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A B S T R A C T 
 
The input argument k refers to the number of clusters is needed to start all of the 
probabilistic and possibilistic partitioning algorithms. Although some progress has been 
made toward its solution, determining this user-specified argument is still one of the main 
issues in partitioning cluster analysis. Therefore, fast and even automated techniques are 
needed for determining k in partitioning clustering. In this paper, for determination of k, 
we proposed the KPEAKS, a simple and fast technique based on the descriptive statistics 
of peak counts of the features for clustering multidimensional datasets. The experiments 
on the synthetic and real datasets revealed that the mean of the largest two peak counts 
and the mean of third quartile and maximum peak count of the features can be 
successfully used for the estimates of k.  

  
 
1. Introduction 

The enormous expansion of agricultural activities and practices based on the information 
technologies such precision agriculture, sensory networks, RFID etc. leaded to collect the large amount 
of data in agriculture. Therefore data mining and big data analytics become more popular in agriculture 
today as well as in other areas. Clustering is one of the widely applied data mining techniques because 
of its usefulness in discovering the meaningful information such as the grouping structures and patterns 
in datasets. Clustering divides the instances in datasets into subsets called clusters by using the proximity 
measures (Liu et al 2010). According to a common taxonomy, it is possible to categorize them into three 
groups as hierarchical methods, partitioning methods and hybrid methods. Among them, the partitioning 
algorithms such as well-known K-means and Fuzzy C-means and their variants are preferred in 
clustering large volume of multidimensional numerical data because of their higher computational 
efficiencies.  

Although the partitioning algorithms provide some significant advantages in clustering, they also 
have some disadvantages since they require a set of user-specified input arguments. However, the 
number and types of these arguments vary from one algorithm to another, most of the partitioning 
algorithms require k, an input argument specifying the number of partitions (or clusters) in datasets 
(Pakhira 2012). Using different k values results with different partitions, and thus, it has direct effect on 
the quality or validity of the final clusters. So, the choice of an appropriate value of k is one of the most 
important topics in partitioning clustering analysis (Ray & Turi 1999, Celebi et al 2013). 

In order to determine the k, various subjective and objective methods have been proposed in the 
literature. In the subjective methods the value of k is determined as a priori by users. Hence, a good level 
of domain knowledge and experience is required with the subjective methods. On the other hand, setting 
it by the objective methods is mainly based on time-consuming trial and error experiments. In these 
experiments, a suitable clustering algorithm must be run for several times with the different values of k. 
At the end of these runs, the number of partitions which produces the best clustering result is determined 
by using some validity indices. Due to their computational costs, the objective methods seem impractical 

1 Zeynel Cebeci  
Div. of Biometry & Genetics, Faculty of Agriculture, Çukurova University, 01330 Adana - Turkey 
zcebeci@cu.edu.tr 
2 Cagatay Cebeci 
Dept. of Electronic & Electrical Eng., Technology and Innovation Centre, Univ. of Strathclyde, Glasgow-UK 
cagatay.cebeci@strath.ac.uk 

doi: 10.17700/jai.2018.9.2.442  1 
Zeynel Cebeci, Cagatay Cebeci : A Novel Technique for Fast Determination of K in Partitioning Cluster Analysis 

                                                            

https://doi.org/10.17700/jai.2018.9.2.442
http://journal.magisz.org/


Journal of Agricultural Informatics (ISSN 2061-862X) 2018 Vol. 9, No. 2:1-11 
 

for suggesting an optimal value of k especially on the real datasets that are often quite very big. 
Moreover, the validity indices may be sensitive to the volumes, shapes and orientations of cluster 
structures in the datasets.  

As discussed above, deciding an optimal value of k is a common problem for all partitioning 
clustering algorithms although some progress has been made. For this reason, one of the most studied 
research topics on cluster analysis is on the choice of k. We need algorithms that will yield faster and 
computationally low cost solutions as datasets grow even more complex in terms of both data volume 
and dimensionality. Additionally, since there are differences in the information provided by the 
algorithms, it is not expected that the validity indices perform the same for all the clustering algorithms. 
Therefore, it may be necessary to use different algorithm-specific indices or robust methods that are not 
much influenced by cluster structures. It should be noted again that finding out a number of possible 
partitions and then validating them by using a validity measure is a very time consuming task. Therefore, 
we need the techniques giving the estimates of k before applying a clustering algorithm.  

