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Abstract
The article presents an open-source and freely available natural language processing system for com-
parative policy studies. TheCAPBabelMachine allows for the automated classification of input files based
on the 21 major policy topics of the codebook of the Comparative Agendas Project (CAP). By using
multilingual XLM-RoBERTa large languagemodels, the pipeline can produce state-of-the-art level outputs
for selected pairs of languages and domains (such as media or parliamentary speech). For 24 cases out of
41, the weighted macro F1 of our language-domain models surpassed 0.75 (and, for 6 language-domain
pairs, 0.90). Besides macro F1, formostmajor topic categories, the distribution ofmicro F1 scores is also
centered around 0.75. These results show that the CAP Babel machine is a viable alternative for human
coding in terms of validity at less cost and higher reliability. The proposed research design also has
significant possibilities for scaling in terms of leveraging new models, covering new languages, and adding
new datasets for fine-tuning. Based on our tests onmanifesto data, a different policy classification scheme,
we argue that model-pipeline frameworks such as the Babel Machine can, over time, potentially replace
double-blind human coding for a multitude of comparative classification problems.
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Introduction

In the age of artificial intelligence (AI), along with many fields of social life, social science
research is expected to be disrupted by technological advances.1 Natural language processing
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(NLP) is situated at an intersection between information technology and linguistics, focusing on
qualitative, textual data instead of using numeric data as inputs. It aims to bring automated
solutions to various tasks, including machine translation, text summarization, or natural language
generation (see chatbots). One such task is classification: the assignment of units to pre-
determined classes.

In the first wave of machine-assisted classification from the 2010s, dictionary-based methods
and traditional machine-learning algorithms started to appear in research designs (Barberá et al.,
2021; Hillard et al., 2008; Laver & Garry, 2000; Wilkerson & Casas, 2017). By the 2020s, in the
second wave of leveraging machine learning techniques for various classification tasks, re-
searchers could supplant human coding with automated solutions by utilizing a new crop of NLP
resources: large language models (LLMs—on which many popular chatbot services are built)2

(Bommasani et al., 2021; Devlin et al., 2019; Kaplan et al., 2020).
Despite these developments, many traditional international research projects in the field of

comparative politics, such as the Manifesto Research on Political Representation (MARPOR) or
the Comparative Agendas Project (CAP), are aimed at solving such classification tasks
(Baumgartner et al., 2019; Baumgartner & Jones, 1991; Mikhaylov et al., 2012; Volkens et al.,
2009). The CAP design is an example of a topic coding enterprise built around a codebook of pre-
determined classes. The codebook covers major policy topics (21 of them, from education to
defense), and each unit of observation (covering a wide range of domains from newspaper articles
to public opinion poll questions, laws, and budgets) is assigned precisely one such code.

Both MARPOR and CAP had long relied on large-scale human coding for database devel-
opment. Yet, recent studies (Loftis & Mortensen, 2020; Máté et al., 2023; Navarretta & Hansen,
2022; Seb}ok et al., 2022; Seb}ok & Kacsuk, 2021) have successfully replicated human-level
coding proficiency with machine learning for a wide variety of domains and data. Yet the ap-
plication of LLMs is still in its infancy in comparative social research in general and for CAP-
coding in particular (for exemptions, see Frantzeskakis and Seeberg (2023); Máté et al. (2023);
Rytting et al. (2023)).

In this article, we set two objectives corresponding to a two-fold contribution to this literature.
Our first objective was to offer a viable alternative to double-blind human coding for the CAP
classification task regarding validity, reliability, and cost. We present a deep learning-based
solution to the CAP classification task with the help of multilingual LLMs. We detail how so-
called transformer models can be fine-tuned (trained) on diverse corpora (in terms of language and
data source domain) to provide a fast, reliable, and inexpensive tool for automatically coding a
large number of texts. Our second objective was to provide a technical description of our proposed
solution, which can serve as a template for additional multilingual projects that tackle automated
classification problems. To address this objective, we describe an open-source and free-to-use
solution built around these models called the CAP Babel Machine. The CAP Babel Machine is a
natural language processing system covering nine languages that aims to simplify and speed up
research projects for scholars with limited technical backgrounds.

Our results show that using state-of-the-art multilingual XLM-RoBERTa large language
models, the pipeline can produce gold standard-level outputs for nine languages with a potential
coverage of over 100 languages. The weighted macro F1 of our models, a widely used metric for
evaluating such solutions, trained on various language-domain pairs were, in 24 cases out of 41,
above 0.75 (and, for 6 language-domain pairs, even above 0.90). This confirms LLMs as viable
candidates to eventually replace human coders for the CAP task across a spectrum of languages,
domains, and text features.

