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We show that the variance is its own concave roof. For rank-2 density matrices and operators
with zero diagonal elements in the eigenbasis of the density matrix, we prove analytically that
the quantum Fisher information is four times the convex roof of the variance. Strong numerical
evidence suggests that this statement is true even for operators with nonzero diagonal elements
or density matrices with a rank larger than 2. We also find that within the different types of

generalized quantum Fisher information considered in [D. Petz, J. Phys.

A: Math. Gen. 35,

929 (2002); P. Gibilisco, F. Hiai, and D. Petz, IEEE Trans. Inf. Theory 55, 439 (2009)], after
appropriate normalization, the quantum Fisher information is the largest. Hence, we conjecture
that the quantum Fisher information is four times the convex roof of the variance even for the

general case.

PACS numbers: 03.67.-a, 42.50.St

I. INTRODUCTION

Metrology plays an important role in many areas of
physics and engineering. Quantum metrology [Il 2] is a
novel development, which takes into account the quan-
tum nature of matter when determining the achievable
maximal accuracy in parameter estimation. For instance,
quantum metrology shows that it is possible to reach a
much higher accuracy in typical metrological tasks in
a linear interferometer with highly entangled quantum
systems than with non-entangled ones, in which no real
quantum interaction took place between the particles [3-
9]. In practical situations, the influence of noise can re-
duce considerably the gain in accuracy when applying
entangled quantum states for metrology [10].

Quantum variance and quantum Fisher information
are two fundamental notions of quantum metrology.
When measuring a quantum mechanical observable A,
the uncertainty of the measurement outcome is described
by the variance defined as

(AA)?, = (4%), — (4)3, (1)
where A is a Hermitian operator and g is a density ma-
trix. Connected to this uncertainty, when we would like
to estimate a parameter of a quantum evolution based
on measuring quantum observables, an uncertainty arises
also in this parameter estimation. The most fundamen-
tal parameter estimation task is estimating the small pa-
rameter 6 of the unitary dynamics U = exp(—iAf) via
making measurements on the output state (see Fig. [).
The accuracy of estimating 6 is bounded from below by
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FIG. 1: (Color online) Basic parameter estimation task in
quantum metrology. The small parameter § must be esti-
mated by making measurements on the output state goutput-

the famous Cramér-Rao bound as

N> L )

~ \JFEClo, 4]

where the quantum Fisher information is defined as [6-
9, [11H14]

PR A =2 QoA e
o )\i + )\j

Here A; are the eigenvalues of the density matrix and
A;; are the matrix elements of the operator A in the
eigenbasis of the density matrix.

In Refs. [I5HIT], it has been shown that it is possible
to define generalized variances and various types of gen-
eralized quantum Fisher information. In fact, the two
notions are closely connected to each other as for every
generalized variance there is a corresponding generalized
quantum Fisher information. Thus, the question arises:
Are the usual variance, Eq. , and the usual quantum
Fisher information, Eq. , special among the general-
ized quantities? In this paper we will answer these ques-
tions affirmatively. Our findings show that fundamental
quantities used in metrology have extremal properties.
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In particular, in the first part of the paper we will de-
fine generalized variances. The definition presented is
broader than that of Refs. [I5HI7]. Then, we will show
that the usual variance is the smallest generalized vari-
ance and, connected to this fact, it fulfills the following
important relation.

Theorem 1. Let us denote the decomposition of a
density matriz into the mixture of pure states as

0= | U)(Tyl. (4)
k

Then, the variance for a mized state can be obtained
through a concave roof construction as

(AA)?, = sup Y pu(AA)?, . (5)
{pe, 1)}

The proof of Theorem 1 will be given later.

In the second part of the paper we define the gener-
alized quantum Fisher information. The definition pre-
sented is also broader than that of Refs. [I5HIT7]. We will
show that F5° defined in Eq. is the largest among
the types of generalized quantum Fisher information for
the low rank case, and connected to this fact, it fulfills
the following relation.

Theorem 2. For rank-2 density matrices and for an
A with zero diagonal elements in the eigenbasis of the
density matriz, the quantum Fisher information can be
given as the convex roof of the variance as

FBClp, Al =4 inf AAz?, . 6
QCloAl =4 il 2 A s ()

where {pg, |Pr)} refers to a decomposition of o of the type
Eq. . The proof of Theorem 2 will also be given later.

We will also discuss that numerical calculations suggest
that the left-hand side and the right-hand side of Eq. @
are very close to each other, even when A has non-zero
diagonal elements or the density matrix has a rank larger
than 2.

Concerning the quantum Fisher information, we can
also prove the following theorem.

Theorem 3. FSC[Q, A] defined in Eq. is mazximal
within the various types of quantum Fisher information
defined by Refs. [15HT7], if they are normalized such that
for pure states they equal 4(AA)2.

Concerning Theorem 3, it is important to note that
all types of quantum Fisher information defined by
Refs. [IGHIT] are convex. Based on Theorem 3 and the
strong numerical evidence mentioned above, we formu-
late the following conjecture.

Conjecture 1. The quantum Fisher information
FSC[Q7 A] defined in Eq. is 4 times the convex roof
of the variance for density matrices of any rank and any
observable A.

The statements of Theorem 1 and Conjecture 1 can be
concisely reformulated as follows. For any decomposition
{pk,|¥k)} of the density matrix ¢ we have

1

TFoCle A< Y p(AA),, < (84?7, (7)
k

where the upper and the lower bounds are both tight.

