
ar
X

iv
:1

30
2.

05
63

v2
  [

as
tr

o-
ph

.S
R

]  
15

 S
ep

 2
01

3
DRAFT VERSIONNOVEMBER 10, 2018
Preprint typeset using LATEX style emulateapj v. 5/2/11

TRIPLE-STAR CANDIDATES AMONG THEKEPLERBINARIES

S. RAPPAPORT1, K. DECK1, A. LEVINE2, T. BORKOVITS3, J. CARTER4,5, I. EL MELLAH 6, R. SANCHIS-OJEDA1, B. KALOMENI 7

Draft version November 10, 2018

ABSTRACT
We present the results of a search through the photometric database ofKepler eclipsing binaries (Prša et

al. 2011; Slawson et al. 2011) looking for evidence of hierarchical triple star systems. The presence of a third
star orbiting the binary can be inferred from eclipse timingvariations. We apply a simple algorithm in an
automated determination of the eclipse times for all 2157 binaries. The “calculated” eclipse times, based on
a constant period model, are subtracted from those observed. The resultingO−C (observed minus calculated
times) curves are then visually inspected for periodicities in order to find triple star candidates. After elimi-
nating false positives due to the beat frequency between the∼1/2-hourKeplercadence and the binary period,
39 candidate triple systems were identified. The periodicO−C curves for these candidates were then fit for
contributions from both the classical Roemer delay and so-called “physical” delay, in an attempt to extract a
number of the system parameters of the triple. We discuss thelimitations of the information that can be inferred
from theseO−C curves without further supplemental input, e.g., ground-based spectroscopy. Based on the lim-
ited range of orbital periods for the triple star systems to which this search is sensitive, we can extrapolate to
estimate that at least 20% of all close binaries have tertiary companions.
Subject headings:stars: binaries: general — stars: formation — stars: triple— stars:

1. INTRODUCTION

Triple star systems are appealing objects for study for a
number of reasons. The orbital architecture and masses of
the constituent stars can inform us about the not-so-well un-
derstood process of the formation of systems of multiple stars
(see, e.g., Boss 1991; 1995; Bodenheimer et al. 2000; Sterzik,
Tokovinin, & Shatsky 2003; Bate 2009; Reipurth & Mikkola
2012). As one example, it is known that close binary sys-
tems cannot have formed in their current configurations; dur-
ing their protostellar phase the stellar radii would have been
much too large to fit inside their current orbits. The presence
of an orbiting third star in the system could provide a natu-
ral mechanism, through Kozai cycles (Kozai 1962) with tidal
friction, for the initially wide binary to lose angular momen-
tum and become close (Kiseleva, Eggleton, & Mikkola 1998;
Eggleton & Kiseleva-Eggleton 2001; Fabrycky & Tremaine
2007). This mechanism has also been proposed as a way to
explain the blue-straggler stars found predominantly in globu-
lar clusters (Perets & Fabrycky 2009). The orbital architecture
of a triple star system can also in principle inform us about the
final contraction of the interstellar cloud that formed the sys-
tem, provided the dynamical evolution of the system has left
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the initial configuration relatively unaltered (see, e.g.,Boss
1991; Bate 2009; Reipurth & Mikkola 2012).

Moreover, understanding the relative frequency of binaries
vs. triples and quadruples (see, e.g., Tokovinin et al. 2006;
Pribulla & Rucinski 2006; Raghavan et al. 2010) is important
in anticipating what other unseen stars in any particular sys-
tem may be present. The hypothetical presence of such bod-
ies may be important in explaining various effects that are ob-
served in these binaries, but not otherwise explained (see,e.g.,
Eggleton & Kiseleva-Eggleton 2001, and references therein).
Finally, while studies of binary star evolution, and especially
the phases involving mass transfer, have dramatically trans-
formed our overall understanding of stellar evolution and the
exotic remnants, such as binary neutron stars, that are leftin
the late phases, studies of the little-explored triple starevolu-
tion promise to involve yet several more layers of complexity.

There are at least five ways of finding triple star systems.
These include (i) visually resolving bound star systems, in-
cluding with adaptive optics and optical/IR interferometry
(see, e.g., Tokovinin et al. 2006; Rucinski, Pribulla, & van
Kerkwijk 2007; Raghavan et al. 2010). (ii) Observing the
presence of three different stellar spectra in an apparently
single object provides an excellent starting point for the dis-
covery of triples (see, e.g., Zucker, Torres, & Mazeh 1995;
D’Angelo, van Kerkwijk, & Rucinski 2006). (iii) Doppler
spectroscopy (i.e., measurements of radial velocity) carried
out over intervals at least as long as the binary period in the
system, and a substantial portion of the period of the triple, is
the most informative (see, e.g., Carter et al. 2011). (iv) Direct
observations of eclipses by all three bodies is also exception-
ally interesting, but such systems are relatively rare (see, e.g.,
Carter et al. 2011; Derekas et al. 2011; Carter et al. 2013).
Finally, as has been done for more than a century (v) long-
term timing of binary eclipses can reveal periodic perturba-
tions to the otherwise linear progression of eclipse times with
cycle number (see, e.g., Irwin 1952; Fabrycky 2010; Steffen
et al. 2011; Gies et al. 2012; Borkovits et al. 2013). It is the
latter approach which is the subject of this paper. We also
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note that this method of timing variations has been used to
great success in measuring orbits and masses of multi-planet
systems (see, e.g., Holman et al. 2010; Lissauer et al. 2011;
Carter et al. 2012), though the mass and period ratios of the
perturbers are different in planetary systems vs. triple star sys-
tems.

However, each of these methods suffers from some limi-
tations, and each probes different regimes in the ratio of the
binary period to that of the triple systems. In the case of tim-
ing binary eclipses, this can be done quite accurately from
ground-based measurements, at least on bright objects, and
such studies have provided substantial hints of the presence
of third bodies (see, e.g., Pribulla & Rucinski 2006). The dif-
ficulty here has been that ground-based eclipse timing studies
are subject to frequent interruptions due to the diurnal, lunar,
and seasonal cycles, not to mention the weather. In this work
we make use of three years of nearly continuous observations
by Keplerof some 2000 eclipsing binaries to identify candi-
dates for triple star systems.

TheKeplermission (Borucki et al. 2010; Koch et al. 2010;
Caldwell et al. 2010) has been observing some 157,000 stars,
including∼2000 eclipsing binaries, for the past three years.
The continuous monitoring of these eclipsing systems, in
combination with the exquisite high photometric precisionof
theKeplermission (Jenkins et al. 2010a; 2010b), is unprece-
dented in the history of observational astronomy. As a result,
this photometric data set of eclipsing binaries is able to make
a serious contribution to the endeavor of identifying promis-
ing triple star candidates for followup studies of radial veloc-
ity via Doppler spectroscopy. Already, theKepler observa-
tions have yielded some five triple star systems identified di-
rectly by third-body eclipses of the binary (Carter et al. 2011;
Derekas et al. 2011; Slawson et al. 2011) while a number of
others have been inferred to be triples by evidence for sys-
tematic eclipse timing variations (“ETVs”) of binaries (Fab-
rycky 2010; Slawson et al. 2011; Steffen et al. 2011; Carter
et al. 2013). The Slawson et al. (2011) catalog of binaries, in
which ten of these triples are briefly mentioned, was based on
only 120 days ofKeplerdata, whereas approximately an order
of magnitude more data now exist.

In this study we present the results of a comprehensive
search of theKeplerdata base of binary systems for evidence
of the presence of a third star. This was done by searching
for periodic features in so-calledO−C curves (observed mi-
nus calculated eclipse times) of some 2000 eclipsing binaries.
We find 39 good candidates for triple stars. In addition to
exhibiting the periodic variations in theO−C curves indica-
tive of a triple system, several of our candidates feature ad-
ditional evidence for being triple. For example, two of the
systems have third-body eclipses, while seven of them exhibit
secular variations in the depths of the binary eclipses indica-
tive of precession of the orbital plane of the binary. As we
show, 19 of the systems exhibit dominant classical Roemer
delays, while another 11 have dominant physical delays (due
to perturbations to the binary “clock”, i.e., its orbital eclipse
period). The especially interesting feature of these candidates
is that we can directly follow perturbations to the binary orbit
and/or the classical Roemer delaycontinuouslyover several
cycles of the triple.

The processing of theKepler data for the 2157 eclipsing
binaries is described in §2. Production of anO−C curve for
each system is discussed in §3, while an overview of our triple
star candidates is presented in §3.3. Expressions for the vari-
ous effects that appear in theO−C curves are given quantita-

tively in §4. Our approach to the analysis of theO−C curves,
in order to extract as much information about the physical sys-
tem parameters as possible, is described in §5. Our results for
the 39 triples found in the search are presented in §6. We dis-
cuss the limitations on the determination of system parameters
using only theKepler eclipse timing data, without supple-
mental information that could be provided by ground-based
spectral observations (and in some cases by theKepler data
themselves). All of these systems will require such follow-
up observations in order to definitively determine the masses
of the three stars and the orbital elements. In §7 we discuss
our results, with emphasis on what can be learned from only
theO−C curves. Finally, we attempt to estimate the fraction
of close binaries with tertiary stars of orbital periods. few
years.

2. DATA PREPARATION

2.1. Keplerbinary data set

The data we use for this study are long-cadence (LC)
lightcurves for all binaries published in the latestKepler
eclipsing binary catalog (Slawson et al. 2011; see also Prša
et al. 2011). We used all the files from Quarter 1 through
Quarter 13 which were available for retrieval from the Mul-
timission Archive at STScI (MAST). The data used had all
been reprocessed with the PDC-MAP algorithm (Stumpe et
al. 2012; Smith et al. 2012), which removes much of the in-
strumental noise from the flux time series while retaining the
bulk of the astrophysical variability in sources. For each quar-
ter, we normalized the flux series to its median value, and then
stitched the quarters together into a single file for each source.

2.2. Filtering the data

The next step in the data processing was to apply a high-
pass filter, based on the known period of the binary system.
We took the stitched 13 quarters of data, described in section
2.1, and filtered out the low frequencies (starspot activity, in
particular), in the following way. First, the data were con-
volved with a boxcar function of duration equal to the known
binary period. Second, the smoothed data were subtracted
from the unsmoothed data. Frequency components below the
frequency of the binary orbit are thereby largely removed,
while leaving temporal structures that are shorter than thebi-
nary orbital period. The eclipses themselves are essentially
unaffected.