In what follows, we first provide an overview of the extant literature. Next, we present our
research design for solving the CAP classification task. This is followed by a summary of the data
used for fine-tuning the large language models and the pipeline for the automated production of
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policy topic labels. The section on Results presents model outputs according to language and
domain. The Discussion explores three critical issues related to the usage of LLMs in comparative
research: avenues for improving model performance, external validity and cost. The Conclusion
weighs the comparative advantages (and drawbacks) of LLMs vis-á-vis human coding.

State-Of-The-Art Performance on the CAP Task

The validity of automated labels is traditionally measured against what is considered to be the gold
standard (or “most reasonable benchmark” (Rauh, 2018, p. 7) in the literature for such research
designs: the human coding of at least two well-trained coders (see double-blind human coding,
with a high level of inter-coder reliability—e.g., White et al. (2015)). Reliability metrics are often
presented simply in terms of inter-coder agreement (or joint probability of agreement), measured
in percentages (e.g., Breunig and Schnatterer (2019) and McLaughlin et al. (2010)).

Krippendorff (2004) proposes a more refined and generalized metric that considers the number
of coders, the number of categories, and the relationship between coding outcomes and those
expected by chance. In addition, Cohen’s kappa is a commonly used inter-coder reliability
measure (Hemphill et al., 2019). In the Comparative Agendas Project (CAP) literature, Gava et al.
(2017), Jungblut et al. (2023), and Kuipers and Timmermans (2021) present such metrics.

The international CAP codebook covers 21 “major” policy topics ranging from macroeco-
nomics to public lands, with over 200 sub-topics (“minor” topics) for each major topic (see Bevan
(2019, pp. 24–25) — in this article, we only focus on major topics). While slight deviations are
common from the international standard, most projects use policy topic categories that conform to
the comparative codebook. Inter-coder agreement or alpha levels are the most commonly shared
for projects based on human coding. Krippendorff suggested that an acceptable intercoder re-
liability level comes at an alpha score higher than 0.8 (Krippendorff, 2004, p. 241). Proposed
intercoder-reliability scores are also in this range.

For instance, the Dutch project requires a minimum of 95% intercoder reliability on the topic
level (Timmermans & Breeman, 2019, p. 130), while the UK team observed a consistent range of
85–90% intercoder reliability (Bevan & Jennings, 2019, p. 178), while the Florida project aimed
for a 90% agreement (Fahey et al., 2019, p. 204). Overall, K-alpha scores reported in the CAP
literature are listed in the 0.8–0.9 range (Jungblut et al., 2023, p. 174; Kuipers & Timmermans,
2021, p. 365).

Extant computer-based machine-coding solutions to the CAP multiclass classification task
experimented with both rule-based and ML-based approaches (as well as mixtures of them —

Burscher et al. (2015), Frantzeskakis and Seeberg (2023), and Karan et al. (2016)). “Computer-
assisted” (Collingwood & Wilkerson, 2012; Hillard et al., 2008; Lucas et al., 2015), “automated”
(Flaounas et al., 2013; Quinn et al., 2006; Young& Soroka, 2012), or “semi-automated” (Breeman
et al., 2009; Jurka, 2012; Kleinnijenhuis et al., 2013) studies have produced results that speak to
the relative usefulness of these methods. On several classification tasks unrelated to CAP, LLMs
soundly outperformed traditional machine learning (ML) algorithms (Conneau et al., 2019; Devlin
et al., 2019). Nevertheless, LLMs have only been applied to the CAP classification problem in a
few examples (see below).

For projects based on machine coding, Seb}ok et al. (2022, p. 3626) provided a detailed
comparison (see Table 1). Therefore, we only reviewed and updated their summary here. The
extant empirical literature—using various machine learning classifiers—on the CAP tasks exhibits
an accuracy ranging between 60.5 and 82.2 (Barberá et al., 2019; Purpura & Hillard, 2006),
precision values from 39.0 up to 71.3 (Albaugh et al., 2014; Barberá et al., 2021; Dun et al., 2021),
while F1-scores when reported are around 0.70 (Burscher et al., 2015).
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As for the limited number of studies using LLMs on the CAP task, Frantzeskakis and Seeberg
(2023) used a BERT model to classify laws on the African continent and reached an F1 score of
0.84. Other preliminary work explored the GPT-3 model’s performance using prompting to apply
the CAP coding scheme to New York Times front pages and U.S. Congressional hearing
summaries. Despite extensive prompt experimentation, the GPT-3 model could not surpass 55.0
and 60.0 accuracy on the two datasets, respectively (Rytting et al., 2023). Large language models
also work well with translated texts. Máté et al. (2023) demonstrated that machine translation
could be used to leverage transfer learning using LLMs and achieved a macro F1 score of 0.75 on
classifying Polish laws into CAPmajor topics with a BERTmodel that was fine-tuned on English-
translated Hungarian laws and bills.