The paper is organized as follows. In Sec. I, we define
generalized variances and determine the minimal gener-
alized variance. In Sec. III, we consider the generalized
quantum Fisher information for the rank-2 case, and look
for the maximal generalized quantum Fisher information.
In Sec. IV, we present numerical calculations for density
matrices with a higher rank. In Sec. V, we show that
FQBC is the largest among the types of quantum Fisher
information defined by Refs. [I5HI7]. In Appendix A, we
give some details of the semidefinite programs needed for
Sec. IV.

II. GENERALIZED VARIANCES AND THE
PROOF OF THEOREM 1

In this section, we will define the generalized variance
and the minimal generalized variance. We will also show
that the minimal generalized variance is the usual vari-
ance given in Eq. (1)).

Definition 1. The generalized variance var,(A) is de-
fined by the following two requirements.

1. For pure states, the generalized variance equals the
usual variance

varg (A) = (AA)?,,. (8)

2. For mixed states, var,(A) is concave in the state.

There are infinitely many generalized variances that
fulfill the requirements of Definition 1. Next, we will
show that it is possible to identify the smallest one.

Definition 2. The minimal generalized variance
Varg‘i“(A) is defined by the following two requirements.

1. For pure states, it equals the usual variance

vary"(4) = (AA)?y, 9)

2. For mixed states, it is defined through a concave
roof construction [I§]

vary™(A) = sup

D ope(AA)zy,, (10)
{pr, ¥k} 7

where {pg,|¥y)} refers to a decomposition of ¢ of
the type Eq. .

Note the counterintuitive fact that while a supremum
is used to define Eq. , it is the minimal generalized
variance and not the maximal one. Let us show that it is
indeed the minimal generalized variance. It is clear that
for any generalized variance, we have

vary(A) > Varrgnin(A). (11)

If this were not true then it would be possible that
for some decomposition of the type Eq. we have



vary(A) < >, prvarg, (A), which would contradict the
concavity of the variance. On the other hand, Eq. is
concave in the state, since it is defined by a concave roof
construction, thus it fulfills Definition 1. Hence, Eq.
is the minimal generalized variance.

Next we will prove two lemmas that we need later in
the proof of the central theorem of the section.

Lemma 1. For rank-2 states, the minimal general-
ized variance is the usual variance given in Fq. . In
particular, this statement is true for all qubit states.

Proof. For all decompositions of the form Eq. , the
minimal variance is bounded from above and below as

(AA)?, = varf™(A) > > pe(AA),, . (12)
k

4

The first inequality in Eq. is due to Eq. , the
second one is due to the concavity of the variance.

In order to proceed to prove Lemma 1, we need to know
an important property of the usual variance (AA)2. It
can be written in the following way

(AA)?2, = o (A4, + ((A)w, —(A))*]. (13)
k

Here the summation is over the pure subensembles.
(AA)?, is the variance in the kth subensemble, while
the ((A)y, — (A),)? term is the square of the difference
between the expectation value for the subensemble and
the expectation value for the entire ensemble. One can
call the two terms the ”quantum” and the ”classical” part
of the variance, respectively.

Based on Eq. we can state the following. If for
a quantum state ¢ there is a decomposition {p, |[¥;)}
such that the subensemble expectation values equal the
expectation value for the entire ensemble (i.e., (4)g, =
(A); for all k) then for such a decomposition we have

(AA)?, =) pr(AA)y, . (14)
k

Based on Eq. 7 we can now state that for ¢ the min-
imum generalized variance of A and the usual variance
are equal

(AA)?, = var?™™(A). (15)

We will now show that such a decomposition, in which
the subensemble expectation values are all equal, always
exists for rank-2 density matrices. Hence, we will show
that for all such states the usual quantum variance is the
minimal generalized variance.

Let us take an eigendecomposition of the state o

0=p|¥1) (V1] + (1 —p)|¥2) (V2| (16)

Thus, in the |¥;) and |¥y) basis we can write the density
matrix g as

=150, 17
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FIG. 2: (Color online) A single-qubit mixed state g is de-
composed as Eq. into the mixture of pure states |¥y, )
and |Uy, ) defined in the text. Quantum states are repre-
sented by points in the ((oz), (0y), (02))—space. The sphere
with radius 1 is the Bloch sphere. Density matrices o’ for
which the expectation value of A is the same as for o fulfill
the linear condition Tr[A(o—¢’)] = 0 and are on a plane. The
elliptic curve is the cross section between this plane and the
surface of the Bloch sphere. Points corresponding to g, |¥,)
and |¥4,4+~) are all on this plane, thus the operator A has
the same expectation value in these three states.