In this study, a novel technique, so-called “Determination of K Using Peak Counts of Features for 
Clustering” or shortly KPEAKS, is proposed for fast determination of k. The technique is based on some 
descriptive statistics of peak counts of the features which are found by a peaks counting algorithm. This 
paper is organized in different sections such that Section 2 provides the related works, Section 3 
describes basic Fuzzy C-means algorithm used as a representative of partitioning clustering algorithms, 
Section 4 introduces the proposed technique, Section 5 discusses the performance of the proposed 
technique on some experimental datasets, and finally, Section 6 concludes the current study and future 
works. 
 
2. Related Works 

Since the partitioning algorithms produce a valid or invalid result with any value of k, the quality of 
clustering depends on the optimal choice of this input parameter. Thus, before partitioning, the number 
of clusters in a dataset should be determined or estimated for achieving the quality results. The value of 
k can be determined with the subjective and objective methods. In general, the subjective methods are 
based on heuristic approaches to understand the underlying structure of the datasets by means of various 
exploratory graphs (Hamerly & Elkan 2004). In this case, some degree of previous experience and 
domain knowledge are needed (Morissette & Chartier 2013). The subjective methods may result with 
poor quality clustering since the clustering algorithms may produce different results depending on the 
shapes and orientations of the clusters in datasets (Kodinariya & Makwana 2013). Additionally, using 
the subjective methods to choose k is exceedingly difficult and time consuming task for high 
dimensional data.  

Objective methods mainly include the validity indices which have been primarily proposed to 
validate the quality of clustering results, but they can also be utilized to determine the value of k. These 
indices can be classified into three groups as the external, internal and relative indices (Kovács et al 
2005, Rendón et al 2011). The external indices use some kind of external information associated with 
data instances. They compare the cluster labels found in a clustering analysis to the already known class 
labels, which can be used as the external information for deciding to an appropriate k value (Dudoit & 
Fridlyand 2002). In practice, since the external information is often not available with data, the internal 
validity indices are become the only applicable options. They are the validation criteria that reveal the 
quality of the clustering by using results obtained directly from datasets themselves (Thalamuthu et al 
2005). Finally, the relative indices are the validity measures based on comparisons of clustering results 
by running one or more clustering algorithms with different input parameters on the same dataset. For 
instance, the best partitioning is determined by comparing the objective function values which are 
calculated in multiple runs of a clustering algorithm. 

Cluster analysis is an unsupervised learning task in which the clustering tendencies are previously 
unknown. Therefore, most studies focus on the internal validity indices to validate the clustering results. 
These indices are generally based on the compactness, separation and their combinations. Compactness 
is a measure of how closely related or coherent the instances to each other. Separation, on the other 
hand, is a measure of how the clusters are separated from each other. There are lots of internal and 
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external validity indices introduced in the literature (Halkidi et al 2001, Rendón et al 2011, Charrad et 
al 2015).  

There are differences in the information provided by clustering algorithms, and hence, it is not 
expected that all validity indices can perform in the same way in all of the clustering algorithms. For 
example, fuzzy and possibilistic clustering algorithms produce fuzzy membership degrees instead of 
crisp membership degrees, and therefore, more sophisticated internal indices may be necessary for 
validating their results (Wang & Zhanga 2007). Although various fuzzy indices do exist in the literature 
(Schwämmle and Jensen, 2010), the indices of Partition Entropy, Partition Coefficient (Bezdek 1974),  
Modified Partition Coefficient (Dave 1996), Xie-Beni (Xie & Beni 1991), Tang-Sun-Sun (Tang, Sun & 
Sun 2005), Chen-Linkens (Chen & Linkens 2004) and Pakhira-Bandyopadhyay-Maulik Fuzzy (Pakhira 
et al 2004) are often used to validate the results in fuzzy environments. These indices use membership 
degrees and cluster centroids obtained as a result of clustering task, and dataset itself with some indices. 

In order to determine k, another approach tries to find the best one among all possible values with 
model choice via penalization by designing an appropriate penalty shape and derive an associated oracle-
type inequality as proposed by Fischer (2011). The composite indices based on sensitivity and 
uncertainty analysis techniques, which can be used together with several cluster validity indices, have 
been also proposed (Marozzi 2014, Saisana et al 2005).  

Apart from the validity indices, the information criteria such as Akaike Information Criterion (AIC) 
and Bayesian Information Criterion (BIC), and some other criteria such as Minimum Description Length 
(MDL) and GAP statistics can also be used for determining the argument k. Recently, the techniques 
such as the Visual Assessment of Clustering Tendency (VAT) (Bezdek & Hathaway, 2002, Bezdek et 
al 2007) and an improved version of VAT (iVAT) (Havens & Bezdek 2012) have been proposed for 
visual determination of k. In addition to these, Dark Block Extraction (DBE) and Cluster Number 
Extraction (CCE) using the visual outputs of VAT matrices are the examples of the automated 
techniques for determining k (Pakhira 2012). Visual Assessment of Cluster Tendency Using Diagonal 
Tracing (VATdt) (Hu 2012) and spectral VAT (spectVAT) (Krishnamoorthi 2011) are other recently 
proposed algorithms in determination of k.  