Based on this review of the literature, there is no convergence on a single cutoff point that we
could accept as standardized: we can broadly consider a 0.70–0.85 F1-score range as the current
state of the art, depending on text domains, languages, modeling paradigms, average input text
length (which differs vastly between tweets and laws), and data sizes. Even in a best-case scenario,
precision levels (a key metric of validity) usually peak at the 80–90% level due to several factors.

These variables include the complexity of the underlying policy content of the units coded
(such as newspaper articles or laws) and that of the codebook and rules (single code per ob-
servation). Due to these various factors, designating a single, all-purpose cutoff point would not
even be desirable. Nevertheless, based on all available evidence, for the sake of simplicity, in our
modeling work, we settled on a weighted F1 benchmark of 0.75 as the threshold for “research-
grade” results.

Data and Methods

Although large-scale language models have revolutionized computer-based text analysis methods,
the field is still dominated by studies based on English-language data. Pre-training LLMs
(monolingual and multilingual models) and the limited availability of labeled data for a given task
can prevent projects from achieving state-of-the-art results for low-resource languages. In sum,
regarding the three critical aspects of comparative classification projects (validity, reliability, and
various forms of cost), the lack of state-of-the-art classification solutions (as opposed to algorithms
or trained models) is still a limitation for practical research.

We addressed these limitations in a multi-step process. First, we created a deep learning-based
solution to the CAP classification task with the help of multilingual large language models.
Second, we set up an open-source and free-to-use natural language processing system (called
the CAP Babel Machine) built around these models trained for a concrete classification task.

Table 1. Fine-tuning Dataset Composition by Languages.

Language Observations Percentage of Total

English 1,147,783 43.2
Hungarian 813,852 30.6
Danish 248,163 9.3
Spanish 225,686 8.5
Dutch 79,975 3.0
German 78,850 3.0
French 28,496 1.1
Portuguese 19,850 0.7
Italian 14,645 0.6
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This section presents the data used for fine-tuning and testing the model, model selection and
training, and the pipeline in which the model generates predictions based on user uploads.

We procured data from two sources: publicly available datasets from the Comparative Agendas
Project’s website (comparativeagendas.net) and data kindly provided by the members of the CAP
international community.3 To our knowledge, all datasets were labeled by human coders and
conformed with the strict quality requirements of the CAP project. These corpora constituted the
training sets for fine-tuning LLMs and served as the gold standard for evaluating their
performance.

In total, the training data contains 22 categories (21 CAP major policy topics and a “no policy
content” category), nine languages (see Table 1), and ten domains (media, social media, par-
liamentary speech, legislative, executive speech, executive order, party manifesto, judiciary,
budget, and public opinion) for a total of 2.66 million rows (see Table 1, and Table A1 in Appendix
A).4 Due to limited domain-level data, we opted to combine jurisdictions (such as the EU and the
UK) into bigger pools based on shared languages (see Figure 1). As Table 1 shows, the language
composition of the compiled database is imbalanced: it covers multiple languages, but English and
Hungarian contents are overrepresented.

In the harmonized database (see Figure 2), we used 21 major policy topics and an additional
“None” category for data without policy content (notably, not all data sources had instances for all
policy topics). The imbalanced nature of the policy topic distribution of our final database is also

Figure 1. Distribution of domains by languages.
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well documented in the comparative agendas literature (Loftis & Mortensen, 2020; Seb}ok &
Kacsuk, 2021).

We relied on fine-tuned large language models to predict CAP major topics on out-of-sample
data. Current cutting-edge solutions use the Transformer architecture relying on the seminal work
of Vaswani et al. (2017). The advantage of the Transformer architecture is that it can be combined
with unsupervised learning for training (removing task-specific training) and the ability to fine-
tune the models with domain-specific training data. Yet despite the proliferation of GPT-4 style
commercial services, the open-source, multilingual large language model space remains limited.

Based on the literature and initial testing, we used the XLM-RoBERTa (large) model over
smaller multilingual BERT models as it offers significantly better performance (Conneau et al.,
2019).5 The multilingual BERT model supports 104 languages (using 110 million parameters for
the base model), whereas the XLM-RoBERTa model supports 100 languages (270 million pa-
rameters for the base model). For the unsupervised pre-training of XLM-RoBERTa, Conneau et al.
(2019) used a filtered CommonCrawl database with over 2TB of data. This represents a significant
increase in training data for low-resource languages over the multilingual BERT model.

As part of the pre-processing, we removed line breaks and superfluous whitespaces to clean the
data (but otherwise left the texts as they were). Where applicable, we truncated the texts to 512
tokens and dropped those below five tokens to help with computational speed.6 The resulting
mean word count per observation was 63.2, with a standard deviation of 102 and a median of 23.

