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A B S T R A C T 
 
The ability to accurately translate the current condition of the crops into yield foresight 
expected at the end of the growing season helps the governments and other policymakers 
around the world to make informed decisions on matters relating to food security and 
economic planning. While the Agricultural Production Systems Simulator (APSIM-
Wheat) is the widely used wheat-yield simulator in the world today, its major challenge is 
the lack of adequate data for calibration and parameterization of the model in many 
developing countries. This aspect inhibits the model's performance. This study utilized 
earth observation data derived from sentinel-2 to calibrate APSIM-wheat (version 7.5 
R3008) to compensate for the data inadequacy and improve the model's performance in 
developing countries. The phenological statistics generated from sentinel-2 were 
integrated into the model as part of the input parameters. The phenological statistics were 
based on NDVI, MSI and NPCRI and were used with other crop management data 
collected at the field level. When the phenological statistics from sentinel-2 were used to 
calibrate APSIM-Wheat, the improved model outperformed the conventional APSIM-
Wheat by 18.65% since the RRMSE improved from 25.99% to 7.34%; RMSE from 1784 
Kgha-1 to 501 Kgha-1 and R2 from o.6 to 0.82 respectively. 

  

1. Introduction 
The accurate interpretation of the current condition of the crops into yield foresight expected 

at the end of the season helps the governments and other policymakers around the world to make 
informed decisions on matters relating to food security and economic planning. Many studies on 
measures to ensure food security are being conducted worldwide following calls for papers from 
World Bank and Food and Agriculture Organization (Wisser et al., 2018).  

Wheat is Kenya's second most important cereal, contributing to food security, poverty reduction, and 
employment for farmers and others in the value chain (Kamwaga et al., 2016). However, there is 
inadequate data to parametrize and calibrate the agronomic models for crop simulation. For this 
reason, even Agricultural Production Systems Simulator (APSIM-Wheat), the most widely used wheat 
yield simulator globally, does not perform as well as it does in Asia and Australia (Hussain et al., 
2018; Asseng et al., 1998 & Gaydon et al., 2017). 

The sentinel-2 data, launched in 2015 (ESA, 2015), provided an opportunity for researchers to extract 
tones of phenological statistics from agricultural crops (Gitelson et al., 2003; Clevers et al., 2017; 
Harris Geospatial., 2019; Sykas, 2020; ESA, 2015). This research thus used phenological statistics 
obtained from sentinel-2 to close the parameterization gap of the APSIM-Wheat. The study aims to 
improve the accuracy of crop yield prediction in Kenya, where it is difficult to get sufficient data for 
model parameterization. The derived statistics for application are based on NDVI, MSI, and NPCRI. 

 
2. Study Area 

The area of study is in Kenya's western parts of Narok County (Fig. 1). Wheat is the main crop 
grown in this area. West Narok has both small and large-scale farms. 
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Figure 1: Map showing the wheat fields that were used to implement this research in the study area  

3. Data and Methods 
 
3.1 Data 
3.1.1 Wheat farm management data 
The wheat data used in this study was collected from the 63 wheat farmers in the study area. These 
farmers were randomly selected based on their willingness to participate. The said data included; 
irrigation coefficient/factor, wheat seed variety, fertilizer applied and fertilizer type, amount and dates 
applied, sowing dates, sowing density, observed yields, and the location of wheat farms. The data was 
captured uniformly and structurally using the geo-enabled digital questionnaire designed from the 
Survey123 form in the .csv file format.  
 
3.1.2 Weather data 
The rainfall, temperature, wind speed, radiation and humidity data in the form of the .csv files and the 
primary data were used as the input variables to the APSMI-Wheat Module for yield simulation. These 
datasets were obtained from the nearest Trans African Hydro-Meteorological Observatory station 
located at -0. 8550752, 35.3945556.  
 
3.1.3 Sentinel-2 data 
The sentinel-2 data used in this study were downloaded from https://scihub.copernicus.eu/ between 
20/08/2019 and 23/12/2019. A total of 26 Sentinel-2 images were downloaded and processed to 
extract the phenological statistics of wheat. 
 