The reference epoch for all times in this paper is Barycen-
tric Julian Day 2454900.

3. ECLIPSE TIMING ANALYSIS:O−C CURVES

3.1. Measuring Eclipse Times

The baseline algorithm we utilized for determining the
eclipse times consists simply of testing each flux point in the
Keplerdata set for a local minimum and fitting a parabola to
the lowest three points in the local minimum. Then the fit-
ted parabola is used to interpolate betweenKeplersamples to
find a more accurate time of eclipse minimum. As we show,
this algorithm is quite good for short orbital period binaries,
but begins to lose accuracy for longer-period binaries when
the eclipse duration may consist of a substantial number of
Kepler long-cadence samples. To carry out our initial search
for periodic variations in theO−C curves, we used this ba-
sic algorithm exclusively. However, after interesting systems
were identified, we recalculated more accurateO−C curves
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using a better algorithm that involves more of the eclipse pro-
file (T. Borkovits, unpublished) for a handful of the binaries
with periods withPbin & 6 days8.

The parabola to be fit is of the form:

Fn = α(tn − δt)2 + Fmin (1)

wheren = 1,2, or 3; t1 ≡ −1, t2 ≡ 0, andt3 ≡ +1; andδt is
the offset of the time of the minimum with respect to the time
of the point with the lowest flux of the threeKeplersamples.
The times are all dimensionless, and are in units of∆tLC =
1765.46 sec, theKepler long-cadence sampling interval. We
note that the parameterα in this expression implicitly encom-
passes information about the relative sizes of the stars, limb
darkening, orbital inclination, and so forth. Presumably for a
given binary system this parameter remains a constant, though
in practice, effects such as time-varying starspots, can slightly
modifyα.

Since not all binary eclipses are well represented by a sim-
ple quadratic function near minimum, we also considered a
quartic shape. This is the next simplest shape for any sym-
metric eclipse profile. Because there are four parameters that
describe a symmetric quartic, this would require four or more
flux points to fit. Five is the minimum number of points
in a symmetric arrangement which can have a lowest flux
point with two higher-flux points on either side. However, we
judged this to be too many to use for the shortest period bina-
ries – in some cases, the eclipse is only a fewKeplercadence
points wide. Thus, to get a flavor for how a quartic might fit,
we utilized a function of the following form:

Fn = α(tn − δt)2 +βα(tn − δt)4 + Fmin (2)

where the parameterβ wasfixedat a representative value of
0.3. Thus, there are still only three parameters to fit analyti-
cally to three data points. Again, note that all the times aredi-
mensionless (i.e., in units of∆tLC). We also tried other values
for β, but found no improvement (i.e., reduced rms scatter) in
the “quartic” algorithm.

Once we found a potential eclipse time, and a correspond-
ing value ofFmin we required that it be less than a certain
threshold flux in order to be judged an actual eclipse and not
just an uninteresting local minimum in the flux. Formally, we
somewhat arbitrarily required that

Fmin < 0.4 ·Fecl+ 0.6 (3)

whereFecl is the flux at the bottom of the primary eclipse in the
folded light curve, and recall that the fluxes are all normalized
to unity. In some cases, this allowed the secondary eclipse to
also be picked up, but these were distinguished by the∼180◦

phase shift from the primary eclipse.
In general, the quadratic function produced better results

than the quartic, i.e., less scatter in theO − C curves, but
yielded a comparable number of candidate triple stars. Both

8 After this work had essentially been completed, we developed a more
sophisticated eclipse timing code based on a formal cross-correlation of the
epoch-folded binary light curve with theKepler data train. We found all
39 of the triple star candidates with this improved code, including four new
candidates that the original search missed. The quality of the O−C curves
was hardly changed for most of the systems with binary periodPbin . 10
days, but there were some improvements, i.e., lower scatter, for a few of the
longer period systems. In eight cases, where theO − C curve significantly
improved over the simple quadratic fitting algorithm, and where theO − C
curve had not already been upgraded using the Borkovits (unpublished) code,
we used thoseO−C results rather than the original.

functions were equally susceptible to spurious periodicities
(see §3.2).

As a separate piece of the analysis, we also deliberately
found the times of the secondary eclipses. However, in this
work we do not directly utilize theirO−C curves in the tim-
ing analyses. We do discuss what supplemental information
the secondary eclipses can yield in the case of eccentric bina-
ries. We also tabulate which systems have secondary eclipses
whoseO−C curves exhibitdifferentbehavior than that of the
primary eclipse.

Finally, we note that even though the nominal separation of
the flux points in the long-cadence mode,∆tLC, is 1765.46
sec, we were able to determine the times of eclipse minima to
a typical empirically determined accuracy of∼ 20− 100 sec,
or. 5% of the timing metric. We list the rms residuals to the
model fits for each source among our tabulated results.

3.2. Searching for Interesting O−C Curves

As we search for potential triple-star signatures among the
O−C curves, we find many that exhibit spurious periodicities.
These false positives are most often due to a beat between
the frequency of theKeplercadence and the frequency of the
binary orbit. The two prominent beat frequencies are given
by:

fbeat,1 = fLC − fbin · int

(

fLC

fbin

)

(4)

fbeat,2 = fbin

[

int

(

fLC

fbin

)

+ 1

]

− fLC (5)

where “int” gives the truncated integer value, andfbin ≡ 1/Pbin
and fLC ≡ 1/∆tLC. For eachO−C curve that we compute, we
display these two prominent expected beat periods. If there
is a match between a predicted beat period and the detected
period in theO−C curve, that object is eliminated as a possi-
ble triple star candidate. We note that these beat frequencies
change (sometimes fairly obviously) during the course of a
year. This is due to the fact that the time of each long-cadence
measurement was corrected to the Solar System Barycenter.

As another caveat, we note that many of the contact bina-
ries exhibit a pseudo-random walk in eclipse phase as well as
quasi-periodic behavior with typical amplitudes of∼300 sec
rms (Tran et al. 2013). In addition, theO−C curves for the
secondary eclipses in these systems are often anti-correlated
with the primaryO−C curve (Tran et al. 2013). The charac-
teristic timescales for these cyclic changes in phase can range
from weeks to many months. Therefore, one should be cog-
nizant of the possibility thatO − C periods of the order of
the 3-yearKepler data interval might simply be the lowest
prominent frequency of a random-walk process – especially
for contact binaries. In this work we remain mindful of this
possibility. We therefore generally require two full orbital cy-
cles (i.e., with period of the triple systemPtrip . 600 days)
that are strictly periodic before we are reasonably confident
that a binary is also a good triple star candidate. However, our
collection of 39 triple star candidates does contain nine sys-
tems withPtrip & 600 days (six of these havePbin < 1.1 day;
three are classified as ‘contact binaries’). The reader can be
the judge of the validity of these candidates.

3.3. Candidate Triples

After eliminating as many false positives as we were able,
we were left with a list of 39 candidate triple star systems
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Figure 1. O−C data and model fits for 9 systems with KIC numbers between 3228863 and 5376552. The red curves are the total modelO−C values. Dark blue
is the model fit for the Roemer delay (eq. (6)). Light green curves represent the total physical delay (sum of eqs. (8) and (9)). Note that the vertical scales are
different on all of the plots; the amplitudes of theO−C curves range from a low of 30 sec to a high of 1000 sec. The linear and quadratic terms in the fit have
been subtracted before the plot is made.

with convincing eclipse timing variations (“ETVs”). TheKe-
pler Input Catalog (KIC; Batalha et al. 2010) numbers of our
39 candidate triple stars are summarized in Table 1, along
with other properties of the targets that are provided in the
KIC. Among other parameters, we list the orbital period of
the binary, theKepler magnitude (Kp) and Teff of the inte-
grated light from the system, the depths of the primary and
secondary eclipses, the mass ratio and “third light” parameter
(as found with thePhoebebinary light curve emulator; see
section 6.6), and an approximate binary orbital eccentricity
(taken from the Slawson et al. 2011 catalog).

TheO−C curves for all 39 of the candidate triple star sys-
tems are shown in Figs. 1, 2, 3, 4, and 5. As the reader will
see, there is a great variety of shapes, of amplitudes, and of

statistical quality. These, and formal model fits to them, are
discussed in detail in the following sections. In general, the
rms deviations from the best fitting curves are in the range of
20 to 100 sec. The amplitudes of theO−C curves range from
a minimum of 30 sec to a maximum of nearly 6000 sec. The
inferred orbital periods of the triple star systems range from
48 days to 959 days.

4. SOURCES OF ETV DUE TO THIRD STARS

4.1. General Expressions

An eclipsing binary can be thought of as a clock, where the
clock “ticks” are the binary eclipses. If the binary is circu-
lar and isolated in space, then the arrival times of the eclipse
events at the solar system barycenter occur at a constant rate –
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Figure 2. O−C data and model fits for 9 systems with KIC numbers between 5384802 and 7690843. The red curves are the total modelO−C values. Dark blue
is the model fit for the Roemer delay (eq. (6)). Light green curves represent the total physical delay (sum of eqs. (8) and (9)). Note that the vertical scales are
different on all of the plots; the amplitudes of theO−C curves range from a low of 60 sec to a high of 5000 sec. The linear and quadratic terms in the fit have
been subtracted before the plot is made.

assuming that the binary orbit is neither decaying nor expand-
ing. When the binary is part of a hierarchical triple system,
where both the binary and the third star orbit their common
center of mass, the clock “ticks” are no longer regular. There
are two basic effects that cause these eclipse arrival timesto
deviate from the pattern of a regular clock, on the timescale
of the orbital period of the triple.

In this work we define the “orbit of the triple system” (alter-
natively, “outer orbit”) as that of an equivalent binary system
comprised of the third star and a massMbin located at the cen-
ter of mass of the binary system. Here we have definedMbin
as the mass of the inner binary.