Figure 2. Category distribution in the pooled fine-tuning data.
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The XLM-RoBERTa model is similar to most transformer-based models in that it can only take
512 tokens as input. To access the pre-trained model checkpoint, we used the Huggingface
repository, and for the fine-tuning, we used the Transformers library.7 The parameters for the fine-
tuning process were a batch size of 8 and a learning rate of 5e-6. We also used a dropout rate in the
final classification layer of 0.1 to avoid overfitting the models.

The data for the fine-tuning was split into a training (80%) and test set (20%) by stratified
sampling, where each stratum was calculated as the share of each source file (see Appendix A)
within our final database containing all available data. In practice, all source data files were
represented in the training and the out-of-sample test set with the 80/20 split. This sampling
strategy ensured that all source data were represented proportionally in the fine-tuning data,
regardless of language or domain. All the fine-tuned models were trained on a single NVIDIA
A100 GPU with 80 GB RAM. In total, we fine-tuned 61 XLM-RoBERTa models: 1 pooled model
(containing all data, for benchmarking purposes), 10 domain models (for strictly media data, etc.),
9 language models, and 41 language-domain (Danish-Executive speech) models.

Our evaluation metric for model performance was the weighted mean F1 score (also called
macro F1), which accounts for the imbalanced data used for the fine-tuning. It captures model
performance in a single value instead of relying on measures that might be easily inflated (ac-
curacy) or only provide part of the performance picture (precision or recall). Macro F1 is the
average of the class-based F1 scores. We weighted this average by the number of observations per
category in the out-of-sample test data (this metric is also sometimes referred to as support) to
account for label imbalance.

Our second contribution, besides fine-tuning LLMs for CAP classification, was to open up this
resource to all interested parties at no cost (in terms of computing power or learning curve). The
automated process for assigning CAP codes to uploaded corpora is based on the workflow shown
in Figure 3. Users can upload their corpus through the babel.poltextlab.com webpage. The data is
then moved into cloud storage, which triggers one of several large language model builds. The
appropriate model out of the 29 options (selected based on the model-weighted macro F1
scores— see Figure 4) then automatically predicts policy topics for the text observations of the
uploaded corpus. The models can handle a variety of languages, domains, and units of text (see
above) and can be scaled up by adding new training data.

The labeling process is deterministic as the model runs in an inference mode, which turns off
the stochastic process (e.g., dropout during the fine-tuning). This means that for the same input
text, the same label is generated regardless of how many times it is uploaded. In addition to the
predicted labels, the model also provides the softmax score of the three most likely categories.
This additional information can be used to assess the confidence one should have in the assigned
label.8

Results

A critical feature of any automation project is whether the underlying trained model is capable of
producing research-grade results. Above, we defined an F1 score of 0.75 as a competitive
performance level in terms of validity (which is a key feature of research design competitiveness
besides reliability and cost—see Conclusion). We tested the respective performance of a total of
61 XLM-RoBERTa multilingual models against this benchmark. We fine-tuned the models on
different training sets covering a pooled dataset (baseline model), one per each language (9), one
for each language-domain pair (41), and one for each domain (10).

First, we fine-tuned a benchmark model on the pooled data containing all languages and
domains (see Figure 5). The language-by-language performance of the model shows considerable
variation, starting from weighted macro F1 scores of 0.83 down to 0.30. Notably, the language
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with the largest training set share (English) is in the middle of the pack with a weighted macro F1
of 0.59.

Some of the counterintuitive results may stem from the pooled fine-tuning dataset’s multi-
lingual and multi-domain (e.g., media, legal, and political) nature. Multilingual models must
simultaneously learn the features and structure of multiple languages, and they might confuse
language features. With single-language fine-tuning, the model focuses on the features of only one
language and suffers from fewer confounding factors (Pires et al., 2019).

Therefore, in the second iteration, we trained language-specific models which are unique to
each language in the database. Figure 5 shows our results, which show significant performance
improvements (without exception) over the baseline model. Hungarian and Spanish data benefited
the most from this approach: the Hungarian language macro F1 increased from 0.30 to 0.83, and
the Spanish from 0.48 to 0.62. Overall, the results for some languages were already gold-standard
quality, while others still underperformed vis-á-vis research-grade human results.

In a third step, we trained even more targeted XLM-RoBERTa models on language-domain
subsets (e.g., English-legal, Dutch-media). The results in Table 2 show that this additional step
also yields large improvements.9 This is true with the caveat that variation between domains for
the same language is still considerable. Excluding one Spanish outlier (“Parliamentary speech”
with 0.38) and one Hungarian (“Budget” at 0.99), most results come in between 0.62 and 0.92
weighted macro F1.10 On average, across languages, the “Legislative” domain has the highest
model performance (with around 0.86 average macro weighted macro F1), followed by the
“Executive order” (with 0.80).