Let us define now the family of states

[Wy) = v/DlW1) + /1 p|¥y)e. (18)

For the states , the expectation value of the operator
A can be written as

(gl AN =(A), + 2/p(1 — p)Re ((W1]A[W2)ei?)
(19)
Clearly, there is an angle ¢; such that
Re ((U1]A[T2)e) = 0. (20)

For this angle, the expectation value of A in the state
|Wy4, ) is the same as its expectation value in g, since the
second term in Eq. is zero. In the basis of the states
|¥,) and |¥s), we can write the projection operators onto
|\Ij¢1> as

‘\1,451 > (‘II¢1 ‘

P— p .
p(1 —p)etin

The same is true for ¢; + 7. In the basis of the states
|¥;) and |¥y), we can write the projection operator onto
|\I]¢1+7T> as

|\I’¢1+7r><\11¢1+7r|

p(1 —ple™
- ] . (21)

—/p(1 = p)etin



Based on Eqgs. and , the state o can be decom-
posed as

0= 5 (Vo) (Wo,| + W) (Wor al), (23)

and the two component states have (U, [A|T4,) = (4),
and (g, 4 |A|Vg, 1) = (A),, as expected. O

In Fig. we show an example to demonstrate how
Lemma 1 works for single-qubit states. The three coor-
dinate axes are the expectation values of the three Pauli
spin matrices. Points on the surface of the Bloch ball cor-
respond to pure states, points within the ball correspond
to rank-2 mixed states. The operator A has the same
expectation value in the states o, |VUy,) and |Uy, 4x).
Note that o, has also the same expectation value in these
states.

Next we will consider the decomposition of states with
a rank larger than 2.

Lemma 2. Let us consider an eigendecomposition of
a density matrizc

70

00 = Y k[ Wx) (T (24)

k=1

with all A\, > 0. Let us denote the rank of the density
matriz as r(gg) = 9. We consider density matrices for
which rg > 3. Let us denote by Ag the expectation value
of an operator A in the state og

TI‘(Ago) = Ao_ (25)

We claim that for any A, o9 can always be decomposed
as

20 = po- + (1 =p)es, (26)
such that r(o_) < ro, r(04) < ro, and
Tr(Ap+) = Tr(Ap_) = Ao. (27)

Proof. Let us consider the eigenvalues Ay in the eigen-
decomposition of g, Eq. . First, note that from the
conditions Tr(g) = 1 and Eq. , it follows for the Ag’s
that

T0
o =1, (28a)
k=1
0
Z)\kak = Ao, (28b)
k=1

where we introduced for the subensemble expectation
values the notation

ap = (Vi A[Vg). (29)

Let us now define a family of states as

70

0(e, A%) = 3O + AN [T (T,],  (30)

k=1

where c is a real parameter and A\ fulfill

70
> AN =0, (31a)
k=1
> A = 0. (31b)
k=1

Equation (31al) ensures that the state o(c, AX) has a unit
trace, while due to Eq. (31b)) for all ¢

Tr[Ao(e, AX)] = Ao, (32)
We can rewrite Eqgs. (31a)) and (31b)) as
ap a2 ... Qro—1 Qp, Yy 0
11 .. 1 1}“_[0]' (33)

For ro > 3, there is always a AX # 0 fulfilling Eq. .
It is clear that, if o(ec, AX) has non-negative eigenvalues,
then Q(C,AX) is a physical state. In the following, for
compactness, we will omit AX from the argument of p.

Let us now examine the properties of the g(c) family.
It is clear that

2(0) = oo (34)

Moreover, it is also clear that around ¢ = 0 there is some
range of values for ¢, such that o(c) is physical. So first,
let us start to increase ¢ gradually from zero until one of
the eigenvalues becomes zero. Let us denote this value
by cy. Thus, o(c) is physical for

0<c<ecq. (35)

We have r(g(c4)) < ro. Moreover, g(c) is non-physical for
¢ > cy. A similar thing happens, if we start from ¢ = 0
by decreasing ¢ gradually until one of the eigenvalues
becomes zero. Let us denote this value by c¢_. Thus, o(c)
is physical for

c- <¢<O. (36)

Again, we have r(o(c-)) < r9. Moreover, o(c) is non-
physical for ¢ < c_. In summary, for any choice of ¢ and

A\ fulfilling Egs. (31b) and (31al), there is a family of
states g(c) defined in Eq. such that o(c) is physical
for

c_ <c<ey, (37)

and 7(o(c4)) < ro, and r(g(c_)) < 9. One can explicitly
reconstruct these bounds as

. Ak
=m0 (38)
and
¢ = —min Mk (39)
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FIG. 3: (Color online) The rank-3 mixed state go is decom-
posed as Eq. into the mixture of two rank-2 states, o_
and g4. The coordinate axes are the eigenvalues of the den-
sity matrix, while we assume that all density matrices have
the same eigenstates as o. Points corresponding to states o
for which Tr(¢’A) = Tr(goA) are on the dashed line. For o
we have A2 = 0, while for o we have A\; = 0.

where

ifx >0,

40
if z <0. (40)

O(z) = {g

Let us now construct the decomposition Eq. (26). Di-
rect calculations can show that the following decomposi-
tion is of the desired form

o- = o(c-), (41)

and

0+ = o(c4), (42)

while the mixing probability is

C+

p= P (43)
|
In Fig. B we presented an example showing how
Lemma 2 works for a rank-3 state. A point
(A1, A2, A3) in the coordinate system corresponds to o =
Zi:l Ak| Pk ) (T |. All points have to fulfill Eq. and
A > 0 for k£ =1,2,3. Thus, all points corresponding to
physical states are in the triangle. Interior points of the
triangle correspond to rank-3 states, while points on the

boundary correspond to rank-2 and rank-1 states.
After proving Lemma 1 and Lemma 2, we will prove

the main theorem of the section.