Although many validity indices are available to determine k, some of them are very complex to 
implement and some others may be computationally expensive for large datasets in many real-world 
applications because they require the clustering results from several runs of the algorithms. Whereas, 
the simpler and faster methods that can determine k before cluster analysis can contribute to a remarkable 
decrease in computational cost in partitioning cluster analysis. In Section 4 of this paper, as a new 
member of this kind of techniques, a novel technique enabling the fast determination of k is proposed. 
 
3. Fuzzy C-means Clustering Algorithm 

In the literature, the choice of k has mainly been worked for hard partitioning cluster algorithms with 
a special reference to K-means and its derivatives. In this paper, for testing the performances of the 
studied techniques we used the basic Fuzzy C-means Clustering (FCM) algorithm (Bezdek 1981) as the 
representative of partitioning clustering algorithms. As one of the most widely used soft clustering 
algorithms, FCM differs from hard K-means algorithm with the use of weighted squared errors instead 
of using squared errors only. Therefore, the proposed technique in this paper can be applied not only for 
FCM but also for all hard, fuzzy, possibilistic clustering algorithms and their variants in the same way. 
In this section, we briefly introduce the basic terminology and FCM algorithm for easy understanding 
the studied techniques in the paper. 

Let 𝑿𝑿 = {𝒙𝒙1,𝒙𝒙2, … ,𝒙𝒙𝑛𝑛} ∈ ℝ𝑛𝑛𝑛𝑛 be a dataset to be analysed, where n is the number of instances, 𝑝𝑝 is 
the number of features. For dataset X, FCM tries to minimize the objective function in Eq. (1). 

 𝐽𝐽𝐹𝐹𝐹𝐹𝐹𝐹(𝑿𝑿;  𝑼𝑼,𝑽𝑽)  =  ∑ ∑ 𝑢𝑢𝑖𝑖𝑖𝑖𝑚𝑚𝑘𝑘
𝑖𝑖=1

𝑛𝑛
𝑖𝑖=1 𝑑𝑑𝑖𝑖𝑖𝑖𝑨𝑨2      (1)  

The membership matrix 𝑼𝑼 with 𝑛𝑛 × 𝑘𝑘 dimension, where k is the number of clusters, is a fuzzy partition 
of dataset 𝑿𝑿 as shown in Eq. (2). 

𝑼𝑼 = �𝑢𝑢𝑖𝑖𝑖𝑖� ∈ 𝑀𝑀𝐹𝐹𝐹𝐹𝐹𝐹        (2) 
The element 𝑢𝑢𝑖𝑖𝑖𝑖 is the membership degree of ith data instance to jth cluster. Thus, the jth column of matrix 
𝑼𝑼 contains the membership values of n instances to jth cluster. In Eq. (3), 𝑽𝑽 is a cluster prototypes matrix:  
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𝑽𝑽 = {𝒗𝒗1,𝒗𝒗2, … ,𝒗𝒗𝑐𝑐}, 𝒗𝒗𝑖𝑖 ∈ ℝ𝑘𝑘𝑛𝑛      (3)  
In Eq. (1), 𝑑𝑑𝑖𝑖𝑖𝑖𝑨𝑨2  is the distance between ith data instance and the prototype of jth cluster. It is computed 
using a squared inner-product distance norm in Eq. (4): 

𝑑𝑑𝑖𝑖𝑖𝑖𝑨𝑨2 = �𝒙𝒙𝑖𝑖 − 𝒗𝒗𝑖𝑖�𝑨𝑨
2

= (𝐱𝐱𝑖𝑖 − 𝐯𝐯𝑖𝑖)𝑇𝑇𝑨𝑨(𝒙𝒙𝑖𝑖 − 𝒗𝒗𝑖𝑖)      (4) 
In Eq. (4), 𝑨𝑨 is a positive and symmetric norm matrix, and the inner product with norm 𝑨𝑨 is a measure 
of distances between data points and cluster prototypes. When 𝑨𝑨 is equal to 𝑰𝑰, 𝑑𝑑𝑖𝑖𝑘𝑘𝑨𝑨2  is obtained in squared 
Euclidean norm. In Eq. (1), 𝑚𝑚 is a fuzzifier parameter (or weighting exponent) whose value is chosen 
as a real number greater than one (𝑚𝑚 ∈ [1,∞), usually it is 2 in the literature). While m approaches to 
one, clustering tends to crisp like K-means but when it approaches to the infinity clustering becomes 
more fuzzified. The objective function JFCM is minimized using the update formulas in Eq. (8) and (9) 
in each iteration step with the constraints in Eq. (5), (6) and (7):  