4.1.1. Roemer delay

The first important effect is the classic Roemer delay (or
light travel time delay) that results from the changing pro-
jected distance along the line of sight of the center of mass of
the binary from the center of mass of the triple star system.
The expression for the contribution to theO−C curve from
the Roemer delay,R(t), is

R(t)
ARoem

≃
[

(1− e2)
1/2

sinucosω + (cosu− e)sinω
]

(6)

whereu(t) is the eccentric anomaly,ω the longitude of peri-
astron, ande the eccentricity, all describing the orbit of the
triple star system (i.e., the CM of the binary moving about the
CM of the triple star system). The amplitude of the Roemer
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Figure 3. O−C data and model fits for 9 systems with KIC numbers between 7837302 and 8904448. The red curves are the total modelO−C values. Dark blue
is the model fit for the Roemer delay (eq. (6)). Light green curves represent the total physical delay (sum of eqs. (8) and (9)). Note that the vertical scales are
different on all of the plots; the amplitudes of theO−C curves range from a low of∼150 sec to a high of 6000 sec. The linear and quadratic terms inthe fit have
been subtracted before the plot is made.

delay is:

ARoem=
G1/3

c(2π)2/3
P2/3

trip

[

M3sinitrip

M2/3
trip

]

(7)

whereM3 is the mass of the third star;Mtrip is the total mass of
the triple star system, i.e.,Mtrip ≡M3 +Mbin; itrip is the inclina-
tion of the orbital plane of the triple star system with respect
to the plane of the sky; andPtrip is the orbital period of the
triple.

A diagram showing the triple star system geometry is given
in Fig. 6 (where some of the quantities labeled appear only in
the physical delay function – see below for definitions).

4.1.2. Physical delay

The second major effect that results in the eclipse timing
variations is the so-called “physical delay”. This resultsfrom
physical changes to the clock, i.e., actual variations in the bi-
nary period, caused by the third body. Qualitatively, the pres-
ence of the third body causes the orbital period of the binaryto
be longerthan it would be in isolation. The perturbed binary
period depends on the instantaneous distance from the center
of mass of the binary to the third star,rtrip, and is longest when
rtrip is smallest. If the third star is in a circular coplanar orbit,
the instantaneous distancertrip is a constant, and there are no
first order effects to be observed in the eclipse times since the
lengthened binary period is then a constant as well (here we
are still assuming a circular inner binary orbit). However,if
the orbit of the third star is either eccentric or inclined with
respect to the orbital plane of the binary, then the distance



Triple-Star Candidates Among theKeplerBinaries 7

Figure 4. O−C data and model fits for 9 systems with KIC numbers between 8938628 and 10613718. The red curves are the total modelO−C values. Dark
blue is the model fit for the Roemer delay (eq. (6)). Light green curves represent the total physical delay (sum of eqs. (8) and (9)). Note that the vertical scales
are different on all of the plots; the amplitudes of theO−C curves range from a low of 100 sec to a high of 2000 sec. The linear and quadratic terms in the fit
have been subtracted before the plot is made.

between it and the binary CM and/or the tidal interaction is
constantly changing, and so is the binary orbital period. This
leads to a very distinctiveO−C curve.

A number of approximate analytic expressions have been
developed for the case of a third body perturbing the orbit
of a circular binary (see, e.g., Brown 1936; Harrington 1968;
1969; Söderhjelm 1975, 1982, 1984; Borkovits et al. 2003;
Agol et al. 2005; Borkovits et al. 2011) on the timescale of
the orbital period of the triple. The perturbative calculation
takes advantage of the hierarchical nature of the system and
expands the equations of motion in terms of the small param-
eterξ = rbin/rtrip, whererbin is the instantaneous separation of
the two stars in the binary andrtrip is the instantaneous dis-
tance from the tertiary star to the CM of the binary, as defined
above. The short period perturbations (those on the timescale

of the binary period) are of small amplitude (higher order in
ξ) and less interesting observationally; averaging over thebi-
nary period results in an expression for the slower (but higher
amplitude) variations in the perturbed period of the binaryon
the timescale ofPtrip.

The most comprehensive of the expressions for the physical
delay in the case of circular binaries9 is given in Borkovits et
al. (2003; but see also Borkovits et al. 2011 for a more expan-
sive treatment of perturbations to eccentric binaries). The ex-

9 In this work we utilize two pieces of information to constrain the orbital
eccentricity of the binaries within our candidate triple stars: (i) analysis of
the epoch-folded light curves (see Table 1 and §6.6); (ii) the similarity of the
O−C curves for the primary and secondary eclipses for the vast majority of
the systems (especially those withPbin . 2 days) provides additional evidence
for the approximate circularity of the binary orbits (see Table 1).



8 Rappaport et al.

Figure 5. O−C data and model fits for 3 systems with KIC numbers between 10991989 and 11968490. The red curves are the total modelO−C values. Dark
blue is the model fit for the Roemer delay (eq. (6)). Light green curves represent the total physical delay (sum of eqs. (8) and (9)). Note that the vertical scales
are different on all of the plots; the amplitudes of theO−C curves range from a low of 200 sec to a high of 300 sec. The linear and quadratic terms in the fit have
been subtracted before the plot is made.

pression there encompasses the perturbations to the periodof
the binary occurring on a timescale equal toPtrip, and consists
of three terms, of which we use two. The two terms appearing
in theO−C formula which we use are:

P1(t)
Aphys

=

(

2I −
2
3

)

[φ(t) + esinφ(t) − θ(t)] (8)

P2(t)
Aphys

= (1−I){sin[2φ(t) − 2vm]

+ esin [φ(t) − 2vm] +
e
3

sin [3φ(t) − 2vm]} (9)

where

Aphys=
3

8π
M3

Mtrip

P2
bin

Ptrip

(

1− e2
)−3/2

(10)

with the following definitions:φ andθ are the true and mean
anomalies of the orbit of the triple star system,I is cos2 im
with im the mutual inclination of the binary orbital plane with
respect to the orbital plane of the triple, andvm describes the
orientation of the periapse of the triple star system with re-
spect to the binary plane. (See Fig. 6 for definitions of the
parameters describing the system geometry.)

The third term in this sequence (not given here),P3(t), is
proportional to cotibinsinim, whereibin is the inclination to
the plane of the sky of the binary orbit. Given that the binaries
we are studying exhibit eclipses, cotibin is likely to be small.
If, in addition, the mutual inclination angle of the two orbital
planes is small, then the product of cotibinsinim is likely to
be negligible for our purposes. Thus, in the present work, we
exclude this third term.

As an illustration of how the Roemer and physical delays
compare, we show in Fig. 7 a plot of the amplitudes of the
Roemer and physical delays as a function ofPtrip for six dif-
ferent assumed periods of the binary. We adopted illustrative
values ofe= 0.3, itrip = 60◦, and all masses equal to 1M⊙. As
could be inferred from the analytic expressions, the Roemer
delay dominates for longer orbital periods of the triple system
and shorter binary periods, and vice versa for the physical
delay. The two effects are roughly comparable for a 1-year

period of the triple star system and a binary with a 1-2 day
period.

Finally, we note that the accuracy of these analytic ex-
pressions (eqns. 8 and 9) has been checked in the origi-
nal Borkovits et al. papers (2003, 2007, 2011) via direct 3-
body numerical integration. However, one might expect that
these formulae, derived assuming the parameterξ = rbin/rtrip
is small, must break down if the pericenter passage of the third
star is too close. In particular, a very close passage of the third
star could induce a substantial eccentricity in the binary orbit.
The formulae above, derived assuming a circular binary orbit,
would then not apply. We find that, for coplanar orbits, the
formulae agree well with numerical experiments as long as:

atrip(1− e) & 5abin (11)

Hereatrip ande are the full semimajor axis of the orbit of the
triple system and its corresponding eccentricity, andabin is the
orbital separation of the two stars in the binary. In terms ofthe
orbital periods, this corresponds to

Ptrip(1− e)3/2 & 14Pbin (12)

for an assumed set of three equal mass stars.
An exception to this agreement between the analytic ex-

pression and the numerical results can occur when longer-
term perturbations (discussed below in §4.2) set in. Since the
timescales for these longer-term perturbations are typically in
the range of a decade to centuries (see Table 3), they can be
fitted (or, effectively removed) by simply adding linear and
quadratic terms to the fitting parameters (see §5).

4.2. Longer-Term Perturbations

In addition to the perturbations to the orbital period of the
binary that are discussed above and have a complete cycle
time equal to the orbital period of the triple system, there
are other perturbations that occur on typically much longer
timescales. These include precession of the orbital plane of
the binary and possible precession of the longitude of perias-
tron of the binary, if the binary is eccentric. The approximate
timescale for these longer-term perturbations is

τlongterm ∝
P2

trip

Pbin

Mtrip

M3
(1− e2)3/2 (13)
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for the other parameters in eqs. (7) and (10). Dynamically stable systems
would be expected to lie below and to the right of the gold curve (see eq. 16).

(Harrington 1968; 1969; Mazeh & Shaham 1979; Ford,
Kozinsky, & Rasio 2000; Borkovits et al. 2003; Borkovits et
al. 2007). Additionally, if the mutual orbital inclinationangle
satisfies

sin2 im > 2/5 or 39.2◦ . im . 140.8◦ (14)

Kozai cycles (Kozai 1962) may set in. In this effect there is
a cyclic tradeoff between the growth of orbital eccentricity
of the binary (including when it initially hasebin = 0) and a
corresponding decrease inim. If the timescale for this cycle,
which is the same asτlongterm in eq. (13), is longer than the
timescales that characterize other perturbations that drive pre-
cession of the longitude of periastron in the binary, the Kozai
cycle will not operate (Eggleton & Kiseleva-Eggleton 2001;
Fabrycky & Tremaine 2007). Moreover, effective damping
from the two stars in the binary can terminate the Kozai cy-
cles completely – preferentially leavingim in the range of 35◦

to 50◦ (Fabrycky & Tremaine 2007).
The values ofτlongtermfor all of our triple star candidates are

listed in Table 3. They range from∼3 years to 5000 years, but
with only 7 of the systems havingτlongterm< 15 years. There-
fore, the generally sinusoidal behavior of these long-termper-
turbations will look approximately linear or quadratic on the
3-year timescale of theKeplerdata set. And, as a rough ap-
proximation for representing such behavior, we have included
a quadratic term in our fit (see §5).