3.2 Methods 
The data in sections 3.1.1, 3.1.2 and 3.1.3 were used to prepare the input file of APSIM-wheat to 
simulate the wheat yield according to the model (Keating et al.,2003; Zhang et al., 2012).  

The APSIM-Wheat model was executed in two instances. In (Fig 2a), the conventional model was 
executed by parameterizing the model with the study area's local conditions. The second execution 
instance involved calibration of the model using phenological statistics derived from sentinel-2 as 
summarized in (Fig 2b) 

https://scihub.copernicus.eu/


Journal of Agricultural Informatics (ISSN 2061-862X) 2022 Vol. 13, No. 1:9-18 
 

 

doi: 10.17700/jai.2022.13.1.629  11 
Benard Kipkoech Kirui , Godfrey Ouma Makokha , Bartholomew Thiong'o Kuria: Calibration and Parameterization of APSIM-
Wheat using Earth Observation Data for wheat Simulation in Kenya 

 
 
 
 
3.2.1 Data Pre-Processing 
The sentinel-2 reflectance was converted from the top of the atmosphere to the top of canopy 
reflectance. This was necessary because the leaf water content and chlorophyll contents are based on 
the canopy (Djamai et al., 2018; Zarco-Tejada et al., 2019). 
 
3.2.2 Extraction of Vegetation Indices (VIs) 
The NDVI in sentinel-2 was computed using the formula (Band 8-Band 4)/ (Band 8+Band 4) 
according to (Sykas, 2020; ESA,2015). The MSI, on the other hand, was based on the ratio of 
(Band11)/ (Band 8) according to (Harris Geospatial., 2019; Hunter Jr and Rock, 1989; ESA., 2015). 
The NPCRI was lastly computed using (Band 4-Band 2)/ (Band 4 + Band 2) as described in (Sykas., 
2020; ESA., 2015; Govind et al., 2005). 
 
3.2.3 Extraction of Phenological Statistics from VIs 
Phenological statistics for wheat growth were extracted from the vegetation indices in section 3.2.2 
using the approach advanced by Li et al. (2019), involving the computation of percentile (P%) of the 
VIs on the ith day. For convenience, this method begins by multiplying the values of VIs by 100 so that 
the integer proportions (VIint become usable in the analysis. The pixels (NUMVI) corresponding to 
each (VIint) are then counted. 

Using the counted pixels, the approach then calculates the value of P, which indicates the wheat 
growth statistics according to Lie et al. (2019). The description of the formula is as follows; 
 

     Equation 1 

Sentinel-2 Data 
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Figure 2: Summarized workflow used in research implementation. 2a shows a summarized procedure that was used to apply the 
local parameters of the study area in the conventional APSIM- Wheat for wheat yield simulation. 2b shows the improved model 

where the phenological parameters from sentinel-2 were used to calibrate the APSIM- Wheat. 
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Where k ranges from 0 to 100 (which corresponds to VIint); NUMVI is the number of pixels, j ranges 
from 0 to k;  is the total number of pixels in the entire VI and is given by the formula below; 
 

     Equation 2 

The final step in the approach was the conversion of VIint into P using the lookup table to use them to 
evaluate the wheat growth statistics. 
The value of P for the pixel with VI=k/100 indicates the wheat growth statistics. The higher values of 
P indicate better wheat growth and vice versa, according to Zhang et al. (2018). This is what was used 
as input variables in APSIM-Wheat to improve the model performance.  
 
3.2.4 Model Parameterization and Calibration 
APSIM- Wheat was parameterized using the rainfall, temperature, solar radiation, soil texture, soil 
drainage, soil water content, and organic matter, start and end date of sowing, fertilizer amount and 
type, crop spacing, pest and weed control measures, and irrigation coefficient data from the study area.  
 
3.2.5 Model Validation 
The model accuracy was assessed using relative root mean square error (RRMSE). The RRMSE 
indicator was calculated by dividing the average relative root mean square (RMSE) with the average 
value of the measured wheat yield according to equations 3 and 4.  