𝑢𝑢𝑖𝑖𝑖𝑖 ∈ [0,1];  1 ≤ 𝑖𝑖 ≤ 𝑛𝑛, 1 ≤ 𝑗𝑗 ≤ 𝑘𝑘      (5) 
∑ 𝑢𝑢𝑖𝑖𝑖𝑖 = 1;  1 ≤ 𝑖𝑖 ≤ 𝑛𝑛𝑘𝑘
𝑖𝑖=1        (6) 

0 <  ∑ 𝑢𝑢𝑖𝑖𝑖𝑖 < 𝑛𝑛;  1 ≤ 𝑗𝑗 ≤ 𝑘𝑘𝑛𝑛
𝑖𝑖=1        (7) 

FCM stops when the iteration counts has reached to a predefined maximum iteration counts, or when 
the difference between the sums of membership values in U obtained two consecutive iterations is less 
than a predefined convergence value (𝜀𝜀). The steps involved in FCM are: 

1. Initialize the prototype matrix 𝑽𝑽 and the membership matrix 𝑼𝑼.  
2. Update the cluster prototypes by using Eq. (8). 

𝒗𝒗𝑖𝑖 =
∑ 𝑢𝑢𝑖𝑖𝑖𝑖

𝑚𝑚𝒙𝒙𝑖𝑖𝑛𝑛
𝑖𝑖=1

∑ 𝑢𝑢𝑖𝑖𝑖𝑖
𝑚𝑚𝑛𝑛

𝑖𝑖=1
;  1 ≤ 𝑗𝑗 ≤ 𝑘𝑘      (8) 

3. Update the membership values by using Eq. (9). 
𝑢𝑢𝑖𝑖𝑖𝑖

(𝑡𝑡) = 1

∑ �𝑑𝑑𝑖𝑖𝑖𝑖𝑨𝑨/𝑑𝑑𝑙𝑙𝑖𝑖𝑨𝑨�
2/(𝑚𝑚−1)𝑖𝑖

𝑖𝑖=1
 ; 1 ≤ 𝑖𝑖 ≤ 𝑛𝑛 , 1 ≤ 𝑗𝑗 ≤ 𝑘𝑘   (9)  

4. If �𝑼𝑼(𝑡𝑡) − 𝑼𝑼(𝑡𝑡−1)� < 𝜀𝜀 then stop else go to the step 2, where 𝑡𝑡 is the iteration number. 
 
4. Determination of K Using Peak Counts 

The proposed technique, so-called “K-selection Using Peak Counts” or shortly KPEAKS, is based 
on some descriptive statistics of the peak counts of features by using a peaks counting algorithm. The 
steps involved in the technique KPEAKS are listed as follows: 

 
1. Draw the histogram of ith feature in the dataset with the breaks which are computed by using a 

binning rule, i.e. Sturges and Scott or an arbitrary specified integer (Cebeci & Yildiz, 2017). 
2. Run the peak finding algorithm with input arguments which are middle values and frequencies 

of the bins of the histogram obtained in step 1. 
3. Count the peaks of ith feature in the analysed dataset, and add the obtained count into f, the peak 

counts vector. 
4. Repeat the steps 1-3 in order to count the peaks of all of the features in the dataset. 
5. Calculate the descriptive statistics from the full set of peak counts in the vector f. 
6. Build a reduced set of peak counts by removing the peak counts smaller than a predefined 

threshold value of peak counts (usually 1). 
7. Calculate the estimates of k on the full and reduced sets of peak counts by using the formulas in 

Table 1. 
8. Return the list of estimates of k obtained in step 7. 
 

As listed in Table 1, KPEAKS returns several estimates of k which are calculated by using a peak 
counts vector f for each feature in the analysed dataset. Some of these estimates are simply assigned 
from the central tendency measures without further process. For instance, the estimates KPEAKSAM, 
KPEAKSMED and KPEAKSMOD are the arithmetic mean, median and mode of the peak counts, 
respectively. KPEAKSMPPC is another estimate of k which equals to the overall mean of the means of 
peak counts pairs. The remaining estimates of k returned by KPEAKS are calculated in different ways 
by using the quartiles and extreme values of the peak counts. KPEAKSCIQR is the centre of interquartile 
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range (IQR) while KPEAKSCR is simply the centre of range (R), or, in other words, the mean of extreme 
values. Finally, KPEAKSMQ3M is the mean of the third quartile (Q3) and maximum of peak counts, and 
KPEAKSMTL is the mean of two largest peak counts. 
 