Proof of Theorem 1. Theorem 1 is equivalent to the
statement that for systems of any dimension, the minimal

generalized variance is the usual variance
Vargli“(A) = (AA)QQ. (44)

For rank-2 states, this is true because of Lemma 1. Ac-
cording to Lemma 2, any state with a rank larger than 2
can be decomposed into the mixture of lower rank states
that have the same expectation value for A as the original
state has. The lower rank states can then be decomposed
into the mixture of states with an even lower rank, until
we reach rank-2 states. Thus, any state g can be de-
composed into the mixture of the form Eq. such that
(Uk|A|T) = Tr(Ap). Hence, similarly ro the proof of
Lemma 1, the statement of Theorem 1 follows [20]. O

We will present two examples in order to clarify certain
issues concerning generalized variances.

Example 1. Let us consider the state

1
o= U+ DI+ - 1(-1),  (49)
where | £ 1) denote the eigenstates of the Pauli spin ma-

trix o,. For this state, we have (Ac,)? = +1. Let us look
at the decomposition

Lopr=3,01) = Z(+1) +]-1)),
2 pp = 1,10) = (| + 1)~ |- 1))
For this decomposition (Ac.)?, ~— = +1 and

(Uklo|Pk) = Tr(o,0) = 0. Thus, we presented a
decomposition such that the expectation value of A is
the same for both subensembles |¥y).

Example 2. Let us consider the generalized variance

VarguadratiC(A) _ TI'(A2Q> . TI‘(AQ>2 +1-— Tr(QQ), (46)

For pure states, it equals the usual variance. For mixed
states, it is larger than that and it is concave in the state.
It is in fact a sum of the usual variance and the linear
entropy, which is zero for pure states and is concave in
the state.

III. GENERALIZED QUANTUM FISHER
INFORMATION AND THE PROOF OF
THEOREM 2

In this section, we will define the generalized quantum
Fisher information and the maximal generalized quan-
tum Fisher information. We will show that for rank-2
density matrices, the maximal quantum Fisher informa-
tion is the usual quantum Fisher information.

Definition 3. The generalized quantum Fisher infor-
mation Fglp, A] is defined by the following two require-
ments.

1. For pure states, we have
Fo[lw)(¥], A] = 4(AAy)*. (47)

The factor 4 appears to keep the consistency with
the existing literature [6].



2. For mixed states, Fg|g, 4] is convex in the state.

The usual quantum Fisher information, Eq. 7 is one
of the types of generalized quantum Fisher information.
Next, we will present another well-known generalized
quantum Fisher information.

Example 3. Let us consider the Wigner-Yanase skew
information defined as [21]

I[o, A] = Tr(A%p) — Tr(Ap? Ag?). (48)
For pure states it equals (AA)z and it is convex in the
state. Thus 4I[p, A] fulfills Definition 3.

There are infinitely many types of generalized quan-
tum Fisher information that fulfill the requirements of
Definition 3. Next, we will show that it is possible to
identify the largest one.

Definition 4. The maximal generalized quantum
Fisher information, F¢;**[o, A] is defined by the following
two requirements.

1. For pure states, it equals four times the usual vari-
ance

FG™[lw)(w], A] = 4(A4)%, (49)

2. For mixed states, it is defined through a convex roof
construction [I§]

Fo™[o, Al =4 inf

{Pr,| V)

Zpk A4)? (50)

It is clear that for any generalized quantum Fisher infor-
mation, we have

Fglo, A] < F5™ o, Al. (51)

This can be proven similarly as it has been shown that
the minimal generalized variance is smaller than or equal
to all other generalized variances.
Next we will present the main theorem of this section.
Proof of Theorem 2. Let us consider a density matrix
o of rank 2 given as

0 = ql¢1)(d1] + (1 = q)|p2)(92], (52)

and a self-adjoint observable A. We will show that for
any o and A exists a decomposition into a mixture of
projectors of the form Eq. such that

F5Clo, Al =4 pr(AA)?, . (53)
k

Knowing that
Z prd(AA)?,
k

if a decomposition of the type Eq. exists then

> F3o, A] > FEClo, Al,  (54)

F5%0, Al = F5™[o, Al. (55)

Note that the first inequality in Eq. is due to the
convexity of the quantum Fisher information, the second
one is due to Definition 4.

We consider the case where the diagonal elements of A
are zero, hence A can explicitly be obtained as

A = [Asa| (|p1) (2™ + |2) (p1]e*) (56)

and |Aj2| and « are real. In fact, the the phase « is irrele-
vant. Thus, in our computation only |Ajs| is essential, so
we can reduce the problem to the two-dimensional space
generated by |¢1) and |¢2), and instead of A, it is suffi-
cient to take into account |Ajs|. For the usual quantum
Fisher information, Eq. , we have

F5Clo, A] = 4(2g — 1) A, (57)
For the right-hand side of Eq. we have
43 pr(AA?, = = okl (Wi A
k k
(58)
Based on Egs. and , Eq. can be rewritten

as

4[Tr(pA?) —

4(2q-1)* Asaf® = 4[Tx(0A%) =) prl(Ti| A1) [P]. (59)

k

This is the equality to be solved. Using that

= [As2l* (|f1) (1] + |¢2) (d2]) , (60)

we obtain Tr(pA?) |A12|%.

