It is straightforward to prove from the above properties that if p ∈ AS then COR(G) ≤
p(G) holds for all graphs G. Using Strassen’s theory (for more details on which cf. [33])
Zuiddam [36] proved the surprising fact that

COR(G) = min
p∈AS

p(G)

holds for all graphs G. This would be trivial if COR(G) itself would belong to AS but by
well-known results of Haemers [11] and Alon [2] COR(G) is neither multiplicative under
the OR-product nor additive under the complete join. On the other hand, both χf (G)
and ϑ(G) do belong to AS.
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Thus CHedet, CMyc andAS are three classes of graph parameters whose intersection contains
both the fractional chromatic number and the complementary Lovász theta number. Our
main goal in describing these classes together is to ask whether there could be any stronger
relationship among them. (Zuiddam [36] lists all known members of AS that are of not
too many types.) Note that no two of these classes are equal. It is observed in [29] that
Zuiddam’s result implies that if we had AS ⊆ CHedet then it would imply COR(G) ∈ CHedet,
too, therefore we must have

AS ≠ CHedet.

A more direct example of this non-equality is provided though by the clique number that
belongs to both CHedet and CMyc but not to AS. Since the chromatic number is neither
in AS nor in CHedet (an easy fact for AS, since already χ(C2

5) < 9 = [χ(C5)]
2, while a

highly nontrivial result refuting a half-century old conjecture in case of CHedet), but it
does belong to CMyc, we know that CMyc is also not contained in CHedet. (The situation is
different with CgenMyc, however, which does not contain the chromatic number either. At
the same time it does trivially contain the clique number.) It might be a farfetched idea
but since the parameters in AS are somehow “the nice ones”, it would sound us to be
reasonable to believe that perhaps AS ⊆ CMyc, for example. This, however, remains the
subject of further research.

5 Open problems

Here we collect the open questions that (at least implicitly) came up in the above discus-
sions and we find the most interesting.

1. Is it possible that COR(M(K3)) = 4 cos
(
2π
9

)
, that is that ϑ gives a tight upper

bound also in this case as for M(K2)?

2. Is the value of ϑ(Mr(G)) determined by ϑ(G) also for r > 2?

3. Do we have CSp(Mr(T2)) > 2 also for r ≥ 4?

4. Does COR(Mr(G)) > COR(G) hold for every G and r? In particular, does it hold
for r = 2 and every graph G?

5. Is
AS ⊆ CMyc

true? Or any other nontrivial relation among the classes of graph parameters men-
tioned in Subsection 4.3?

Finally we also mention the following problem that is known to be equivalent to a
famous open problem of Erdős about Ramsey numbers. To formulate the problem
we use the notation M t(G) to denote the t times iterated Mycielskian of G.
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6. Is the limit limt→∞COR(M
t(K2)) finite?

The existence of the limit follows immediately from the fact that M t−1(G) is a
subgraph of M t(G), therefore COR(M

t−1(G)) ≤ COR(M
t(G)) for any graph G. For

the equivalence with Erdős’s problem cf. [28] and the references therein.
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A1. Appendix 1

In this Appendix we give the details of the calculation leading to the cubic equation 3
given in Section 3

We want to calculate the solutions of the system of nonlinear equations below.

α2 + x2 = 1

β2 + y2 = 1

1

t− 1
α2 − x2 =

1

t̂− 1
1

t− 1
αβ + xy =

1

t̂− 1

y =
1

t̂− 1
.

(7)

In order to simplify the calculation, we use the v := t− 1 and w := 1
t̂−1

substitutions. So
we have 

α2 + x2 = 1

β2 + w2 = 1

1

v
α2 − x2 = w

1

v
αβ + xw = w.

(8)

From the first and the second equations we have α =
√
1− x2 and β =

√
1− w2. Hence

the third equation becomes

1

v
(1− x2)− x2 = w ⇒ x =

√
1− vw

v + 1
.

Now we need to substitute the known parameters to the fourth equation instead of x in
order to simplify the calculation.

1

v

√
1− x2

√
1− w2 + wx = w / · v,−wx

√
1− x2

√
1− w2 = vw (1− x) /()2(

1− x2
)
(1− w2) = v2w2 (1− x)2(

1− x2
)
(1− w2) = v2w2

(
1− 2x+ x2

)
/− v2w2,−v2w2x2(

1− x2
)
(1− w2)− v2w2 − v2w2x2 = −2v2w2x /()2(

1− x2
)2

(1− w2)2 + v4w4 + v4w4
(
x2
)2 − 2v2w2

(
1− x2

)
(1− w2)

−2
(
1− x2

)
(1− w2)v2w2x2 + 2v4w4x2 = 4v4w4x2
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After the products and squares are calculated, x is substituted with
√

1−vw
v+1

.