Table 1. KPEAKS options to determine k  
Options  Description Formula 
AM Arithmetic mean of peak counts 1/𝑝𝑝 (∑ 𝑓𝑓𝑖𝑖

𝑛𝑛
𝑖𝑖=1 )  

MPPC Overall mean of the means of peak counts 
pairs 

1/ �𝑛𝑛
2−𝑛𝑛
2
� �∑ ∑ (𝑓𝑓𝑖𝑖 + 𝑓𝑓𝑖𝑖)/2𝑛𝑛

𝑖𝑖=𝑖𝑖+1
𝑛𝑛−1
𝑖𝑖=1 �  

MED Median of peak counts 𝑓𝑓(𝑛𝑛+12 ) if n is odd else �𝑓𝑓(𝑛𝑛2) + 𝑓𝑓(𝑛𝑛2+1)� /2 

MOD Mode of peak counts 𝑓𝑓𝑚𝑚𝑚𝑚𝑑𝑑  
CIQR Centre of the IQR of peak counts 1/2�𝑄𝑄3𝑓𝑓 − 𝑄𝑄1𝑓𝑓�  
CR Mean of the extremes of peak counts 1/2(𝑓𝑓𝑚𝑚𝑖𝑖𝑛𝑛 + 𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚)  
MQ3M Mean of the Q3 and max peak count 1/2�𝑄𝑄3𝑓𝑓 + 𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚�  
MTL Mean of the two biggest peak counts 1/2�𝑓𝑓(𝑛𝑛−1) +𝑓𝑓(𝑛𝑛)�  

*The indices between parentheses denote the order statistics of the peak counts. 
 
Algorithm 1: findpolypeaks 
Input: 
  xc, vector for the frequencies of classes of a frequency polygon  
  xm, vector for the middle values of classes of a frequency polygon  
  tc,  threshold frequency value for filtering frequency polygon data, default value is 1 
Output:  
  PM: Peaks matrix for a feature 
Init: 
  1:  xm  xm[xc >= tc] ; xc  xc[xc >= tc] //Filter xm and xc for the class frequencies >= tc 
  2: pfreqs   {} //Vector for the frequencies of peaks 
  3: pvalues  {}  // Vector for the values of peaks 
  4: nc  length of xc  //Number of classes (bins) 
  5: pidx  1 //Index of the first peak  
Run: 
  6: IF nc > 1 THEN 
  7:   IF xc[1] > xc[2] THEN 
  8:      pvalues[1] xm[1] ; pfreqs[1] xc[1] 
  9:      pidx  2 
10:   ENDIF 
11:   FOR i = 2 to nc-1 DO 
12:         IF xc[i] not equal to xc[i-1] THEN 
13:            IF xc[i] > xc[i-1] AND  xc[i] >= xc[i+1] THEN 
14:                pvalues[pidx]  xm[i] 
15:                pfreqs[pidx]  xc[i] 
16:                pidx  pidx + 1 
17:            ENDIF 
18:        ENDIF 
19:   ENDFOR 
20:   IF xc[nc] > xc[nc-1] THEN 
21:      pvalues[pidx] xm[nc] ; pfreqs[pidx] xc[nc] 
22:   ENDIF 
23: ELSE 
24:    pvalues[pidx] xm[1] ; pfreqs[pidx] xc[1] 
25: ENDIF 
26: np  length of pvalues 
27: PMnpx2  0   //Create peaks matrix 
28: PM[,1]  pvalues ;  PM[,2]  pfreqs 
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29: RETURN PM, np 
 

Robustness of any estimator is important in determining k. It is a measure indicating the sensitivity 
of the estimators to the biases caused by the outliers in a dataset (Äyrämö & Kärkkäinen 2006). In this 
regard, KPEAKSMED can be considered as a robust measure of k because unlike KPEAKSAM, it is not 
affected by the outlying values of peak counts. KPEAKSMOD can also be regarded a robust metric but 
does not work well in multimodal cases of peak counts. When compared to KPEAKSAM, KPEAKSMPPC 
can provide a better estimate of k because it is the overall mean of the means of pairs of peak counts.  
As clearly seen in Figure 1, the patterns become more apparent between the features with higher peak 
counts. This observation shows that if estimators using higher peak counts are employed, it is possible 
to get more accurate estimates of k. Although they are not robust estimators of k, we could use 
KPEAKSMQ3M and KPEAKSMTL as useful options when the distribution of peak counts is skewed.  