Eq. , we get,

4q(1 — q)|Ara|* =

Substituting this into

> okl (Wil AJW) 2. (61)
k

Finally, we can present a desired decomposition of the
form Eq. for p fulfilling Eq. . Its is given by two
subensembles as

pr=30 10 = VAo +VI=dl),  (62)

and

V1—gqlgs).  (63)

O

Valor) —

1
P2 = 53 |\I/2

IV. NUMERICAL EVIDENCE FOR THE
VALIDITY OF THEOREM 2 FOR MATRICES
WITH A RANK LARGER THAN 2

After presenting a proof for Eq. @ for the rank-2 case,
in this section we examine numerical evidence for larger
systems. Thus, our approach is similar to the one fol-
lowed in Ref. [I9], where the concurrence formula has
been derived for rank-2 mixed states and for mixed states



with a higher rank it has been supported by numerical
evidence.

We show a method to compute the infimum over con-
vex decompositions in Eq. by mapping this problem
to an optimization over symmetric separable states [22)].
While the optimization for symmetric separable states
can be computed only for d = 2, we get a lower bound on
the infimum by optimizing for symmetric quantum states
with a positive partial transpose (PPT), since states with
a positive partial transpose are a superset of separable
states [23]. We will also consider a smaller superset, the
set of quantum states with a PPT symmetric extension
[24]. Note that the optimization for density matrices and
operators of dimension d is equivalent to optimization
over density matrices of rank-d allowing for density ma-
trices and operators of any size.

The optimization problem for F5**[g, A] defined in
Eq. can be rewritten as follows.

rgloal =4, — s Yplag, ).

{pr:|Tr)} %
(64)

where {pg, |¥%)} refers to a decomposition of g of the
type Eq. .

Next, we will rewrite the term quadratic in expecta-
tion values as a term linear in expectation values of an
operator acting on a bipartite system as

Fglax[g7 A]

4<(A2>Q sup Zpk<A®A>‘I/k®‘1’k)'

{pe, 1)}
(65)

Further transformations lead to a form in which instead
of a sum of expectation values we have an expectation
value of a mixture as

chlax [Q, A]

4<<A2h; sup ¢4@©A>zxpuwkxwu®2)-
{Pr,|¥x)}

(66)

Hence, we arrive at a form based on an optimization over
symmetric separable states

%WMM=4Oﬂﬁ— sup M®mh)
0ss €55,
’I‘I'I(st):Q
=2 inf ((A®1-1®A4)%),.,
0ss€Ss,
Tri(oss)=0

(67)

where S is the set of symmetric separable states. States
in Ss are mixtures of symmetric product states [22] 25]

> o W) (5|2, (68)
k

It is not possible to compute the right-hand side of
Eq. in general. However, it is possible to obtain a
series of lower bounds on it based on the theory of PPT
symmetric extensions [24]. Let us introduce the notation
for such bounds

Bsg, (4,0) =2 inf
0SE, €SSE,
Tri(ose, )=0

<(A ®1-1® A)2>QSEW7

(69)

where Sgg, are the symmetric bipartite states with a
PPT symmetric extension of size n. We note that Ssg,
is identical to the set of symmetric PPT states

Ssk, = SsppT, (70)

hence we will use the two notations interchangeably in
the rest of the paper. With the definition Eq. , for
n > 3 we can write

Fo™o, Al > ... > Bsg,,, (4, 0) > Bsg, (4, 0)
> ... > Bsg, (4, 0) > Bsppr(4,0). (71)

All these bounds can be obtained using semidefinite pro-
gramming [24].

The non-increasing series of bounds in Eq. exists
since, in general, states having a PPT symmetric exten-
sion for n qudits are a subset of states having a PPT
symmetric extension for m < n qudits. In entanglement
theory PPT states are typically separable and entangled
states with a PPT property are very special [23]. Thus,
the bound Bsppr based on an optimization over PPT
states is expected to be very close to the value obtained
from optimization over separable states for most A’s and
¢’s. The bound Bsg, computed based on an optimiza-
tion over Ssg, is expected to be even closer to the one
obtained from an optimization over separable states.

We carried out numerical tests using random A and p
matrices. We considered 10000 random trials for dimen-
sions d = 2, 3,4 for computing the bound Bgppr defined
in Eq. . The matrix A was generated as follows.
First a matrix M was obtained such that all the real and
imaginary parts of its elements were independent random
numbers with a normal distribution centered around 0
and with a variance ¢ = 1. Then, the Hermitian matrix
A was obtained from M as (M + MT). The density ma-
trix o was generated based on the method described in
Ref. [26]. For each randomly chosen A and ¢ we deter-
mined the relative difference between Bsppr(0, A) given
in Eq. |@) and Fgc[g, A]. We used the program pack-
ages SeDuMi and YALMIP for semidefinite program-
ming, while QUBITAMATLAB V4.0 was used for calcu-
lations connected to quantum physics [27H29]. MATLAB
uses double precision arithmetic.