Figure 3. Flowchart of the CAP babel machine pipeline.
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Some domains are characterized by mediocre performance, such as the “Party manifesto” and
“Executive speech” (at least compared to the other domain results). In the “Media” domain, a large
variance is observable, with Dutch media achieving a 0.96 weighted macro F1 and German media
with 0.62. Nevertheless, the results in Table 2 show state-of-the-art performance in many cases (a
weighted macro F1 score above 0.75 in 24 out of 41 models and in 6 cases, even above 0.90).

Finally, exploring the language-domain models’ performances on the category level shows that
for most major topic categories, the distribution of micro F1 scores is centered around the 0.75
value (see Figure 6). The chart presents a micro F1 score distribution for 41 models

Figure 4. Decision flowchart for prediction model selection.
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(language-domains) as smoothed density curves. The interpretation is similar to that of histo-
grams: more frequent F1 scores have higher density scores and vice versa.

Some policy categories, such as “Health,” have a relatively normal distribution of F1 scores
across models. However, in some cases, we observe long tails (e.g., “Public lands”) or multimodal
distributions (e.g., “Foreign trade”). These might result from category overlaps between some
policy categories or the uneven quality of training data. Nevertheless, Figure 6 shows that despite
the often state-of-the-art results, there are variations in howmodels perform on a major topic level.
The figure also features a vertical line to signal the average of the medians of the language-domain
models. Finally, Figure 7 (based on Danish label-level data) shows no systematic patterns of
mistaking one category for another.

Discussion

How to Improve Performance?

While, on average, our LLM-based results presented above are competitive with human coding
and surpass those achieved with traditional machine learning, they still produce substandard
results in many cases. One of the most straightforward solutions to improving model performance
is leveraging more fine-tuning data for the given task. For the use case presented in this article,
such a clear connection does not hold. This is evidenced by the discrepancy in the rank orders in
Table 1 (training data size per language) and Table 2, which details model performance for data

Figure 5. Performance of pooled versus language-specific models (weighted macro F1).
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pooled across domains. English language models are in the middle of the pack despite having been
fine-tuned on data an order of magnitude larger than other models for other languages, such as
Dutch or French.

What seems more critical is to train separate language-domain models with suitably large fine-
tuning data for each such model. Yet, training data size is not a get-out-of-jail card, even in these
cases. As Table 2 above and Figure 8 below show, there are no readily discernible clusters of
languages, sample sizes, or domains that would affect the fine-tuned model performance. Most
language-domain pairs have a relatively low share (<30%) in the training data and a weighted
macro F1 between 0.75 and 0.85. This warrants further analysis of additional factors.

One such area of improvement is related to the quality of input data used for fine-tuning. To
tease out its potential impact on performance, we ran tests on our original Hungarian media corpus
(containing 88,319 front-page articles from 1990 to 2014). After discussing data quality issues
with the creators of this corpus (one of the laggard datasets when it comes to F1 scores), we
removed one government cycle-worth of input data (2010–2014) where inter-coder reliability was
lowest. As a result, model performance improved from 0.49 to a 0.69 weighted macro F1 score
despite dropping 21,450 coded articles. Based on this evidence, data quality may be a critical
explanatory factor of below-average model performances.

A third area of improvement is related to data homogeneity. Our approach (based on language-
domain pairs) can be refined by introducing jurisdiction-language-domain models. This would
affect current results for English (for which American, British, and EU data was used—see

Figure 6. Distribution of micro F1 scores and their medians across CAP topic.
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Appendix A). Nevertheless, such disaggregation would further limit sparse fine-tuning data for
various domains. Fourth, in contrast to traditional machine learning algorithms, data cleaning and
feature selection is less of an issue as LLMs require no excessive pre-processing, as it reduces
useful information in fine-tuning. Discarding extra whitespace and row breaks may have some
effect, but overall, standard pre-processing procedures and handling class imbalance are not
proven to have an impact (Máté et al., 2023, pp. 32–33).

A fifth layer of model performance quality checks can focus on class-level heatmaps generated
from confusion matrices of language-specific models (see Figure 7 above). Our tests show no
cross-lingual trends of misclassified codes, and given the low counts for mispredictions, they are
unlikely to significantly impact overall, weighted F1 scores. Finally, one way to increase the
predictive performance of models is to deploy additional techniques, including hyperparameter
tuning (see our results related to Spanish speech data) and ensemble voting (where the results from
multiple models are aggregated into a “majority” prediction).