Finding and counting the peaks of the features in datasets are the most crucial steps in working with 
KPEAKS. In this paper, findpolypeaks (Algorithm 1), a peak finding algorithm which has been 
implemented in a CRAN package (Cebeci & Cebeci 2017) has been used. The input arguments of this 
algorithm are the frequencies (xc) and middle values (xm) of the classes of frequency polygon for the 
processed feature, and a threshold counts value (tc) for tuning the height of peaks. Here, tc is used for 
removing the little and scattered peaks formed by the outliers in analyzed datasets. The output of 
findpolypeaks algorithm are the peaks matrix (PM) which contains the frequency and middle values of 
the peaks, and peak counts (np) of the feature being processed.  

KPEAKS can be run on the full set (FPCS) or reduced set (RPCS) of peak counts. In the first case, 
KPEAKS directly uses FPCS which is returned by the algorithm findpolypeaks. In the second case, it is 
applied on RPCS handled by removing the peak counts which are below a threshold level of counts from 
FPCS. With RPCS, it is expected that KPEAKS could produce more accurate estimates of the k because 
the features with one peak in FPCS may usually not contribute much to the formation of clustering 
structures.  

 
5. Experiments on Datasets 
5.1. Experiments on a Synthetic Dataset 

All of the required scripts in our experiments have been implemented in R environment (R Core 
Team, 2018). A multidimensional synthetic dataset (dataset 5p4c) is generated using rnorm function in 
the stats library of R, and it consists of five features with the descriptive statistics shown in Table 1. In 
the dataset consisting of 400 data instances, the first feature (p1) was unimodal, the second feature (p2) 
was four modal, third feature (p3) was three modal, fourth feature (p4) was four modal and fifth feature 
(p5) was bimodal.  
 

Table 1. Descriptive statistics of the features in 5p4c dataset 
Features mean median std.dev. min max no.peaks 

p1 12.41 12.62 2.86 2.86 20.36 1 
p2 69.47 69.72 22.84 29.58 109.43 4 
p3 134.01 140.02 21.87 86.38 167.50 2 
p4 48.67 47.83 22.57 8.70 88.58 3 
p5 20.42 20.24 1.39 16.43 24.55 2 

 

In the experiments, for computing the values of fuzzy internal indices FCM has been run for eight 
levels of number of clusters (k = 2,…,9). K-means++ initialization algorithm (Arthur & Vassilvitskii 
2007) was used for initialization of the prototypes matrix (V). To avoid the possible biases due to 
different initializations of membership matrix (U), the same U matrix has been used for each level of 
number of clusters for the repeated runs of FCM. For this purpose, the seed of random number generator 
of R is set to a predefined constant number (seed=123). In order to validate the k from the results of 
FCM runs, some of the popular fuzzy internal indices have been used such as Partition Entropy (IPE), 

doi: 10.17700/jai.2018.9.2.442  6 
Zeynel Cebeci, Cagatay Cebeci : A Novel Technique for Fast Determination of K in Partitioning Cluster Analysis 

https://doi.org/10.17700/jai.2018.9.2.442


Journal of Agricultural Informatics (ISSN 2061-862X) 2018 Vol. 9, No. 2:1-11 
 

Modified Partition Coefficient (IMPC), Xie-Beni (IXB), Tang-Sun-Sun (ITSS), Chen-Linkens (ICL) and 
Pakhira-Bandyopadhyay-Maulik Fuzzy index (IPBMF). In addition to the fuzzy indices listed above, the 
internal indices which are present in ‘NbClust' package of R (Charrad et al 2014) have been used. 
Moreover, k-selection algorithm proposed by Pham et al (2005) and implemented by Rodriguez (2015) 
is also included because it has been argued that the algorithm is not influenced by cluster volumes. The 
values of all these indices have been obtained by running basic K-means algorithm with default input 
parameters as indicated in the package documentations. For finding the peaks of features in the analysed 
datasets an R implementation of Algorithm 1 have been utilized. Furthermore, an R version of the 
KPEAKS technique for counting the peaks and estimating the values of k have been coded. 

 

                                      
Figure 1. Histograms, scatter plots and correlations of the features in the dataset 5p4c 

In our tests, firstly the number of clusters have been estimated by using the indices in NbClust 
package of R (Charrad et al 2014).  As seen in Table 2, most of the internal indices (thirteen) suggested 
the number of clusters as 4 for the examined synthetic dataset. Following this, five of them suggested 3 
clusters, four of them suggested 2 clusters, and again two of them suggested 5 clusters. Two of the 
indices are evaluated as useless (i.e. Cindex proposed the number of cluster is as high as 9 while Frey 
proposed only 1 cluster). The k-selection algorithm suggested the number of clusters between 2 and 4 
while its optimal suggestion was 2.  
 