To test our method, we considered first the d = 2 case
for A matrices with zero diagonal elements. According to
Theorem 2 and knowing that the set of PPT states and
the set of separable states are the same for two qubits,



Task Largest Rel. Diff. Average Rel. Diff. Standard Dev. of Rel. Diff.
2SPPT, zeros in the diagonal 1.4793 x 1076 3.6194 x 1071° 2.2321 x 1078
2SPPT 9.2505 x 107° 1.3313 x 107° 9.8533 x 1078
3SPPT 2.3552 x 1078 8.8486 x 1071 9.9692 x 10710
4SPPT 9.0345 x 107° 1.3448 x 107° 9.8216 x 10~1°
3SE; 7.7749 x 1078 4.2694 x 10710 3.5161 x 107°
4SE3 9.5506 x 107° 1.0429 x 107° 1.0404 x 107°

TABLE I: (Top line) Statistics of the relative difference between the quantum Fisher information and Bsppr (g, A) for 10000
random tests. For each test, a random A with zero diagonal elements and a random p is generated. The largest relative
difference, the average relative difference and the standard deviation of the relative difference (i.e., the square root of the
variance) is shown for two qudits for d = 2. SPPT indicates that the optimization is taken over PPT symmetric states.
(Second, third and fourth lines) The same for random A with nonzero diagonal elements d = 2, 3,4. (Bottom two lines) The
same for d = 3,4 for the relative difference between the quantum Fisher information and Bsg, (g, A). SE3 indicates that the
optimization is taken over symmetric states with a PPT symmetric extension for N = 3 qudits.

FQBC[Q, A] is equal to the bound Bsppr(0, A). The results
are in the first row of Table[[] We found that the largest
relative difference is below 2 x 107%, while the average
relative difference and the standard deviation of the rela-
tive difference are much smaller. The nonzero value must
be the result of the finite precision of the numerical cal-
culations.

After testing the method for a case that have been
proven analytically in Theorem 2, we also used it to ex-
plore the cases that have not been proven yet. We carried
out calculations for A matrices with nonzero diagonal el-
ements for d = 2, 3,4. The results of the numerical tests
can be seen in the second, third and fourth rows of Ta-
ble [l We also carried out similar numerical tests for di-
mensions d = 3,4 for computing the bound Bgg,based
on an optimization for symmetric states with an N = 3
PPT symmetric extension given in Eq. and compare
it to the quantum Fisher information. The results of the
numerical tests can be seen in the bottom part of Table[l]

We can see that for all these trials, the relative dif-
ference between the two bounds and the value of F§©
is smaller than 107°, while the average relative differ-
ence is smaller than 1078, and the standard deviation of
the relative difference is smaller than 10~7. Thus, the nu-
merical tests suggest that it should be examined carefully
through analytical calculations whether

Fi*[o, A] = Flo, A] (72)

is true in general. Based on this strong evidence, we
conjecture that this is the case. The semidefinite pro-
grams necessary to calculate Bsppr (g, A) and Bsg, (0, A)
are outlined in Appendix A.

V. MAXIMAL QUANTUM FISHER
INFORMATION WITHIN THE SET DEFINED
BY REFS. [15, [16]

In this section, first we will review how Refs. [15] [16]
define the variances and the types of generalized quan-

tum Fisher information. We will denote them by var
and F', in order to distinguish them from the general-
ized variances and various types of Fisher information
defined in this paper. Then, we will show that these def-
initions, apart from a constant factor, fulfill Definition
1 and Definition 3. This is a surprise since these quan-
tities in Refs. [I5, [16] were defined based on ideas very
different from the ones presented in this paper. We also
show that the set of variances and the types of quantum
Fisher information satisfying Definition 1 and Definition
3 are a broader set than the corresponding quantities pre-
sented in Refs. [I5, [16]. Finally, we will show that the
usual quantum Fisher information given in Eq. , after
appropriate normalization, is the largest even within the
various types of quantum Fisher information considered
in Refs. [15, [16].

A. Summary of the basic results of Refs. [15] [16]

The basic idea of Refs. [I5], [16] is that for each stan-
dard matrix monotone function f : RT — RT, a gener-
alized variance and a corresponding quantum Fisher in-
formation are defined. The notion standard means that
f(1) = 1 and f(t) = tf(t~1). First, let us consider the
generalized variances.

Definition 5.The variance according to Refs. [I5, [16]
is defined as

varf (A) = (A,J0(A)) — (TroA)?, (73)

where A is Hermitian, the scalar product is defined as
(A, B) = Tr(AB), and

JZ:(A) = f(LQRQ_l)RQ' (74)
where

]LQ(A) = 04, RQ(A) = Ap.



Computing J,(A) can be simplified knowing that for
f(z) =Y, ckx® we have [I5] [16]

I(A) = ereb gt P, (75)
k

Thus, Eq. (75) can be used to calculate J,(A) for any
polynomial of x.
Moreover, it is also useful to define the mean based on

f as
my(a,b) = af (Z) (76)

and use it instead of f. The f(1) = 1 normalization con-
dition corresponds to the condition my(a,a) = a for the
means. The f(t) = tf(t~!) requirement corresponds to
myg(a,b) = my(b,a). A list of quantum Fisher informa-
tion generated by various well-known means m¢(a, b) can
be found in Refs. [T5HIT].

After we discussed the generalized variances, we will
turn our attention to the quantum Fisher information.

Definition 6. The quantum Fisher information ac-
cording to Refs. [I5], [T6] is defined as

FI(0; A) = Tr(AJ ' (0) A). (77)

Again, the most important types of generalized quantum
Fisher information correspond to famous means appear-
ing often in mathematics.

For the arithmetic mean my(a,b) = 2+, the quantum
Fisher information is defined as

F’BC(Q; A) = /000 Trlexp(—to/2)Aexp(—to/2)A]dt.

(78)
Other means generate other types of quantum Fisher in-
formation. Details can be found in Refs. [I5HI7].