(
1− vw

v + 1

)2

v4w4 − 2

(
1− vw

v + 1

)2

v2w4 + 2

(
1− vw

v + 1

)2

v2w2 +

(
1− vw

v + 1

)2

w4

−2

(
1− vw

v + 1

)2

w2 +

(
1− vw

v + 1

)2

− 2
1− vw

v + 1
v4w4 − 2

1− vw

v + 1
w4 + 4

1− vw

v + 1
w2

−2
1− vw

v + 1
+ v4w4 + 2v2w4 − 2v2w2 + w4 − 2w2 + 1 = 0; / · (v + 1)2

(1− vw)2v4w4 − 2(1− vw)2v2w4 + 2(1− vw)2v2w2 + (1− vw)2w4 − 2(1− vw)2w2

+(1− vw)2 − 2(1 + v)(1− vw)v4w4 − 2(1 + v)(1− vw)w4 + 4(1 + v)(1− vw)w2

−2(1 + v)(1− vw) + (1 + v)2v4w4 + 2(1 + v)2v2w4 − 2(1 + v)2v2w2 + (1 + v)2w4

−2(1 + v)2w2 + (1 + v)2 = 0;

v6w6 + 2v6w5 + v6w4 − 2v4w6 + 4v4w4 − 2v4w2 + 4v3w5 + 4v3w4 − 4v3w3

−4v3w2 + v2w6 + 2v2w5 − v2w4 − 4v2w3 − v2w2 + 2v2w + v2 = 0; / : v2

v4w6 + 2v4w5 + v4w4 − 2v2w6 + 4v2w4 − 2v2w2 + 4vw5 + 4vw4 − 4vw3 − 4vw2

+w6 + 2w5 − w4 − 4w3 − w2 + 2w + 1 = 0;

Fortunately, the last polynomial can be factorized as follows

(w + 1)2(vw + w − 1)(v3w3 − v2w3 + v2w2 − vw3 + 2vw2 − vw + w3 + w2 − w − 1) = 0.

Hence we have three factor polynomials, thus the roots of the original polynomial are all
the roots of the following polynomials, p1(w) := w+1, p2(w, v) = vw+w− 1, p3(v, w) :=
v3w3− v2w3+ v2w2− vw3+2vw2− vw+w3+w2−w− 1, From the definition of the first
polynomial w = −1, t̂ = 0 so it is not the solution which is expected. And p2(v, w) = 0
shows that w = 1

v+1
, therefore t̂ = t+ 1. We will see that t+ 1 is never smaller than the

maximal root of the third polynomial. (It is in fact not hard to see that the root t̂ = t+1
belongs to the “degenerate” strict vector coloring of M(G) in which we have u∗

i = v∗i for
all i. It can also be interpreted as an, in that case optimal, strict vector coloring of the
“generalized” Mycielskian M1(G) of G, that is, when only one vertex zM1(G) is added to
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G that is made adjacent to all original vertices.) Thirdly we have the equation

v3w3 − v2w3 + v2w2 − vw3 + 2vw2 − vw + w3 + w2 − w − 1 = 0;

(t− 1)3

(t̂− 1)3
− (t− 1)2

(t̂− 1)3
+

(t− 1)2

(t̂− 1)2
− t− 1

(t̂− 1)3
+ 2

t− 1

(t̂− 1)2
− t− 1

t̂− 1
+

1

(t̂− 1)3

+
1

(t̂− 1)2
− 1

t̂− 1
− 1 = 0; / · (t̂− 1)3

(t− 1)3 − (t− 1)2 + (t− 1)2(t̂− 1)− (t− 1) + 2(t− 1)(t̂− 1)− (t− 1)(t̂− 1)2

+1 + (t̂− 1)− (t̂− 1)2 − (t̂− 1)3 = 0;

t3 + t2t̂− 5t2 − tt̂2 + 2tt̂+ 3t− t̂3 + 3t̂2 − 3t̂+ 1 = 0;

t̂3 + (t− 3)t̂2 + (3− 2t− t2)t̂+ (−t3 + 5t2 − 3t− 1) = 0.

The last equation is already the cubic equation we had as equation (3) in Sextion 3.

It remains to check that 4
3
t cos

(
1
3
arccos

(
1− 27

4t
+ 27

4t2

))
− 1

3
t + 1 ≤ t + 1 that we stated

on the way. After rearrangement we have cos
(
1
3
arccos

(
1− 27

4t
+ 27

4t2

))
≤ 1 and it is a

well-known property.