5. ANALYSIS CODE

5.1. Choice of Fitting Parameters

Given the above expressions for the Roemer and physical
delays contributing to theO− C curves, there are a total of
11 free parameters to fit for, under the assumption that the
binary orbit is circular. These include 8 parameters which de-
scribe the triple system as anequivalent binarycomposed of
the third star and a star of massMbin at the location of the cen-
ter of mass (CM) of the close binary, and 3 other parameters
that describe theO− C curve in the absence of the Roemer
and physical delays, i.e., a reference time, slope, and curva-
ture terms:

e, eccentricity of the orbit of the triple star system
ω, longitude of periastron of the binary CM
τ , time of periastron passage in the orbit of the triple
im, mutual inclin. of the orbital planes – eqs. (8), (9)
vm, orientation parameter – eqs. (8), (9); see Fig. 6
Ptrip, orbital period of the triple
M3/Mtrip, mass ratio∝ Aphys (see eq. 10)
f (M3)1/3 = cube root of mass function∝ ARoem
t0, reference time (time of first binary eclipse)
∆Pbin, mean slope ofO−C curve× Pbin

Ṗbin, quadratic term

We have chosen to fit for the mass ratio and cube root of the
mass function since they are the directly measured quantities
via the physical and Roemer delays, respectively, if we know
the orbital period of the triple. The orbital period can gener-
ally be estimated very well before doing the fit by examining
the periodicity of theO−C term. Thet0 term is essentially a
measure of the time of the first eclipse in the sequence.∆Pbin,
related to the mean slope of theO − C curve, is not gener-
ally zero because we used the binary period in the Slawson
et al. (2011) catalog – based on only 120 days of data – to
compute the initial set ofO−C curves. Finally, the quadratic
term could be used to measure the orbital decay or expansion
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of the binary; however, we do not expect this effect to be de-
tectable over the course of only a few years. Rather, we use
this quadratic term to take into account possible perturbations
that occur on timescales substantially longer thanPtrip (see,
§4.2).

Depending on the Roemer and physical amplitudes, certain
among the system parameters may be determined much better
than others. For example, if the Roemer delay is dominant and
the physical delay is negligible, the mass function will be well
determined but the parametersim, vm, andM3/Mbin will notbe
substantially constrained. On the other hand, if the physical
delay is well measured but the Roemer amplitude is small,
then the mass ratio,M3/Mtrip will be more tightly constrained,
while the mass function and longitude of periastron will be ill
defined.

For a number of reasons we decided against using either
a conventional Levenberg-Marquardt (LM) or Monte Carlo
Markov Chain (MCMC) fitting procedure. First, we note that
there are two different functions (i.e., physical and Roemer
delays) possibly contributing to the structure of theO − C
curve, and one does not know, a priori, how much each con-
tributes. Specifically, in most cases, the two functions arenot
typically orthogonal, and therefore they can trade off against
one another in the fit. As a result, there can be very large
regions in parameter space that yield comparably good fits.
Second, given the large number of systems to deal with, we
want to search all of parameter space and estimate the uncer-
tainties at the same time. The LM method is not particularly
good for exploring parameter space with highly and nonlin-
early structured correlation functions among the parameters.
The MCMC fitting technique is not ideal for exploring wide
ranges of parameter space, especially when trying to fit 39
systems.

We therefore constructed a simpler, though less formal,
Monte Carlo fitting code that is better suited to the task of
fitting 39 systems in an automated, hands-off fashion. In this
approach we choose a random value for each of the follow-
ing 7 parameters:e, ω, τ , vm, Ptrip, M3/Mtrip, and f (M3)1/3.
The parameters are chosen with a uniform distribution over
their entire plausible ranges. The remaining 4 parameters:im,
t0, ∆Pbin, andṖbin can then be determined via a simple ma-
trix inversion since they appear linearly in the fitting function.
(Actually, in the case ofim, it is cos2 im that appears linearly
in the equations.)

The uncertainty on the individual data points is determined
empirically as follows. All data points for a given system are
assumed to be equally weighted. We then make a first-pass
run with our simple MC fitting code to find a good set of sys-
tem parameters. Using that fit, we scale the size of the error
bars so that the normalized value of the chi-squared statistic,
χ2
ν
, is equal to 1. From then on, each time the code is run, we

use that same value for the error bars on the individual points
(unless subsequent runs find a substantially improved fit).

In all subsequent runs, the code operates as follows. If
the value ofχ2

ν
resulting from a particular selection of pa-

rameters isχ2
ν
> 1.3 then we add the ratio of likelihoods,

exp[−(χ2 −χ2
0)/2] (whereχ2

0 is the value for the best fit), to
the various probability histograms that are being accumulated
for each parameter. The code then chooses another random
set of possible system parameters. If, on the other hand, the
value ofχ2

ν
resulting from a particular selection of parameters

is χ2
ν
< 1.3, then the code does an additional 1000 draws for

a more restricted range of the parameters surrounding the par-
ticular choice of parameters that yields the “good”χ2 value.
When the 1000 additional draws have been completed, and
the ratio of likelihoods has been recorded for each draw, the
broad grid search resumes until another combination of pa-
rameters is found that yields a value ofχ2

ν
< 1.3. At that

point, another 1000 localized draws are made, and so forth.
With this prescription, on average, about half the draws cover
the broad search while the other half covers a more restricted
range of parameters.

This analysis scheme seems reasonably optimum in terms
of covering all of parameter space while exploring in greater
detail the regions which yield the best fits. Without full or
rigorous justification, we also expect it to give approximately
correct estimates of the parameter uncertainties.

5.2. The Fitting Runs

The number of eclipse times, over 13Kepler quarters, to
be analyzed in any given binary ranges from only∼40 to as
many as 2400, depending on the orbital period (except for the
special case of KIC 10319590 where there are only 19 pri-
mary eclipses; see Fig. 10). The analysis time is essentially
linearly proportional to the number of eclipses. We chose to
have the code spend roughly the same amount oftime ana-
lyzing each source rather than drawing the same number of
random sets of parameters to test. The reason is that for the
shorter binary periods, theO−C curves become dominated by
the Roemer delay (sinceAphys∝ P2

bin whereasARoem is inde-
pendent ofPbin). Since the Roemer delay has one fewer free
parameter, and is generally simpler in shape than the physical
delays, suchO−C curves can be fit more quickly.

With this in mind, we typically draw 107 random sets of pa-
rameters for a fiducial 5-day binary, and this number is scaled
proportionally toPbin from that value. The analysis then takes
a day and a half on a MacBook Air computer, for the full set
of 39 systems, and is adequate to yield good fits and system
parameters with their uncertainties. The same analysis was
done using 106, 107, and 108 draws (scaled toPbin/5 days).
We found that the 107 and 108 draw runs resulted in the sub-
stantially the same best fit parameter estimates and any devi-
ations were almost always within the 10%−90% uncertainty
interval.

5.3. Test of the Code

In order to check the basics of the code we simulated eclipse
timing data for a number of different triple star systems us-
ing a 3-body numerical integrator. These include cases where
the Roemer delay dominated, where the physical delay dom-
inated, and where the two effects were comparable. White
noise of rms amplitude equal to 60 sec was added to the sim-
ulated eclipse arrival times. The artificial data were then an-
alyzed in exactly the same way as the actualO−C data. The
results were that the fitting code recovered the correct input
parameters from the simulation, to within the 10% – 90% er-
ror constraints (the same as we list in Tables 2 and 3).

6. RESULTS

6.1. Overview

The results of the automated fits to the 39 triple star candi-
dates are shown in five multi-panel figures (Figs. 1-5). They
are arranged simply in order of their KIC number. In each
panel, the red curve is the overall fit to theO−C curve, and is
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the sum of the Roemer and physical delays, which are shown
separately as the blue and green curves, respectively.

The fitted parameters and their uncertainties are listed in
Tables 2 and 3 along with the 10% and 90% (lower and up-
per) confidence limits. Table 2 gives, in addition to the binary
period, four quantities related to the masses which are derived
entirely from fitting theO−C curves. These are the mass ra-
tio, M3/Mtrip, the mass function,M3

3 sin3 i/(M3 + Mbin)2, and
the quantitiesM3sin3 i andMbin sin3 i, derived from the mass
ratio and mass function – to the extent allowed by the uncer-
tainties. We also list the amplitudes of the Roemer and phys-
ical delays (the 10% and 90% probability limits are given in
curly brackets).

In Table 3 the remainder of the fitted parameters, eccen-
tricity, e, and time of periastron passage,τ (relevant to both
Roemer and physical delays), the longitude of periastron,ω
(appearing in the Roemer delay only), and the mutual orbital
inclination angle,im, and orientation angle,vm (both related to
the description of the physical delay), are given. Table 3 also
lists the rms of the residuals with respect to the best fitting
O− C curve, as well as the calculated timescale for longer-
term perturbations (see eq. 13).

A perusal of Figs. 1-5 as well as Table 2 shows that 19 of
theO−C curves are dominated by the Roemer delay, 11 are
dominated by the physical delay, while the remaining 9 ob-
jects have more competitive Roemer and physical amplitudes
(here “dominant” is defined as a& 3 : 1 ratio). If “dominant”
is defined by a ratio of& 5 : 1, then the corresponding num-
bers are 18 Roemer, 8 physical, and 13 comparable. The Roe-
mer delay dominated systems all have binary periods of. 2
days, consistent with the diagram in Fig. 7. Conversely, all
the systems with the longer orbital periods (e.g.,& 5 days)
are dominated by physical delays.

6.2. System Parameter Constraints

A review of Table 2 will show that for systems that are
dominated by the Roemer delay, the cube root of the mass
function is indeed determined with greater fractional accu-
racy (∼10%) than is the mass ratio (typically&40%). This
follows from the fact that the Roemer amplitude is directly
proportional to the cube root of the mass function. Addition-
ally, in this circumstance, the parametersω, τ , ande are all
relatively well determined, but the parameters strictly associ-
ated with the physical delay,vm and im, are generally poorly
constrained. Conversely, for the systems where the physical
delay dominates, the mass ratio,M3/Mtrip, is determined to
a substantially better fractional accuracy (∼30%) than is the
cube root of the mass function (typically&50%). Again, this
is due to the fact that the physical amplitude is directly pro-
portional to the mass ratio. As well, the parametersim, τ , and
e, are better determined thanω which is only relevant to the
Roemer delay. The parametervm, generally seems not well
constrained, except in six systems – all ones with dominating
physical delays.