Introducing elements of active learning (Miller et al., 2020) into the research design is also an
option. In such a process, a new subset of machine-labeled data is selected for the worst-
performing classes for in-process validation purposes (Seb}ok & Kacsuk, 2021, p. 36). After
validation, the newly acquired hand-coded observations are integrated into the training corpus,
augmenting the training dataset’s quality and quantity (Seb}ok et al., 2022). However, it is im-
portant to note that this process incurs additional labor costs and requires more time and
computational resources than standard learning processes.

Figure 7. Confusion matrix for the incorrect labels (for Danish data).
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External Validity

The CAP Babel Machine was designed with an eye toward generalizability. We chose the
Comparative Manifesto Project/MARPOR to test its external validity. It uses a category system
whereby each quasi-sentence of every manifesto is coded into one and only one of 56 standard
categories. The 56 categories are grouped into seven major policy areas and are designed to be
comparable between parties, countries, elections, and across time (Lehmann & Zobel, 2018; Merz
et al., 2016).

To buttress our claim for generalizability, we applied the CAP fine-tuning and inference
workflow to Manifesto data as a proof-of-concept exercise. We downloaded the English, Nor-
wegian, and Spanish labeled data via the manifestoR package and created a training/test split of
80/20 (Lewandowski et al., 2020). In the next step, we fine-tuned an XLM-RoBERTa model using
the same parameters as we did for the CAPmodels. Without additional modeling work (which was
extensive for achieving state-of-the-art CAP results), our average Manifesto results were still
above 0.60 (weighted macro F1) for the smaller languages and 0.55 for English data (see Table 3).

The inferior results compared to CAP models are also a function of the significantly longer
category list of theManifesto project (where the probability of randomly choosing the correct label

Figure 8. Domain share of language corpora and model performance. Note: Language-domain models with
above 0.90 and below 0.65 weighted macro F1 are labeled. The shaded area represents the 95% confidence
interval. The fitted OLS regression line’s equation is y = 0.758 + 0.067x, with an R squared of 0.019, where y
is the weighted macro F1 score, and x is the domain’s share within each language corpora. The estimated
effect of the domain’s share is not significant.
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is 1/56 + 1, where the extra label is 0). Furthermore, micro F1 performance varies significantly as
the models achieved an F1 close to 0.80 for some categories (the minimum results were omitted as,
for technical reasons, they had a value of 0 for multiple classes due to a low number of ob-
servations). As for the front end of the pipeline, adding an alternative coding scheme only requires
a single additional roll-down menu for choosing the classification task and associated codebook.
The model selection process would be simplified on the backend as manifestos constitute a single
domain. While these results are only preliminary, they demonstrate the viability of our pipeline
and its applicability to additional classification tasks, provided there is ample training data for
model fine-tuning.

Cost Calculations for Human and LLM-Based Workflows

Another dimension of research design competitiveness is cost. Its various facets include the
required learning curve for startup, time, and monetary cost. Table 4 previews estimations for the
time and monetary cost required to set up a CAP-style research project for 5,000 and 100,000
observations for a single-language project labeling newspaper articles (we provide the detailed
calculations below).11

The LLM-based research design is all about initial investment. The deployment of LLMs
requires specialized hardware (GPUs) for both pre-training and fine-tuning models. Since suitable
pre-trained models are freely available, our main concern is fine-tuning. While it is possible to
fine-tune smaller models on smaller GPUs available on desktop computers, the process is
prohibitively time-consuming. This all but means that researchers need access to some cloud
computing platform (commercial or non-commercial); to be able to use dedicated GPUs; and
execute code, manage data, and develop models remotely. While we do not believe that these are
insurmountable barriers to entry for quantitatively minded social researchers, they might pose
significant fixed costs to overcome.

It is important to note that one can only provide ballpark estimations for deployment costs.
Concrete expenses could depend on a variety of factors including hardware specifications, code
configurations, seniority of coder, or length of input text. We are excluding (sometimes con-
siderable) research management costs for human projects. We also exclude the salary of the PI,
who is assumed to be a quantitative social/data scientist.

Table 3. Model Performance for Manifesto Datasets.

Language Weighted macro F1 Max. Micro F1 Std. dev. Micro F1

English 0.55 0.76 0.27
Norwegian 0.63 0.80 0.3
Spanish 0.61 0.77 0.24

Table 4. Overview of Costs in USD for a Project of 5000 and 100,000 Newspaper Articles.