B. The usual quantum Fisher information is the
maximal one within the set of quantum Fisher
information defined in Refs. [15] [16]

After reviewing the results of Refs. [15] [16], we will
connect the results of the present paper to that of
Refs. [I5, I6]. In particular, we will show that the
usual quantum Fisher information, Eq. , is the largest
within the set of quantum Fisher informations defined by
Refs. [15] 6], if they are normalized such that for pure
states they equal four times the usual variance given in
Eq. .

In order to proceed, we will now prove the following
lemma concerning the behavior of the family of variances
defined in Refs. [I5], 16] for pure states.

Lemma 3 For pure states we have

varf (A) = 2my(1,0) x (AA)%. (79)

Thus, for pure states the variance of Refs. [15, [16] equals
the usual variance times a constant.

Proof. Tt can be shown that Eq. can be rewritten
as [16]

varh(A) = Y mp(N M)A — 1D MiAgl%, (80)
i

where ); are the eigenvalues of o, and A is given in the
basis of the eigenvectors of the density matrix. Here we
took advantage of the fact that my(a,a) = 1. One can
see that for pure states (A = 1, Ay, = 0 for & > 2) we
have

var) (A) =23 my(1,0)| Ay (81)

j>1

Hence, Eq. follows. Note that there is a factor of 2
in Eq. since m¢(A;, A;) in Eq. is nonzero for the
pure state considered for i = 1,5 > 1 and for j = 1,7 > 1.
|

Next, we will turn our attention to the quantum Fisher
information. We define the following notation

Fllo, Al = Ff(g;ilo, A)). (82)

With this definition, for the arithmetic mean my(a,b) =
‘%H’, F(g[g, A] equals the usual quantum Fisher informa-
tion given in Eq. denoted in the physics literature as
Fqlo, A] [6].

It is instructive to analyze the differences between the
quantum information F/(g; A) appearing in Refs. [15]
16] and, in general, in the mathematics literature and
Fé[g, A], which appears in the physics literature. The

difference between the two notions is that 1/F7(p; A)
bounds the squared uncertainty when the small parame-
ter ¢ of

Ot (t) = o+ At (83)

is estimated [I5]. Here A is a matrix, and hence in this
case the output density matrix is a linear function of .
In contrast, 1/ Fé[g, A] bounds the squared uncertainty
when estimating 6 in

Ooutput (t) = exp(—iAf)pexp(+iA0), (84)

as mentioned in the introduction. The definition of
FJ (g, A) is not clear for pure states, as for such states
o + At is aphysical for ¢ > 0 or ¢t < 0, while Eq. de-
scribes a physical dynamics that leads to a valid density
matrix for all ¢.

Next, we will prove a connection between the general-
ized quantum Fisher information and the usual variance
for pure states.

Lemma 4. For pure states, the generalized quantum
Fisher information FCJ;[Q, A] is proportional to the usual
variance given in FEq.

. 2(AA)?

Fé[g7 Al = m (85)



Proof. Equation leads to [16]

N 1
Ff(Q; A) = Z m‘AU‘Q’ (86>
1,]

where \; are the eigenvalues of g, and A is given in the
basis of the eigenvectors of the density matrix. Substi-

tuting Eq. into Eq. , we obtain

: (\i —A))°
5[0, Al = Z WVMF (87)
For my(a,b) = ;b we obtain the usual quantum Fisher

information given in Eq. . The lemma can be proven
substituting A\ = 1, A\, = 0 for k£ > 2 into Eq. . (]

Next, we will present the central theorems of this sec-
tion.

Theorem 4. After appropriate normalization, the
generalized variances defined in Refs. [13, [16] fulfill Def-
inition 1. However, the opposite is not true. Not all gen-
eralized variances that fulfill Definition 1 belong to the
generalized variances defined in Refs. [15, [16].

Proof. It has been proven that the generalized vari-
ances of Refs. [I5] [T6] are concave [30]. Based on this
fact and Lemma 3, we see that

(83)

is a generalized variance in the sense of Definition 1. At
this point the question arises: Are the the two definitions
equivalent? We find that this is not the case. Eq.
is a generalized variance according to Definition 1, but
cannot be written in the form Eq. (| rememberlng that
Jo(A) is deﬁned in Eq. (75)). This is essentlally due to the
fact that o? appears in the definition Eq. (46]). On the
other hand, Refs. [I5], [16] defines a family of variances
based on a single-variable function f, while Definition 1
does not provide an explicit formula for obtaining such
quantities. (|

Theorem 5. After appropriate normalization, the
types of quantum Fisher information defined in Refs. [15,
16]] fulfill Definition 3.

Proof. Tt has been proven that the types of generalized
quantum Fisher information of Refs. [I5 [I6] are convex
[30]. Based on Lemma 4, we can also see that

Fjlo, A] = 2my(1,0)Ff[o, A] (89)

is a generalized quantum Fisher information in the sense
of Definition 3. ([

Next, we discuss, which quantum Fisher information
is the largest from the family considered in Refs. [I5
16). It has been proven that Ff(p;A) is the smallest
for f(z) = 32, that is for the usual quantum Fisher

2 b
information [15], [16]. Moreover, it has been also found
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that the quantum Fisher information for f(x) = 1%07

i.e., for the harmonic mean, is the smallest [15] [16]. This
can be seen as follows. In the expression for the quantum
Fisher information, Eq. , appears the my(a, b) mean.
The arithmetic mean my(a,b) = %£t is the largest among
the means, while the harmonic mean is the smallest.