One might guess that for those 9-13 systems where the Roe-
mer and physical delays are more comparable (smaller than
3:1 or 5:1 ratios, respectively) both the mass ratio and mass
function could be well determined. This doesnotappear to be
the case in practice. The reason is due to the fact that the two
sets of functions representing these delays are not substan-
tially orthogonal, and therefore the two functions can add in
different ways, consistent with the constraints on the parame-
tersτ , ω, andvm to produce the total observed amplitude. It

Figure 8. Example of the correlation between the eccentricity of the orbit of
the triple star system, i.e., the outer orbit, and the mass ratio, M3/Mtrip for a
system in which the physical delay dominates: KIC 9714358. The colors are
scaled according to the relative probability with white andred the highest,
blue and purple the lowest.
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Figure 9. Example of the correlation between the cube root of the mass
function, f (M3)1/3, and the longitude of periastron,ω, of the orbit of the
triple for a system in which the physical and Roemer delays are comparable:
KIC 9451096. The colors are scaled according to the relativeprobability with
white and red the highest, blue and purple the lowest.

turns out that the Roemer and physical delays, when compa-
rable, can varytogetherin amplitude over a fairly wide range
while the longitude of periastron,ω, in turn, changes their rel-
ative phase in such a way that the sum of the two functions
adds to be roughly a constant (and thereby matches the ob-
servedO−C curve; see §6.3 for details). Thus, in no specific
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system do we obtain very tight constraints on bothM3 sin3 i
andMbin sin3 i (i.e., with both being determined to better than,
e.g., 20%).

When either the Roemer or physical delay dominates, this
type of correlated behavior may be may be present but is much
less pronounced (see §6.3). The reason is that for given binary
and triple system periods, as well as eccentricity, the physical
delay has a tight upper limit that is proportional toM3/Mtrip
which, by definition, can never exceed unity. Since the phys-
ical delay amplitude is proportional toP2

bin, while the Roe-
mer amplitude is independent ofPbin, for short period binaries
(i.e.,. 0.7 days) it becomes difficult for the physical ampli-
tude to contribute much to theO−C curves, notwithstanding
any issues of orthogonality. Conversely, the Roemer delay is
proportional to the cube root of the mass function which is
limited to be less thanM3. While in principle, it is possible
for the mass of the third star to take on any value, unless it isa
fairly evolved giant, it is unlikely to have a mass greater than
a fewM⊙ since both stellar radius andTeff were constrained
by the nature of the stars selected for inclusion in the KIC
(Batalha et al. 2010). Therefore, for systems with long binary
orbital periods the magnitude of the Roemer delay will gen-
erally be much smaller than that of the physical delay, even
if the shape of theO−C curve matches the expected shape of
the Roemer delay.

6.3. Correlations Among the Parameters

We have tried to select a convenient, consistent set of pa-
rameters to fit for all of our candidate triple star systems,
regardless of whether they are dominated by the Roemer or
physical delays. It is somewhat inevitable that some of the
parameters can become substantially correlated (see discus-
sion in §6.2) when the physical delay dominates, vice versa,
or even when the two effects are comparable. Here we show
two examples of this type of correlation taken from our Monte
Carlo fitting code. In Fig. 8 we show the correlation between
the eccentricity of the orbit of the triple system (i.e., theouter
orbit) and the mass ratio,M3/Mtrip, for the example of KIC
9714358 which is dominated by the physical delay. In the
case of physical delay only, the amplitude is roughly propor-
tional to the product of these two quantities, and we then ex-
pect just such a correlation as is seen in Fig. 8. This can be
shown analytically for the case of coplanar orbits from eq. (8)
where the term in square brackets on the right hand side,
[φ(t) + esinφ(t) − θ(t)], can be expanded in a series for small
eccentricities as∼3esinφ(t) (Murray & Dermott 2000), while
the M3/Mtrip part of the proportionality is found in eq. (10).
For non-coplanar orbits, one of the terms in eq. (9) is not pro-
portional toe while the other two terms are; therefore, the
correlation becomes less pronounced as the mutual orbital in-
clination increases.

We now consider the key correlation for the case where
the physical and Roemer delays are more comparable. In
Fig. 9 we show the correlation between the cube root of the
mass function,f (M3)1/3 and the longitude of periastron of
the outer orbit,ω, for the case of KIC 9451096. The cor-
relation seen in Fig. 9 is quite strong and symmetric around
180◦. The zero delay point of the physical delay typically
occurs near the time of periastron passage,τ (especially as
im → 0), while the Roemer delay is zero at∼ τ −ωPtrip/2π.
Therefore, if ARoem ≃ Aphys the two functions will have a
combined amplitudeAO−C ≃ 2ARoem|cos(ω/2)|. It then fol-
lows thatARoem≃ Aphys≃

1
2AO−C/|cos(ω/2)| and these two
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Figure 10. Example of a system (KIC 10319590) where the eclipse depths
exhibit strong variations with time. In this extreme case, the eclipses com-
pletely disappear after∼400 days, presumably due to the precession of the
binary orbital plane caused by the presence of the inferred third body.

parameters (ARoem andω) are thus highly correlated, as seen
in Fig. 9.

6.4. Dynamical Stability of Orbits

We mention in passing that, as a sanity check on the or-
bital solutions we have found, the mutual orbits of the three
stars would be expected to have long-term dynamical stabil-
ity. The stability criteria for triple systems have been studied
for decades, and are conveniently summarized by Mikkola
(2008). In particular, we cite here the expression due to
Mardling & Aarseth (2001):

atrip & 2.8

(

Mtrip

Mbin

)2/5 (1+ e)2/5

(1− e)6/5
abin (15)

where, again,e is the eccentricity of the orbit of the triple
system. Expressed in terms of the orbital periods, this stability
criterion comes to:

Ptrip & 4.7

(

Mtrip

Mbin

)1/10 (1+ e)3/5

(1− e)9/5
Pbin (16)

Note that, while we do not know the masses of the binary and
triple very accurately, the dependence on masses in eq. (16)
is extremely weak. Moreover, in most cases we have a good
handle one, and an excellent measurement of bothPbin and
Ptrip. Direct computation then shows that all of our triple star
candidates are nominally stable. This is another sanity check
that suggests that these are true triple stars and not false posi-
tives, since false positives should not be biased towards satis-
fying stability requirements.

6.5. Supplemental Information Required

Supplemental information will be required in order to rea-
sonably infer full sets of system parameters with astrophys-
ically useful accuracy for the triple star candidates identi-
fied in this work. For some of the systems there can be up
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Figure 11. Example of a system (KIC 7955301) where theO−C curves for
the primary and secondary eclipses lie on “divergent” paths– at least for the
3-year duration of the Q1-Q13 data. As well, the twoO−C curves even have
somewhat different profiles.

to three pieces of supplemental information from theKepler
light curves themselves. It is beyond the scope of this paper
to try to utilize this information, but we list them here for the
interested reader. Seven of the systems exhibit secularly vary-
ing eclipse depths (see Table 1). The most extreme case of
secularly varying eclipse depths is the case of KIC 10319590
whose flux vs. time is shown in Fig. 10 where the eclipses
disappear after∼400 days. Two of the systems show eclipses
of, and/or by, the third body (Carter et al. 2013). Finally, at
least five of the systems haveO−C curves for the primary and
secondary eclipses that are different in shape and/or system-
atically diverge in phase with respect to one another. A good
example of this latter effect is exhibited in Fig. 11 for the case
of KIC 7955301 where theO−C curves for both the primary
and secondary eclipses are shown. In total, seven systems of
the 39 exhibit one or more of these three different features.
(See Table 1 for a summary.)

In these seven cases, the supplementary information from
the Kepler photometry can be modeled with a 3-body code
to gain a much more complete understanding of the system
parameters (see, e.g., Carter et al. 2011 and 2013).

For these seven systems, as well as the remainder of the 39
triple star candidates, it will be important to obtain radial ve-
locity measurements. Even a high-quality, single-epoch spec-
trum, could provide significant insight into the nature of the
three constituent stars. Measuring the radial velocities within
the binary, and, even better, of all three stars, would lock in
most of the physically important system parameters that are
only loosely constrained through the eclipse timing analysis
alone.

In general, the binary orbital periods are quite short (only
seven havePbin & one week), so it will not take a long inter-
val to unravel the properties of the binary (e.g., its massesand
luminosity contribution to the triple system). The orbitalperi-
ods of most of the triple systems range from 48 days to 1 year.
The median period is∼330 days. Therefore, radial velocity

measurements aimed at determining the properties of the orbit
of the triple system would have to span a good portion of the
observing season for theKeplerfield.

6.6. Binary System Light Curves

To gain some further insight into the constituent stars in the
39 systems we have identified, we have constructed folded
light curves for each of the binary stars in these systems. We
then used thePhoebebinary light curve modeling code (Prša
& Zwitter 2005) to fit the binary system parameters, allowing
for the “third light” parameter (presumably largely due to the
light contribution of the third star) to be a variable. The results
for both the contribution of the “third light” and the mass ratio
of the two stars in the binary,qbin, are listed in Table 1. In
principle, this information can be used in conjunction withthe
constraints onM3 andMbin found from the analysis of theO−
C curves (see Table 2) to infer the three masses individually,
albeit with wide uncertainties.

We were also able to use thePhoebefits to check the orbital
eccentricities of the binary systems as reported by Slawsonet
al. (2012), and we find reasonable agreement, though with the
Phoebevalues ofebin tending to be a bit lower. The value
of ebin is important for the expected form of the physical de-
lay curve; theO−C curves can be noticeably affected when
ebin &0.05 or so. Table 1 lists the binary eccentricities com-
puted from values given in the Slawson et al. (2012) catalog,
but replaced in four cases with thePhoeberesult (where the
former value ofebin was more than 3 times higher than the
Phoebevalue). In all, six of the systems haveebin & 0.075,
and we note that the fitted triple star parameter values for these
could be significantly different from the true system parame-
ters.

7. DISCUSSION

In all, we computed and examined theO−C curves for some
2000Kepler binaries. We found that approximately 50% of
these yielded quite useful portraits of the source eclipse tim-
ing behavior, with typical rms scatter less than 100 seconds.
Some 20% were contact (or otherwise short-period) binaries
that tended to exhibit erratic, or random-walk like behavior
that made it difficult to search for periodic signatures of third
bodies. The remaining 30% yielded at most minimally use-
ful information. In some cases this latter category could be
attributed to eclipse depths that were too small, stellar noise
(i.e., starspots, stellar oscillations, etc.) that was notsuffi-
ciently filtered out, and/or inadequacies in our eclipse detec-
tion algorithm10. We believe that the 50% of binaries for
which we were able to obtain good eclipse timing information
is sufficient so that our findings are not substantially biased.