A2. Appendix 2

In this Appendix we prove that x1, x2 ≤ 1, where x1 and x2 are the values obtained from
Equation (4) when substituting k = 1, 2, respectively.

So we have to see that we indeed have

4

3
t cos

(
1

3
arccos

(
1− 27

4t
+

27

4t2

)
− 2πk

3

)
− 1

3
t+ 1 ≤ 1 for k = 1, 2.

Subtracting 1 from both sides and then dividing by 4
3
t we arrive to the equivalent

inequality

cos

(
1

3
arccos

(
1− 27

4t
+

27

4t2

)
− 2πk

3

)
− 1

4
≤ 0.

First consider the k = 1 case. Writing simply X in place of 1− 27
4t
+ 27

4t2
some equivalent

manipulations give us

sin

(
π

2
− 1

3
arccos(X) +

2π

3

)
− 1

4
≤ 0,

which is further equivalent to
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sin

(
π

2
− 1

3

(π
2
− acsin(X)

)
+

2π

3

)
− 1

4
≤ 0

that is the same as

sin

(
1

3
arcsin(X) + π

)
− 1

4
≤ 0

that is

− sin

(
1

3
arcsin(X)

)
− 1

4
≤ 0,

so (putting back X) we need to verify that

sin

(
1

3
arcsin

(
1− 27

4t
+

27

4t2

))
≥ −1

4
.

The minimum value of 1− 27
4t
+ 27

4t2
is −11

16
, so the inequality holds for all 1 ≤ t.

In case of k = 2 we get to the following calculation by equivalent manipulations.

4

3
t cos

(
1

3
arccos

(
1− 27

4t
+

27

4t2

)
− 4π

3

)
− 1

3
t+ 1 ≤ −1

3
t+ 1

cos

(
1

3
arccos

(
1− 27

4t
+

27

4t2

)
− 4π

3

)
≤ 0

sin

(
π

2
− 1

3
arccos

(
1− 27

4t
+

27

4t2

)
+

4π

3

)
≤ 0

sin

(
11π

6
− 1

3
arccos

(
1− 27

4t
+

27

4t2

))
≤ 0

sin

(
−π

6
− 1

3
arccos

(
1− 27

4t
+

27

4t2

))
≤ 0

For the above it is enough to have

0 ≤ π

6
+

1

3
arccos

(
1− 27

4t
+

27

4t2

)
and since the second term here is at least −π

2
, this inequality holds for any t > 0.

A3. Appendix 3

In this Appendix we prove Lemma 11 that stated the following inequalities.
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1. 0 < η;

2. (m(t)−1)2

t−1
≤ γ2;

3. 0 < δ.

Proof. We have
(

m(t)−1
t−1

)2
≤ (m(t)−1)2

t−1
by t ≥ 2. Therefore (m(t)−1)2

t−1
≤ γ2 implies γ2 ≥(

m(t)−1
t−1

)2
which is equivalent to

0 < γ
t− 1

m(t)− 1
− 1

γ t−1
ˆt−1

= δ

by m(t) > t and γ > 0 and t ≥ 2.

So 0 < δ follows if we know (m(t)−1)2

t−1
≤ γ2 and even strict inequality follows from t > 2.

By the formula we obtained for η we need to show

1

δ(m(t)− 1)

(
γ2δ + γ3 1

m(t)− 1
− γ3

)
> 0

We show first that

γ2δ + γ3 1

m(t)− 1
− γ3 > 0,

then the whole inequality will follow if we also show δ > 0, since m(t) > 1 is true.
Substituting the formula δ = γ t−1

m(t)−1
− 1

γ t−1
m(t)−1

we have for δ, we obtain after rearrangement

and multiplication with m(t)− 1 > 0 that the claimed inequality is equivalent to

γ2(t−m(t) + 1) ≥ (m(t)− 1)2

t− 1
, (9)

Substituting our formula obtained for γ2 this turns out to be equivalent to

− (m(t)−1)2(t−m(t)+1)3

2(t−1)t(m(t)−2)(t−m(t))
≥ (m(t)−1)2

t−1
. After further rearrangement this is seen to be equivalent

to (
(1+t−m(t))3

t(m(t)−t)(m(t)−2)
− 2
)
(m(t)− 1)2

2(t− 1)
≥ 0,

and after multiplying by 2(t − 1) > 0 and dividing by (m(t) − 1)2 > 0 we are left with
the equivalent formula

(1 + t−m(t))3

t(m(t)− t)(m(t)− 2)
− 2 ≥ 0.