Table 2. Number of clusters proposed by the internal indices in NbClust 
Index k Index k Index k Index k Index k Index k 
KL 4 CH 4 Hartigan 4 CCC 4 Scott 4 Marriot 4 
TrCovW 3 TraceW 4 Friedman 3 Rubin 4 DB 4 Silhouette 4 
Duda 3 PseudoT2 3 Beale 2 Ratkowsky 2 Ball 3 PtBiserial 2 
McClain 2 Dunn 4 Hubert 4 SDindex 4 Dindex 5 SDbw 5 
Frey 1 Cindex 9 kselection 2,4       

 

All of the studied internal fuzzy indices showed that the optimal number of clusters in the dataset 
5p4c is 4 as seen in Table 3. Since either all the fuzzy indices or majority of the indices in ‘NbClust’ 
suggested the number of clusters to be 4, this number have been used as the reference k value for 
evaluating the success of the proposed KPEAKS technique. 
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Table 3. Internal fuzzy index values from FCM runs on the dataset 5p4c 
k IXB ITSS IPBMF ICL IMPC IPE 
2 0.07089484 28.85503 1.652040e+04 0.8074789 0.6619477 0.2123218 
3 0.05797912 24.20672 2.599478e+04 0.7600571 0.6953948 0.2398124 
4 0.05096023 22.32389 1.172147e+02 0.8545189 0.8119518 0.1512673 
5 2.17190356 936.46075 2.458972e+06 0.7093378 0.6792884 0.2863058 
6 1.98144090 846.36279 2.956919e+06 0.6583026 0.6272051 0.3177349 
7 1.63315099 738.42121 4.534814e+07 0.5527667 0.5452973 0.4207573 
8 1.36905662 599.96624 1.151862e+07 0.5337281 0.5248174 0.4105460 
9 1.28432782 570.09529 8.160711e+07 0.4440198 0.4566922 0.4869097 

 

Peak counting function of KPEAKS have returned the peak counts vector as f ={1,4,2,3,2} by using 
histograms with the Sturges binning rule (Sturges 1926). The peak counts in the vector f are completely 
the same with the simulated numbers of the peaks which are listed in the last column of Table 1. By 
using descriptive statistics of the peak counts, KPEAKS proposes the estimates of k as shown in Table 
4 which varies between 2 and 4. In general, these estimates are similar to those of the indices in Table 
2. When the optimal value of k is concerned as 4 according the findings from the indices in Table 2 and 
Table 3, KPEAKSMQ3M and KPEAKSMTL are completely successful to suggest the optimal number of 
clusters in the dataset 5p4c. KPEAKSCR, KPEAKSCIQR and KPEAKSMPPC has given the number of 
clusters as 3 which is the same with those from most of the indices in Table 2. On the other hand, 
KPEAKSAM, KPEAKSMED and KPEAKSMOD produce smaller estimates of k when compared to the 
others.  

As seen in Table 4, slightly better results have been obtained on RPCS when compared to the results 
from FPCS. Therefore, removing of the peak counts which are equal to 1 could produce more successful 
results especially for the estimates with KPEAKSAM, KPEAKSMED, KPEAKSMOD and KPEAKSMPPC. 