Notwithstanding the above general statements about our
search, there are quite a few observational selection effects in
play. These include the construction of theKepler input cat-
alog itself which selected for certain spectral types and radii.
Then, there is the binary detection efficiency for the various
stars within the KIC. Among other things, this depends on
stellar pulsations and starspot activity. Within our search for
triples, the depth of the binary eclipses, which in part depends
on the brightness of the third star, affects the timing accuracy.
The erratic timing behavior of many contact binaries (at the
∼300 sec rms level) makes it harder to detect tertiary com-

10 The fraction of systems (∼30%) that yielded no usefulO − C curves
did not improve with the use of our newly developed, more formal cross
correlation analysis (mentioned earlier in the text.)
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Figure 12. Plot of the orbital periods of the candidate triple systems vs. the
period of the binary system they contain. The blue line indicates the locus
of points wherePtrip/Pbin = 10, as a representative stability criterion. Most
systems should lie to the left of this line which is taken fromeq. (16) with
e= 0.3. The horizontal green line is a rough lower limit to values of Ptrip that
can be detected via the Roemer delay with the Kepler Q1-Q13 data set, given
a sensitivity of∼50 seconds in detectable amplitude (see eq. 7). Finally, the
red line is a rough upper limit to values ofPtrip that can be detected via the
physical delay with the Kepler Q1-Q13 data set given a sensitivity of ∼50
seconds in detectable amplitude (see eq. 10). An assumed value of e = 0.3
was used to evaluate this latter limit. Systems to the left ofthe red line are
typically detected via the Roemer delay.

panions (via eclipse timing variations) in these systems. Fi-
nally, if we limit ourselves to seeing 1.5 – 2 orbital cycles of
the triple system, then orbital periods greater than∼900 days
are nearly ruled out. In fact, in our visual inspection of theset
of O−C curves we see numerous such potential longer-period
triple star candidates (see also Gies et al. 2012). On the short
period end, there are many beat periods, between theKepler
cadence and the binary period, up to∼20 or 30 days. Thus, it
is difficult to identify likely real triple star candidates in this
period range.

The periods of the triple star candidates we found are plot-
ted vs. their binary periods in Fig. 12. We show a rough dy-
namical stability bound on the right (blue curve). This limit
is derived from eq. (16) for an assumed typical orbital eccen-
tricity of the triple system equal to 0.3. Most of the triples
should lie to the left of this curve. If we assume a typical
sensitivity in theO−C curves of∼50 sec, the corresponding
orbital period of the triple system required to produce a de-
tectable signal purely via the Roemer delay is about 45 days
(see green curve in Fig. 12, above which we should be able
to detect the light-travel-time effects). Here we have assumed
all 1 M⊙ constituent stars, and an orbital inclination of the
triple system equal to 60◦ (see eq. 7). The limiting triple-star
periods for the physical delay are indicated crudely by the red
curve in Fig. 12). This is based on eq. (10) withe= 0.3 and all
equal constituent masses. Systems detected via the physical
delay should lie to the right of this curve for an amplitude sen-
sitivity in the O−C curves of∼50 sec; systems to left of this
line are detected via the Roemer delay. Finally, it is difficult
at best to confirm any triples withPtrip & 1000 days (see also

Gies et al. 2012).
Thus, Fig. 12 indicates that most of the 39 triple star candi-

dates are reasonably well dispersed (in log space) around the
zone of detectability and stability.

Because of the various observational and analysis selec-
tion effects alluded to above, it is difficult for us to draw
far-reaching conclusions about the fraction of binary systems
with relatively close tertiary companions. However, there
are some things we can say in this regard. Approximately
1000 of theKeplerbinaries yielded useful constraints on the
eclipse timing via our particular approach to the analysis.
There were some 39 triple star candidates found among these
with 48. Ptrip . 900 days, spread roughly uniformly with
respect to logPtrip. Without trying to be too precise, we can
say that we see evidence for roughly a comparable number
of potential candidate triple systems withPtrip in the range of
∼1000− 2500 days, where only at most one to a fraction of
an orbital cycle is revealed. This would suggest that perhaps
∼8% of close binaries have tertiary companions that have or-
bital periods of less than∼7 years. Again, theO−C sensitivity
limit here is∼50 sec (rms scatter) with which we are able to
time the eclipses.

Finally, in terms of the completeness of our initial survey
for triple systems, we note that some of the companions to
binaries withPbin . 1 day andPtrip . 30 days can produce de-
lays that are too small (i.e., less than a few tens of seconds)to
be detectable with the current approach. In particular, note the
unpopulated region in the bottom lower left corner of Fig. 12.

Among the most popular formation theories for very close
binaries (e.g., withPbin . 3 days) are those which invoke a
third star, even if quite distant (withPtrip up to 105 yr), to
effect the closeness of short-period binaries. These scenar-
ios typically involve so called “KCTF” (Kozai cycles with
tidal friction; Eggleton & Kiseleva-Eggleton 2001; Fabrycky
& Tremaine 2007; but it is also possible that magnetic brak-
ing plays a role, e.g., Verbunt & Zwaan 1981; Matt & Pudritz
2005). Fig. 13 shows the distribution of mutual orbital in-
clination angles in our sample of triple star candidates. This
distribution was produced without regard for the large uncer-
tainties in the measurements ofim which typically exceed the
bin width of 5◦ used here. Nonetheless, there is something of
a very suggestive peak in the mutual orbital inclination range
of 35◦−45◦ predicted by Fabrycky & Tremaine (2007) for the
KCTF scenario. Within our parameter uncertainties, it is quite
possible that the Kozai cycle is no longer operative in any of
these systems.

The present study of tertiary stars orbiting short period bi-
naries is quite complementary to those of others (see e.g.,
Mazeh 1990; Tokovinin et al. 2006; Pribulla & Rucinski
2006; D’Angelo, van Kerkwijk, & Rucinski 2006; Rucin-
ski, Pribulla, & van Kerkwijk 2007; Raghavan et al. 2010).
In particular, the region of orbital period space covered by
Tokovinin et al. (2006; 20. Ptrip . 105yr andPbin . 25 days)
is almost exactly complementary to ours which extends up to
Ptrip . 3 yr and covers the same range of binary periods (see
Fig. 12 in Tokovinin et al. 2006). If we somewhat arbitrar-
ily adopt a distribution of orbital periods for triple systems
that is constant per logarithmic interval, then our detection of
∼4% triples over a factor of 20 inPtrip (1.3 dex) is consistent
with a significant fraction of all close binaries having tertiary
companions (Tokovinin et al. 2006; Pribulla & Rucinski 2006;
Raghavan et al. 2010). If we assume that possible triple-star
periods cover∼20 days− 105 yr (6.3 dex), then we have ex-
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Figure 13. Distribution of the mutual inclination angles of the 39 triple star
candidates. Note that, in general, the uncertainties inim are larger than the 5◦

bin size used for the histogram.

amined∼1/5 of this range. Therefore, we might speculatively
extrapolate our results to suggest that&20% of close bina-
ries have tertiary companions. Tokovinin et al. (2006) find a
much higher fraction for binaries withPbin . 3 days, and a
more comparable one to our value forPbin & 12 days. Thus,
given all the uncertainties, our results may not be dissimilar.
However, we do not have the statistics to comment on the ter-
tiary fraction separately for binary periods above and below
this transition period of∼10 days (see, in particular, Fig. 14
of Tokovinin et al. 2006).

8. SUMMARY AND CONCLUSIONS

We have analyzed theKeplerbinary data set for eclipse tim-
ing variations, with the intention of identifying signatures of
the presence of third bodies. We found some 39 plausible can-
didates for triple star systems, eight of which had been previ-
ously found by the members of theKepler team, but only a
few of these had been studied in any detail. Some were found
via tertiary eclipses, while others were detected from system-
atic variations in theirO−C curves (in the latter case using
typically only ∼1/10 of the data in the current study). We
have subjected all of the 39 systems in this study to an anal-
ysis which includes possible Roemer delays as well as phys-
ical delays. All the best fits are physically sensible, though
revisions may be necessary when Doppler velocity measure-
ments, for example, become available.

We have shown that at least 8% of close binaries have ter-
tiary companions withPtrip . 7 years. This is in agreement
with other surveys covering tertiaries in much wider orbits
over a larger dynamic range in periods.

In order to fully determine the system parameters in the
triple system candidates we have found, radial velocity mea-
surements will be required. This is already being pursued for
a number of the systems (see, e.g., Carter et al. 2011; 2013).
Moreover, for those systems which exhibit other effects of the
third body, such as tertiary eclipses, varying binary eclipse

depths, and/or the effects of binary eccentricity, there isneed
for analysis with a 3-body dynamics code. We consider our
list of triple star candidates something of a starting pointfor
such more extensive studies, both observationally and in mod-
eling.

We were gratified to find that this exercise has proven a very
good way of finding non-eclipsing triples.