Human Labeling Workflow
LLM-Based Labeling

Workflow

Observations Cost Days Cost Days

5,000 5,800 73 6,501 71
100,000 100,800 1260 6,503 71
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Regarding manual coding, we should always expect to train at least two coders, which can take
up to 1 month (Bulut & Yildirim, 2019; Fahey et al., 2019). Here, we calculated with a modest
estimation of 40 hours for training per person and 20 observations labeled in an hour (both need to
take place for two independent coders). For a project of 5,000 observations, 10,000 observations is
the final count (for two research assistants), which can be done in 580 hours for a total cost of USD
5,800. A similar project for a larger dataset of 100,000 observations (which would cover 10 front-
page articles per 300 days a year for a dataset time frame of around 33 years) would cost USD
100,800. For an overview of the calculation inputs, see Table 5.

A quantitatively minded social scientist/data scientist can master a fine-tuning pipeline in
Python in up to 2 months (320 hours). A good quality (double-blind coded) training set of 5,000
can yield decent results for model fine-tuning, which requires 10,000 observations coded (for
5,000 USD) to which the cost of training (800 USD) should be added also in this case (for a total
cost 5,800 USD). Both model fine-tuning and labeling of virgin data must be done on GPUs due to
computational and runtime requirements. Fine-tuning an LLM takes a few hours to a day with the
appropriate infrastructure (NVIDIA A40 and A100 GPUs). We calculated half an hour for using
the 5,000-row training data for fine-tuning, with an average hourly cost of USD 6.

With a trained model at hand, the coding process on newly submitted data takes from a few
minutes to a few hours (which only requires some fundamental maintenance cost—which we
ignore here—besides the computational cost). The cost and runtime of labeling are substantially
smaller than that of fine-tuning. Based on the Google Cloud Platform billing information for the
Babel project, labeling takes around 3 minutes for 5,000 rows and 21 minutes for 100,000 rows
and costs USD 0.15 and USD 1, respectively.

Calculating with 8-h work days, the length of the human project is 73 days for a 5k project and
1,260 days for a 100k project. The length of the machine coding project is the sum of an initial 500
hours, or 63 days (as the training set creation can run parallel to mastering LLM-fine-tuning), up to
seven days of setting up VMs and 3–21 minutes of labeling time depending on project size. Based
on these calculations, the LLM-based workflow is competitive for the smallest of CAP-style
media projects. It is vastly preferable for full-scale projects covering multiple decades’ worth of
data. The outcome of this rough comparison shows that as projects scale up, an LLM-based
research design has a clear competitive advantage in terms of cost and time (and a live system can
be deployed for future coding at a minimal cost).

Table 5. Costs for a Project of 5000 and 100,000 Newspaper Articles.

Method Task

N = 5k N = 100k

Time in
hrs

Cost (USD)

Time in
hours

Cost (USD)

Initial
Cost/hr

Variable
Cost/hr Total

Initial
Cost/hr

Variable
Cost/hr Total

Human coding (for
two research
assistant-RA)

Training 80 10 - 800 80 10 - 800
Coding 20 obs/hr for

2 RAs)
500 - 10 5,000 10,000 - 10 100,000

LLMs (data
scientist)

Learning curve 320 - - - 320 - - -
Training set 500 10 0 5,000 500 10 0 5,000
Fine-tuning 0.5a 3b - 1.5 0.5 3b - 1.5
Labeling 0.05c - 3b 0.15 0.35c - 3b 1

aBased on runtime metrics recorded during fine-tuning of the CAP Babel models.
bBased on Google Cloud Platform’s hourly pricing for the n1-standard-1 machine type ($0.05) and the hourly pricing of 1
NVIDIA V100 GPU ($2.48).
cbased on runtime metrics recorded during labeling using the CAP Babel Google Cloud Platform virtual machines.
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Conclusion

Our primary objective in this article was to provide a practical solution to researchers applying the
CAP classification task to virgin corpora. To achieve this, we set up a pipeline that, for correctly
uploaded datasets, may produce CAP major topic prediction results within an hour. The best
model results were realized with LLMs fine-tuned on language-domain training sets (e.g., Dutch
language—speech domain). By using multilingual XLM-RoBERTa large language models, the
pipeline produced state-of-the-art level outputs for selected pairs of languages and domains (such
as media or parliamentary speech).

For 24 cases out of 41, the weighted macro F1 of our language-domain models surpassed 0.75
(and, for 6 language-domain pairs, 0.90). Besides macro F1, for most major topic categories, the
distribution of micro F1 scores is also centered around 0.75. These results show that the CAP
Babel machine is a viable alternative for human coding in terms of validity at less cost and higher
reliability. Despite limited training data, it produced gold standard level performance (a weighted
F1 of 0.75) for more than half of the language-domain pairs tested.