 
Table 4. Number of clusters determined with KPEAKS 

Sets AM MED MOD MPPC CIQR CR MQ3M MTL 
FPCS 2 2 2 2 3 3 4 4 
RPCS 3 3 2 3 3 3 4 4 

 
5.2. Experiments on the Real Datasets 

For testing the performance of KPEAKS on the real data, four real datasets imported from UCI 
Machine Learning Repository (Lichman 2013) and one real dataset taken from a quail fattening 
experiment have been used. Forest type mapping  training dataset (Foresttype) contains remote sensing 
data which mapped different forest types based on their spectral characteristics at visible-to-near infrared 
wavelengths by using the Aster satellite images (Johnson et al 2012). The dataset consists of 27 features 
and one class variable with 4 forest types. Glass dataset (Glass) of US Forensic Services consists of the 
values of 9 structural components, i.e. Na, Fe, K, etc., measured on 214 glass samples. There are 6 
classes in the dataset, which can used as reference clusters or classes for test purposes. Fisher’s Iris 
dataset (Fisher 1936) is probably one of the most widely used datasets in testing of data mining 
algorithms. Iris dataset (Iris)  contains  3  classes  of  50  instances  each,  where each  class  refers to  
an iris flower species. In this very famous data mining test dataset, one of the species classes is linearly 
separable while two of them are not linearly separable from each other. Quail dataset (Quail) contains 
the observations for 4 features which are carcass weight, liver weight, heart weight and gizzard weight 
measured at 3rd, 4th and 5th week of age of 30 Japanese quails in a fattening experiment at a research 
and application farm of an agricultural faculty. The dataset consists of 4 features and 1 class variable 
with 3 classes refers to fattening weeks. In this dataset, since the first class is linearly separable while 
two of them are not linearly separable from each other. Wine dataset (Wine) contains the results of a 
chemical analysis of three different wine cultivars grown in the same region in Italy.  The dataset consists 
of 178 records with 13 features and 1 class variable with 3 classes. 
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Table 5 shows the k values determined by the studied indices and KPEAKS on the real datasets. In 
the second row of this table, the numbers on the left of parentheses and the numbers between parentheses 
stand for the suggested k values and the number of indices suggesting them, respectively. In the third 
row, the underlined numbers show the optimal k, and the other numbers show all of the recommended 
k values by k-selection algorithm. According to the results shown in Table 5, KPEAKSMQ3M and 
KPEAKSMTL successfully find the number of clusters for the Foresttype dataset. While none of the 
indices determines the reported number of clusters which does exist in the dataset Glass, KPEAKSCR, 
KPEAKSMQ3M and KPEAKSMTL have given the similar results to those of the majority of indices listed 
in Table 2 and Table 3.  Although the most of indices including the fuzzy indices propose the number 
of clusters as 2 for the dataset Iris, KPEAKSCR, KPEAKSMQ3M and KPEAKSMTL have been more 
successful like those of eight of the indices in NbClust. For the dataset Quail, eight of the indices in 
NbClust propose the number of cluster as 2, and the other eight of them propose it as 3. Similarly, 
KPEAKSCR, KPEAKSMQ3M and KPEAKSMTL have found the number of clusters as 3 while other options 
of KPEAKS have estimated it as 2. The majority of the indices in Table 2 and Table 3 suggest the 
number of cluster to be 2 for the dataset Wine. It is again 2 according to k-selection, however it also 
proposes 3 as one of the recommendations. For this dataset, the number of clusters has been determined 
as 3 by KPEAKSAM, KPEAKSMED and KPEAKSMPPC. On the other hand, KPEAKSCR, KPEAKSMQ3M and 
KPEAKSMTL determine the number of cluster as 4 which has not been proposed by the other indices.  
 

Table 5. Number of clusters determined on the real datasets 
Measures Foresttype Glass Iris Quail Wine 
No. clusters (k) 4 6 2,3 2,3 3 
NbClust 3(9), 2(6) 3(9), 2(5) 2(10), 3(8) 2(8), 3(8) 2(11), 3(4) 
k-selection 2, 3 2, 4 2,4,6,8,9 2,3,4,5,6 2,3-6, 9,12,13 
IPE 2 2 2 2 2 
IMPC 2 3 2 2 2 
IXB 2 3 2 2 2 
ITSS 2 3 2 2 2 
IPBMF 3 2 2 2 2 
ICL 2 2 2 2 2 
KPEAKSAM 3 2 2 2 3 
KPEAKSMED 2 2 2 2 3 
KPEAKSMOD 2 2 2 2 2 
KPEAKSMPPC 3 2 2 2 3 
KPEAKSCIQR 3 2 2 2 2 
KPEAKSCR 3 3 3 3 4 
KPEAKSMQ3M 4 3 3 3 4 
KPEAKSMTL 4 3 3 3 4 

 
6. Conclusions 

In this paper, a fast and simple technique has been proposed to estimate k which is an input argument 
of partitioning clustering algorithms. The technique so-called KPEAKS calculates the value of k by 
using various descriptive statistics of peak counts of features in datasets. Although there are several 
other options that the technique can offer for determining k, KPEAKSMQ3M and KPEAKSMTL were found 
to be the most successful according to majority of the findings from experiments on the synthetic and 
studied real datasets. 

As a final conclusion, the technique KPEAKS presents not only fast choices of k but also provides 
an opportunity to work on large datasets. Instead of using computationally expensive internal indices 
applied to the results from many time-consuming runs of clustering algorithms, k is calculated very 
quickly with simple formulations. Hence, a significant decrease in the required computation time to 
work with large datasets is expected. It is assumed that the accuracy of KPEAKS can be increased by 
additional procedures which remove or flatten little peaks or foothills which are very close to the higher 
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peaks in frequency polygons. In this direction, a future study on an algorithm to remove the foothills 
and take only major peaks into account for increasing the efficiency of KPEAKS is within our scope.  
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