Note added in manuscript: Since this manuscript was sub-
mitted, we have identified another three triple system candi-
dates: KIC 3454864, KIC 5254230, and KIC 7362751. These
have orbital periods for the triple stars of 758, 109, and 549
days, respectively. Two are Roemer delay dominated systems
while KIC 5254230 is strongly dominated by the physical de-
lay. We have also become aware of the possibility that our
triple star candidates KIC 5264818, KIC 5310387, and KIC
8386865 (with high effective temperatures listed in the KIC;
see Table 1) may turn out to be pulsating stars rather than bi-
naries.
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Table 1
Candidate Triple-Star Systems Found in theKeplerDatabase

Source Pbin Kp
1 Teff

1 Prim. Ecl. Sec. Ecl. ebin
3 qbin

4 L3/Ltrip
4 Vary. Ecl. Tertiary Diverg. Prim.

(days) (mag.) (K) Depth2 Depth2 Depths5 Eclipses5 & Secon.O−C5

32288636 0.730942 11.82 6561 0.440 0.220 0.034 1.20(1) – – – –
4647652 1.064820 11.81 6265 0.077 0.021 0.078 0.24(1) 0.224(4) – – –
4909707 2.302370 10.69 NA 0.043 0.018 0.073 0.075(1) 0.163(3) – – –
4940201 8.81659 14.98 5284 0.027 0.013 0.083 0.045(1) 0.189(1) – – –
5039441 2.151390 12.92 5943 0.259 0.019 0.036 0.72(1) 0.018(2) – – –
5128972 0.505317 13.23 5776 0.094 0.047 – 0.53(2) 0.207(2) – – –
5264818 1.905052 8.86 9212 0.013 0.011 – 1.43(1) – – – –
5310387 0.441669 12.68 6520 0.113 0.109 – 0.45(1) 0.103(3) – – –
5376552 0.503819 12.86 6631 0.206 0.204 – 0.59(2) 0.008(1) – – –
5384802 6.08309 13.70 6433 0.020 0.020 0.072 0.42(1) 0.076(5) – – –
5771589 10.74007 11.81 5927 0.0011 0.0007 0.0107 0.03(1) 0.013(1) yes – yes
6370665 0.932316 14.00 7386 0.090 0.075 – 0.52(1) 0.081(32) – – –
6525196 3.42060 10.15 5966 0.162 0.147 0.038 0.71(1) 0.024(1) – – –
6531485 0.676991 15.55 5587 0.021 0.017 0.048 0.032(1) 0.084(1) – – –
6545018 3.99146 13.75 5594 0.291 0.226 0.075 0.77(1) – – – slight
7289157 5.26640 12.95 5922 0.062 0.006 0.064 0.10(1) 0.299(1) yes yes yes
7668648 27.8184 15.32 5875 0.232 0.094 0.074 0.49(1) 0.014(2) yes yes yes
7690843 0.786259 11.08 4827 0.049 0.020 0.059 0.05(1) 0.303(1) – – –
7837302 23.83530 13.72 NA 0.026 none 0.17 0.010(1) – – – NA
7955301 15.3266 12.67 4821 0.016 0.01 0.20 0.23(1) 0.031(2) yes – yes
8023317 16.57828 12.89 5625 0.034 0.002 0.057 0.15(1)< 0.001 yes – –
8043961 1.559210 10.74 6348 0.207 0.170 0.028 0.62(1) 0.140(1) – – –
8192840 0.433547 13.47 6136 0.033 0.028 – 0.61(1) 0.279(3) – – –
8386865 1.25800 12.02 8510 0.005 0.005 0.59 0.053(3) – – – –
8394040 0.302128 14.46 5697 0.042 0.034 – 1.15(2) 0.53(1) – – –
8719897 3.15142 12.39 4906 0.195 0.176 0.061 0.23(1) 0.015(3) – – –
8904448 0.865981 13.88 7820 0.180 0.049 – 0.31(1) 0.065(6) – – –
8938628 6.86219 13.68 5602 0.050 0.034 0.062 1.42(1) 0.037(1) yes – –
9451096 1.25039 12.64 NA 0.233 0.087 0.063 0.46(1) 0.062(1) – – –
9714358 6.47418 15.00 4825 0.185 0.012 0.0417 0.36(1) 0.031(1) – – –
9722737 0.418528 14.93 6517 0.102 0.088 – 0.50(1) 0.119(4) – – –
9912977 0.943916 13.73 NA 0.292 < 0.015 0.017 0.20(1) – – – –
10095512 6.01720 13.05 5795 0.113 0.051 0.082 0.77(1) 0.030(1) – – –
10226388 0.660658 10.77 NA 0.174 0.131 – 0.18(1) – – – –
10319590 21.3216 13.73 5518 0.026 0.008 0.108 0.40(1) 0.079(1) yes – –
10613718 1.175880 12.73 5080 0.006 0.005 0.099 0.05(1) 0.016(1) – – –
10991989 0.974475 10.28 5021 0.008 0.004 0.057 0.007(1) 0.167(1) – – –
11042923 0.390164 14.32 6086 0.210 0.208 – 0.48(1) 0.153(2) – – –
11968490 1.078899 13.70 NA 0.033 0.017 0.052 0.043(1) 0.228(1) – – –

Note. — (1) TheKeplermagnitude and effective temperature are taken from theKepler input catalog; (2) Depths of the primary and secondary eclipses, based on our
epoch-folded light curves; (3) Eccentricity of the binary,taken from Slawson et al. (2011) asebin = [(esinωbin)2 + (ecosωbin)2]1/2, except where otherwise noted; (4)
Mass ratio of the two stars in the binary,qbin, and the fraction of the totalKepler luminosity contributed by the third star,L3/Ltrip, as analyzed with thePhoebebinary
light curve fitting code (the number in parentheses reflects the statistical uncertainty in the last significant digit(s)); (5) See Table 3 for references; (6) This object is the
same as the eclipsing binary V404 Lyr (see, e.g., Pigulski etal. 2009); (7) Substituted with values from ourPhoebelight curve analysis.
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Table 2
Fitted Periods, Masses, andO−C Amplitudes for the Triple-star Candidates

Source Pbin
1 Ptrip M3/Mtrip f (M3)2 M3 sin3 itrip Mbin sin3 itrip ARoem

3 Aphys
4

(days) (days) (M⊙) (M⊙) (M⊙) (sec) (sec)

3228863 0.730942 668.4 0.42{0.24,0.48} 0.017{0.016,0.017} 0.10{0.07,0.28} 0.13{0.08,0.90} 189{187,194} 3.5{2.0,4.0}
4647652 1.064820 753.5 0.41{0.26,0.53} 0.023{0.012,0.039} 0.13{0.08,0.31} 0.17{0.09,0.80} 228{183,274} 7.5{4.7,10.4}
4909707 2.302370 505.3 0.70{0.50,0.86} 0.510{0.230,1.053} 1.08{0.47,2.65} 0.40{0.11,2.18} 493{378,627} 122{81,189}
4940201 8.81659 361.6 0.52{0.35,0.77} 0.268{0.042,1.266} 1.08{0.19,3.22} 0.80{0.14,3.33} 318{171,534} 1209{846,1768}
5039441 2.151390 667.8 0.42{0.26,0.57} 0.026{0.011,0.061} 0.15{0.08,0.36} 0.17{0.09,0.81} 220{163,293} 39{24,60}
5128972 0.505317 447.8 0.55{0.38,0.69} 0.094{0.079,0.108} 0.29{0.20,0.66} 0.23{0.09,1.08} 259{244,271} 3.9{2.7,4.9}
5264818 1.905052 296.3 0.42{0.26,0.60} 0.037{0.015,0.094} 0.21{0.09,0.66} 0.24{0.09,1.69} 145{107,196} 66{42,99}
5310387 0.441669 214.2 0.16{0.10,0.20} < 0.001 0.03{0.02,0.07} 0.15{0.09,0.55} 31{ 27, 37} 2.4{1.5,3.7}
5376552 0.503819 334.5 0.32{0.20,0.39} 0.008{0.007,0.009} 0.08{0.06,0.19} 0.16{0.09,0.72} 94{ 91, 98} 3.3{2.0,4.1}
5384802 6.08309 254.8 0.41{0.27,0.71} 0.075{0.007,0.972} 0.48{0.07,2.68} 0.53{0.11,2.68} 165{ 75,387} 754{559,1168}
5771589 10.74007 113.2 0.35{0.32,0.38} 0.073{0.009,0.247} 0.59{0.08,2.08} 1.10{0.15,3.96} 95{ 48,142} 4193{3913,4493}
6370665 0.932316 285.9 0.26{0.17,0.32} 0.004{0.003,0.005} 0.06{0.04,0.15} 0.15{0.08,0.72} 67{ 61, 74} 9.0{5.7,10.9}
6525196 3.42060 415.8 0.38{0.27,0.58} 0.063{0.031,0.201} 0.59{0.15,1.33} 0.85{0.16,3.45} 215{171,318} 127{91,189}
6531485 0.676991 48.3 0.61{0.34,0.77} 0.173{0.014,0.613} 0.32{0.13,2.77} 0.18{0.08,3.22} 72{ 31,109} 83{58,109}
6545018 3.99146 90.6 0.29{0.20,0.46} 0.038{0.005,0.297} 0.51{0.07,1.87} 1.21{0.16,3.78} 66{ 33,131} 572{439,866}
7289157 5.26640 243.8 0.52{0.30,0.76} 0.187{0.021,1.065} 0.74{0.14,2.83} 0.57{0.12,2.90} 218{104,387} 737{504,1029}
7668648 27.8184 203.7 0.10{0.08,0.12} 0.001{< 0.001,0.004} 0.14{0.02,0.41} 1.31{0.22,3.65} 37{ 21, 55} 4759{4097,5401}
7690843 0.786259 74.3 0.40{0.26,0.64} 0.071{0.026,0.147} 0.41{0.13,1.05} 0.49{0.11,2.80} 71{ 51, 91} 40{24,61}
7837302 23.83530 959.3 0.44{0.26,0.73} 0.177{0.017,1.281} 1.03{0.15,3.37} 1.13{0.16,3.74} 528{244,999} 2770{1748,4545}
7955301 15.3266 209.5 0.36{0.32,0.39} 0.094{0.012,0.277} 0.73{0.10,2.18} 1.30{0.18,3.96} 156{ 79,223} 5788{5464,6131}
8023317 16.57828 613.5 0.10{0.08,0.14} 0.001{< 0.001,0.007} 0.10{0.02,0.42} 0.85{0.17,3.33} 70{ 41,131} 528{ 410, 680}
8043961 1.559210 476.7 0.41{0.25,0.56} 0.034{0.028,0.045} 0.21{0.12,0.49} 0.29{0.10,1.42} 194{179,213} 24{15,33}
8192840 0.433547 803.9 0.38{0.23,0.47} 0.015{0.011,0.019} 0.10{0.07,0.26} 0.16{0.09,0.85} 208{187,223} 1.9{1.3,3.1}
8386865 1.25800 293.0 0.55{0.36,0.67} 0.063{0.047,0.117} 0.23{0.14,0.62} 0.18{0.08,1.08} 171{156,210} 37{26,49}
8394040 0.302128 394.8 0.71{0.47,0.84} 0.353{0.287,0.414} 0.70{0.50,1.58} 0.28{0.10,1.81} 369{345,391} 5.4{3.5,7.7}
8719897 3.15142 332.7 0.52{0.36,0.70} 0.158{0.086,0.283} 0.59{0.23,1.61} 0.49{0.11,2.77} 253{205,307} 177{121,230}
8904448 0.865981 548.1 0.41{0.25,0.49} 0.018{0.014,0.025} 0.11{0.08,0.26} 0.15{0.09,0.76} 171{158,192} 11{6,15}
8938628 6.86219 388.1 0.22{0.17,0.34} 0.015{0.003,0.171} 0.37{0.05,1.50} 1.45{0.15,4.05} 127{ 75,287} 318{256,481}
9451096 1.25039 106.7 0.39{0.25,0.65} 0.069{0.019,0.283} 0.49{0.13,1.33} 0.61{0.12,3.14} 90{ 59,144} 66{42,107}
9714358 6.47418 103.7 0.27{0.21,0.35} 0.028{0.004,0.142} 0.39{0.06,1.50} 1.04{0.15,3.91} 65{ 35,112} 1252{1041,1558}
9722737 0.418528 443.9 0.55{0.36,0.64} 0.068{0.063,0.073} 0.22{0.16,0.52} 0.18{0.09,0.92} 230{225,236} 2.4{1.6,2.8}
9912977 0.943916 753.7 0.23{0.14,0.27} 0.002{0.002,0.003} 0.04{0.03,0.11} 0.14{0.08,0.66} 105{ 94,117} 3.2{1.9,4.0}
10095512 6.01720 472.6 0.50{0.37,0.71} 0.185{0.072,0.579} 0.88{0.22,2.15} 0.78{0.13,3.18} 337{247,493} 414{304,572}
10226388 0.660658 934.9 0.60{0.39,0.72} 0.124{0.101,0.150} 0.35{0.23,0.83} 0.24{0.09,1.30} 465{434,493} 3.3{2.2,4.1}
10319590 21.3216 247.1 0.22{0.10,0.62} 0.013{0.001,0.642} 0.34{0.04,2.05} 1.08{0.17,3.65} 90{ 34,329} 4193{2175,9999}
10613718 1.175880 88.1 0.47{0.30,0.72} 0.136{0.063,0.449} 0.75{0.26,1.73} 0.75{0.14,3.33} 99{ 76,147} 80{52,121}
10991989 0.974478 554.2 0.54{0.34,0.63} 0.059{0.049,0.072} 0.21{0.15,0.49} 0.18{0.09,0.92} 256{239,274} 11{7,13}
11042923 0.390164 839.0 0.40{0.21,0.47} 0.017{0.015,0.019} 0.10{0.08,0.37} 0.15{0.09,1.37} 223{213,230} < 1
11968490 1.078899 253.2 0.63{0.43,0.80} 0.333{0.287,0.387} 0.88{0.55,1.69} 0.52{0.14,2.20} 271{256,283} 38{26,49}