The proposed research design has significant possibilities for scaling with new models,
languages, and datasets for fine-tuning. In light of promising first results and a test of external
validity on Manifesto data, we argue (echoing Grimmer and Stewart (2013, p. 281)) that the
proposed design can–over time–replace double-blind human coding for a multitude of com-
parative classification problems as the new gold standard. However, even until such a deter-
mination can be unequivocally made, a discussion of the comparative advantages and drawbacks
of LLM-based workflows is in order. Since the bulk of the present article focused on measuring the
validity of model outputs and also provided detailed cost estimates, we conclude our analysis by
contemplating the reliability of Babel Machine results.

According to Krippendorff (2004, p. 211), “a research procedure is reliable when it responds to
the same phenomena in the same way regardless of the circumstances of its implementation.”
Optimal reliability means receiving the same output (in our case, major topic class) for the same
input regardless of the number of times the process is initiated. The CAP Babel Machine
eliminates such reliability issues: it always returns the same code for the same observation. It also
produces softmax scores that allow for additional confidence analysis of outputs. In short, it
provides superior results on this dimension of the research design in comparison to human coding.

In sum, our advice to researchers sitting on the fence regarding the incorporation of LLMs into
their research design is to embrace them even if they are only used for validating hand-coded
results. This can be done at virtually no cost via the Babel Machine (or at some cost with
commercial services). Nevertheless, our current results and those of similar recent studies point to
the superiority of LLMs vis-á-vis both human coding and traditional machine learning in terms of
validity (F1) while its 100% reliability rate is a theoretical maximum. For those technically
inclined, therefore, our advice is to use LLMs as a first choice and resort to human coding for
validation or active learning processes focusing on less tractable domains/languages.
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Notes

1. We are thankful for the anonymous reviewers for their useful and actionable comments. We thank the
discussants and participants of the Comparative Agendas Conference (2023), COMPTEXT Conference
(2023), and ECPR General Conference (2023) for their suggestions.

2. Models that assign probabilities to word sequences and are trained using at least billions of words.
3. The sources were: Adler and Wilkerson (2015), Alexandrova et al. (2014), Belchior et al. (2019),

Borghetto et al. (2019), Breunig and Schnatterer (2019), Chaqués-Bonafont et al. (n.d), Green-Pedersen
and Mortensen (2019), Grossman (2019), Guinaudeau (2018), John et al. (2013), McLaughlin (2019),
Seb}ok and Boda (2018), The Policy Agendas Project at the University of Texas at Austin (2017),
Walgrave et al. (n.d), Wolbrecht (2016).

4. We followed the domain classification established on the official CAP website’s data repository page
(https://www.comparativeagendas.net/datasets_codebooks). We added the category “social media” and
we separated the original “Parliamentary & Legislative” category into “parliamentary speech” and
“legislative” (short for legislative documents). Similarly, we separated the “PrimeMinister & Executive”
into “executive orders” and “executive speech”. Regarding CAP major topic names we refer to
“Government operations” as “Government” in the text.

5. At the time of writing, the options for open-source and multilingual models were limited to few widely
used and reliable models: XLM, BERT (multilingual), XLM-RoBERTa, and for neural translation M2M
and MBart. The larger open-sourced LLMs which are predominantly focused on generative text output
are not truly multilingual. Meta’s Llama 2’s pre-training data is 89.7% English, and the second largest
language is German with a 0.17% share (Touvron et al., 2023). For other new LLMs no information is
shared on pre-training data composition (the most recent example is the Mistral LLM).

6. We tokenized the texts using the XLM-RoBERTa tokenizer from the Transformers library. It is important
to note that tokens are not equal to words, as when a word is not in the vocabulary the tokenizer will
create sub tokens. e.g., GPU will be GP, U.

7. The model checkpoint can be accessed via this link: https://huggingface.co/xlm-roberta-large. For the
Transformers library documentation see: https://huggingface.co/docs/transformers/index.

8. The softmax function converts the model output into a probability distribution of N outcomes, whereN is
the number of known categories. One alternative measure of uncertainty, k-fold cross validation of input
data, would result in a k-fold increase of run times and cost.
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9. To check the robustness of our models, we hyperparameter-tuned the Spanish speech model on a 4*5
parameter space (batch sizes: 4, 8, 16, 32; learning rates: 1e-3, 1e-5, 5e-5, 1e-6, 5e-6). The best-
performing model achieved 47% accuracy, which is very similar to the Spanish speech model in the
table. Based on this, we expect that the parameters used for fine-tuning our models were appropriate.

10. A possible reason for near-perfect model performance on the Hungarian-budget domain is that budget line
items are very repetitive across time. Hungarian budget line items are very repetitive over time (such
“Salaries for Defense Ministry personnel”), which results in a lot of duplication or quasi-duplication. This
means out-of-sample test data is linguistically very similar to the data used for fine-tuning the model.

11. Such calculations can only provide a ballpark number as concrete costs may vary depending on various factors.
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