Some further equivalent manipulations follow to obtain an inequality we can directly see
to be true: We multiply both sides by t(m(t)−t)(m(t)−2) > 0 and simplify the inequality
to obtain

−m(t)3 + (t+ 3)m(t)2 + (−t2 − 2t− 3)m(t) + (t3 − t2 + 3t+ 1) ≥ 0.
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We know that t,m(t) satisfy the equation
m(t)3 + (t− 3)m(t)2 + (3− 2t− t2)m(t) + (−t3 +5t2 − 3t− 1) = 0, therefore we can write

−m(t)3 + (t+ 3)m(t)2 + (−t2 − 2t− 3)m(t) + (t3 − t2 + 3t+ 1) =

−[m(t)3 + (t− 3)m(t)2 + (3− 2t− t2)m(t) + (−t3 + 5t2 − 3t− 1)]− 2t2m(t) + 4t2+

+2tm(t)2 − 4tm(t) = −2t(m(t)− 2)(t−m(t)),

since t < m(t), the previous inequality follows as −2t(m(t)− 2)(t−m(t)) ≥ 0 is true.
Thus we, in particular, proved inequality (9) above and since t−m(t) + 1 ≤ 1, this also
proves

(m(t)− 1)2

t− 1
≤ γ2. (10)

What is left is to see that δ > 0 also holds. Using δ = γ t−1
m(t)−1

− 1
γ t−1

ˆt−1

and multiplying

by the denominator of the second term (that we know to be positive) here, the required
inequality turns out to be equivalent to

γ2 ≥
(
m(t)− 1

t− 1

)2

.

The truth of this follows from
(

m(t)−1
t−1

)2
≤ (m(t)−1)2

t−1
(implied by t ≥ 2) and inequality

(10) above. This completes the proof of Lemma 11 □

A4. Appendix 4

In this appendix, we will calculate the simpler form stated in Section 3 of the following
equation.

γδ + γ2 1

m(t)− 1
− γ2 − γ2 1

m(t)− 1
− 1

m(t)− 1
γδ − γ2 1

(m(t)− 1)2
+ γ2 1

m(t)− 1
=

− 1

δ(m(t)− 1)

(
γ2δ + γ3 1

m(t)− 1
− γ3

)
− 1

Similarly to the calculation in Appendix 1 we use the v := t−1, w := 1
m(t)−1

substitutions.
According to these notations we have the following expressions for our parameters:

δ =γvw − 1

γvw
,

η =
w

δ
(γ2δ + γ2w − γ3),
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hence we need to solve the following equation:

γδ + γ2w − γ2 − γ2w − γδw − γ2w2 + γ2w = −w

δ
(γ2δ + γ3w − γ3)− 1; / · δ

γδ2 − γ2δ − γwδ2 − γ2w2δ + γ2wδ = −γ2wδ − γ3w2 + γ3w − δ;

γδ2 − γ2δ − γwδ2 − γ2w2δ + γ2wδ + γ2wδ + γ3w2 − γ3w + δ = 0;

γ

(
γvw − 1

γvw

)2

− γ2

(
γvw − 1

γvw

)
− γw

(
γvw − 1

γvw

)2

− γ2w2

(
γvw − 1

γvw

)
+γ2w

(
γvw − 1

γvw

)
+ γ2w

(
γvw − 1

γvw

)
+ γ3w2 − γ3w +

(
γvw − 1

γvw

)
= 0.

Multiplying both sides by γ2v2w2 we obtain

γ(γ2v2w2 − 1)2 − γ2(γ3v3w3 − γvw)− γw(γ2v2w2 − 1)2 − γ2w2(γ3v3w3 − γvw)

+γ2w(γ3v3w3 − γvw) + γ2w(γ3v3w3 − γvw) + γ5v2w4 − γ5v2w3 + (γ3v3w3 − γvw) = 0.

−γ5v4w5 + γ5v4w4 − γ5v3w5 + 2γ5v3w4 − γ5v3w3 + γ5v2w4 − γ5v2w3 + γ3v3w3

+2γ3v2w3 − 2γ3v2w2 + γ3vw3 − 2γ3vw2 + γ3vw − γvw − γw + γ = 0; / : γ

(−v4w5 + v4w4 − v3w5 + 2v3w4 − v3w3 + v2w4 − v2w3)γ4

+(v3w3 + 2v2w3 − 2v2w2 + vw3 − 2vw2 + vw)γ2 − vw − w + 1 = 0.

So we have the (in γ2) quadratic equation aγ4+bγ2+c = 0 from where the proof continued
in Section 3 of the paper.
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