With a similar argument, we can prove that '], A
defined in Eq. is the largest for f(z) = 1"’7””, i.e., for
the arithmetic mean. It can also be proven that it is the
smallest for the harmonic mean.

According to Theorem 4, the variance fitting Defini-
tion 1 is of the form Eq. . Moreover, according to
Theorem 5, the types of quantum Fisher information fit-
ting the Definition 3 are of the form Eq. . Both
differ from the definitions of Refs. [15] [16] by a normal-
ization factor. For which f(x) is the quantum Fisher
information F| 5[@, A] the largest, if it is normalized such
that for pure states it equals 4(AA)2? In order to an-
swer this question, based on the derivation above, let
us write down explicitly the variances and types of quan-
tum Fisher information defined by Refs. [15][16], together
with the appropriate normalization factors such that for
pure states they equal to the usual variance, Eq. , and
to four times the usual variance, respectively. Based on

Egs. ., ., . ) and ( . the two definitions are as

follows.

m /\Z,)\
varf (4) = 72 —L2n g \AUP 1> N4

1 o)
Fllo Al = 2 %Ai—xm,?.

(90)

For each mean my(a,b), Equation provides a gen-
eralized variance fulfilling Definition 1 and a generalized
quantum Fisher information fulfilling Definition 3. It can
be seen that the same my(a,b) corresponds to the min-
imal variance and to the maximal quantum Fisher in-
formation. However, from Theorem 1, we already know
that the minimal variance is the usual variance given in
Eq. , corresponding to f(z) = H‘“ , .e., to the arith-

metic mean my(a,b) = “E2. Hence, Theorem 3 follows.

VI. CONCLUSIONS

We have defined generalized variances and different
types of quantum Fisher information. We have shown
that the smallest variance is the usual variance since it is
its own concave roof. We have also shown that the largest
quantum Fisher information is the usual quantum Fisher
information for rank-2 density matrices and for opera-
tors that have zero diagonal elements in the eigenbasis of
the density matrix. In other words, the quantum Fisher
information is 4 times the convex roof of the variance
for such matrices. We found strong numerical evidence
that the quantum Fisher information is very close to the



convex roof even for matrices with non-zero diagonal el-
ements and for matrices with a larger rank. We related
our findings to the generalized variances and types of
quantum Fisher information defined in Refs. [15] [17]. We
showed that the usual quantum Fisher information is the
largest within the various types of generalized quantum
Fisher information of Refs. [I5] [16], if appropriate nor-
malization is applied. Hence we conjectured that the
usual quantum Fisher information is four times the con-
vex roof of the variance for density matrices and Hermi-
tian operators of any size.

In the future, it would be important to prove Conjec-
ture 1. Since convex roofs appear in entanglement theory
very often, our findings help to establish further connec-
tions between the quantum Fisher information and en-
tanglement theory [6H9, B6H39]. For instance, it would
be important to examine the consequences of our findings
concerning the detection of entanglement with variances
[33] or the quantum Fisher information [6H9], or the esti-
mation of the quantum Fisher information based on mea-
surements [34] 35]. It would also be important to point
out connections to the recent findings in Refs. [40, 41],
which, in another context, also relate the quantum Fisher
information to convex roof constructions.
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Appendix A: Semidefinite programs used for
obtaining the global optimum

Here we show how to compute Bgsppr(o,4) =
Bsg,(0,A) and Bsg,(0,A) defined in Eq. using
semidefinite programming.

Semi-definite programming can be used to look for
the infimum over symmetric PPT states, i.e, finding
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Bsg, (0, A) given in Eq. (69). In this way we obtain an
upper bound on the infimum for separable states as has
also been used in Ref. [3I]. The corresponding task can
be formulated as a standard semidefinite program as

minimize 2((A®1-1® A)?),,,

subject to g = Zm,n [$m (2, d)) (80(2, )| (05) s

00 = 0, Tr(oo) =1,

25" 20, Tra(0) = 0.

(A1)

Here |s,(2,d)) denotes the basis states of the symmetric
subspace for 2 qudits of dimension d. In order to ensure
that the optimization is only over symmetric states, we
define the density matrix gz, which is a two-qudit sym-
metric state given in the basis of the symmetric states.
0o is a density matrix given in the product basis, and T}
means partial transpose according to the first subsystem.

Semi-definite programming can also be used to look for
the infimum over symmetric states that have a PPT sym-
metric extension over N qudits appearing in Bsg,, (0, 4)
defined in Eq. . The corresponding task can be for-
mulated as a semidefinite program as

minimize 2((A®1-1® 4)?),,,,
subject to 09 =>_,, . [sm(N,d))(sn (N, d)|(0s)mn:

©o > 0; TI'(Q()) = ]-a
0o M >0 for M =1,2,..., | X,
012 = Trz 4. n(00), Trz(012) = 0.

(A2)
where 015 is the two-qudit reduced state of gy and |z] is
the integer part of z. Now g5 and gy are N-qudit states.
Here |s,, (N, d)) denotes the basis states of the symmetric
subspace for N qudits of dimension d. For N qubits, these
are

a2 = () TSRO, ()
k

forn =0,1,..., N, where the summation is over all differ-
ent permutations. Now 77 means partial transposition
according to the group of qudits given in I. Such an op-
timization has already been used in Ref. [32] for study-
ing the entanglement properties of symmetric quantum
states.
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