Note. — (1) The binary period is referenced to an epoch of BJD = 2454900; (2) Defined asM3
3 sin3 itrip/(M3 +Mbin)2, (3) See eq. (7) for the definition, (4) See eq. (10)

for the definition. The values in curly brackets represent the 10% lower- and 90% upper-limits on the probability distribution. The parameter values and uncertainties
reported in this table are based on 108 parameter draws for a 5-day binary, and scaled proportionally to Pbin.
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Table 3
Fitted Orbital Parameters for the Triple-star Candidates

Source eccentricity1 ω
(2)

τ
(3) im4 vm

5 rms6
τlongterm

7 Refs.
(degrees) (days) (degrees) (degrees) (sec) years

3228863 0.08{0.06,0.12} 209{192,224} 94{ 63,123} 45.4{18.4,71.5} 92{ 13,139} 51 1600
4647652 0.35{0.10,0.44} 184{ 42,340} 459{113,644} 44.9{19.5,70.4} 90{ 21,160} 35 1400
4909707 0.54{0.31,0.66} 344{295,417} 449{392,537} 43.9{24.2,63.7} 88{ 22,158} 126 305
4940201 0.18{0.11,0.25} 163{ 42,326} 319{289,340} 16.3{ 9.2,21.4} 54{ 18,150} 167 41
5039441 0.42{0.18,0.54} 187{ 36,345} 336{ 48,619} 45.4{24.2,66.4} 87{ 21,159} 39 566
5128972 0.33{0.25,0.41} 101{ 84,116} 26{ 7, 46} 45.0{18.4,71.4} 86{ 16,157} 39 1086
5264818 0.37{0.13,0.53} 173{ 34,332} 120{ 23,270} 41.4{23.2,59.0} 84{ 22,154} 62 127
5310387 0.53{0.34,0.61} 161{ 16,345} 126{ 12,194} 45.7{22.6,68.0} 169{122,213} 20 285
5376552 0.40{0.35,0.45} 167{161,175} 302{296,309} 44.3{20.5,68.4} 77{ 16,171} 39 604
5384802 0.36{0.23,0.46} 171{ 30,334} 103{ 98,112} 17.1{ 9.3,23.4} 84{ 30,159} 105 29 8
5771589 0.30{0.28,0.33} 214{ 38,329} 75{ 74, 76} 31.4{30.7,32.1} 169{165,172} 260 3.2 9
6370665 0.22{0.07,0.33} 92{ 15,353} 291{245,396} 46.3{23.1,67.7} 68{ 20,140} 62 240
6525196 0.30{0.26,0.35} 285{233,310} 187{127,200} 28.0{22.6,33.9} 129{ 84,147} 29 138
6531485 0.44{0.33,0.63} 315{204,347} 35{ 33, 35} 37.8{14.1,48.8} 23{ 8,175} 68 9.5
6545018 0.26{0.16,0.36} 150{ 41,319} 69{ 67, 71} 21.8{16.8,27.7} 46{ 23, 63} 109 9
7289157 0.36{0.27,0.47} 161{ 42,320} 44{ 34, 51} 22.6{15.3,29.7} 68{ 9,172} 73 31 9, 10
7668648 0.36{0.28,0.42} 185{ 40,327} 29{ 20, 36} 36.8{30.5,40.8} 70{ 59, 81} 1193 4 9, 10
7690843 0.25{0.08,0.42} 258{ 48,334} 44{ 25, 59} 29.1{17.1,42.2} 101{ 35,149} 36 19
7837302 0.16{0.08,0.25} 247{175,319} 353{302,397} 14.7{11.4,18.8} 140{ 15,169} 120 106
7955301 0.45{0.43,0.48} 161{ 36,326} 187{186,188} 31.6{30.8,32.4} 157{153,161} 326 8 9
8023317 0.23{0.18,0.29} 207{ 63,336} 118{ 92,145} 53.0{45.8,62.4} 68{ 52, 85} 19 62
8043961 0.25{0.14,0.33} 192{167,212} 398{363,425} 34.6{16.4,54.7} 102{ 11,172} 50 400
8192840 0.63{0.52,0.70} 173{160,185} 569{544,595} 45.0{18.7,71.3} 79{ 24,164} 59 4108
8386865 0.38{0.27,0.48} 137{105,159} 128{111,147} 53.2{33.1,74.0} 120{ 70,158} 115 187
8394040 0.61{0.50,0.67} 123{113,131} 296{288,305} 43.8{17.8,70.8} 73{ 19,159} 96 1088
8719897 0.24{0.13,0.31} 291{267,317} 90{ 68,103} 17.4{ 9.2,25.2} 98{ 29,151} 51 96
8904448 0.59{0.50,0.66} 135{125,143} 443{431,454} 40.1{18.3,63.9} 68{ 12,166} 32 950
8938628 0.31{0.26,0.35} 282{221,327} 339{314,348} 17.4{12.4,21.1} 133{ 27,160} 21 60
9451096 0.24{0.10,0.36} 183{ 53,313} 60{ 8, 97} 23.4{11.9,37.1} 91{ 33,150} 19 25
9714358 0.26{0.20,0.32} 154{ 29,329} 77{ 76, 78} 16.8{13.8,20.8} 134{120,149} 131 4.6 9
9722737 0.22{0.16,0.27} 29{ 14, 46} 424{416,461} 45.1{18.4,71.8} 229{160,242} 48 1290
9912977 0.31{0.16,0.39} 251{213,301} 260{187,359} 45.0{18.7,71.2} 103{ 24,159} 22 1650
10095512 0.18{0.12,0.23} 67{ 37,101} 442{420,480} 13.6{ 6.9,18.7} 89{ 28,150} 23 100
10226388 0.32{0.24,0.39} 281{263,300} 755{713,797} 44.9{18.4,71.9} 80{ 21,158} 101 3588
10319590 0.14{0.05,0.32} 182{ 39,327} 95{ 82,111} 10.4{ 6.6,21.3} 102{ 11,171} 470 7.8 9
10613718 0.18{0.05,0.29} 240{138,291} 20{ 7, 76} 18.1{ 9.7,29.0} 121{ 26,157} 66 18
10991989 0.30{0.21,0.37} 189{178,202} 571{553,592} 43.0{18.9,68.5} 128{ 21,165} 82 861
11042923 0.17{0.09,0.25} 34{-16,55} 679{587,747} 45.3{19.6,71.2} 92{ 25,162} 57 4950
11968490 0.40{0.31,0.46} 117{107,127} 216{209,224} 32.6{16.2,48.9} 57{ 29,128} 43 162

Note. — (1) Orbital eccentricity of the triple system; (2) longitude of periastron of the orbit of the triple system (specifically ω describing
the binary CM); (3) time of periastron passage of the triple system; (4) mutual inclination angle between the orbital planes of the binary and
triple; (5) angle between the triple’s periapse and the plane of the binary (see Fig. 6) –vm runs between 0◦ and 180◦ because of the way it
appears in eq. (9); (6) rms scatter of theO − C points about the best-fitting model; (7) timescale for longer-term perturbations in the triple
system calculated here simply asP2

trip/Pbin (see eq. 13); (8) Fabrycky (2010); (9) Slawson et al. (2011);(10) Carter et al. (2013). The values in
curly brackets represent the 10% lower- and 90% upper-limits on the probability distribution. The parameter values anduncertainties reported
in this table are based on 108 parameter draws for a 5-day binary, and scaled proportionally to Pbin.