      Equation 3 

*100                                        Equation 4 

Where n is the sample size,  is the simulated wheat yield and  is the recorded wheat yield. The VIs 
were validated in the field by mapping out the bare soils and removing the VIs that represented them. 
This ensured that the VIs used were for wheat only. 
 
3.2.6 Sensitivity Analysis 
Sensitivity analysis was done to assess the changes in the model's performance due to changes in input 
parameters. This was done using the leave-one-out procedure and estimating the amount of change in 
the simulated yield to ignore the parameter according to (Holzworth et al., 2014). The procedure was 
conducted for rainfall and nitrogen parameters because the two were highly variable than the rest.  
 
4. Results and Discussion 
4.1.1 Time Series NDVI Profile 
The mean NDVI values for each field were plotted on a time series profile at different growth stages, 
according to Dong et al. (2019). The results, in Fig. 3, indicates that wheat in the irrigated fields was 
healthier than those not under irrigation, which showed slow seedling development and indicated steep 
fluctuations in the NDVI values across the phenological season (0 to 0.4 in the first 20 days of 
growth). During the same duration, the NDVI values in the irrigated fields rose from 0 to 0.68. In the 
irrigated fields, sprouting and canopy development occurred after five days instead of eleven days in 
the unirrigated parts. The reduced vigour in the unirrigated fields is due to little rainfall during the first 
20 days of sowing (Fig. 5a), hence lower NDVI values (Masialeti et al.,2010).  
 
The NDVI values rose from 0.68 to 0.84 and remained constant till the 70th day before declining in the 
irrigated fields. In the unirrigated fields, the values rose slowly from 0.40 to 0.58 during the second 
stage of phenological development. Health improvement in the unirrigated fields coincided with the 
heavy rains between October to December (35th day) and spraying done in most fields to control weed 
and replenish nitrogen. 
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Figure 3: The graph shows the time Series NDVI curve for wheat in the controlled and uncontrolled 

fields from August 20, 2019, to December 23, 2019 
 

During jointing and booting, the NDVI values of wheat rose to reach the highest value of 0.843 and 
0.710 in the irrigated and unirrigated fields, respectively, between the 60th and 70th day of growth. At 
the end of the phenological period, which started in the middle of November, the NDVI values had 
decreased to 0.38 in both irrigated and unirrigated fields. The values did not come down to zero 
because of rains received in December, and weeds had started growing again. This agreed with the 
study by (Jiang et al., 2003; Skakun et al., 2018), which attributed the rise in the values of NDVI to 
residual water and fertilizer in the soil. 
 
4.1.2 Time Series MSI Profile for wheat 
At the start of the season, the MSI values rose exponentially to 0.58 in the irrigated fields and from 
0.18 to 0.38 in the unirrigated fields within 20 days of sowing. This increase in the irrigated fields was 
at the same time when the NDVI values rose sharply due to the irrigation, which started immediately 
after sowing, hence low stress due to water in the controlled fields (Zhao et al., 2020).  
 

 
Figure 4: Graph of temporal moisture status in wheat from August 20, 2019, to December 23, 2019. 
 
The increase of MSI values in the unirrigated fields fluctuated between 0.30 and 0.53 in the middle of 
the phenological cycle and finally settled at 0.5 at its end and the start of long rains (Figure 5a). There 
is a sharp contrast in MSI values from days 45-65 due to the rains that started at this period. The 
values remained high after 100 days when the wheat was at the maturity stage because of the low 
demand for water due to reduced photosynthesis (Guo et al., 2013). The correlation between the water 
stress, rainfall, humidity, wind speed and temperature further showed that the water stress was 
observed during low rainfall and humidity, high wind speed and temperatures and vice versa (see 
Figures 5a, 5b, 6a and 6b, respectively). 
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Figure 5: The graphs showing (a) Rainfall and (b) Humidity Variation throughout the phenological 

cycle in the study area from August 20, 2019, to December 23, 2019 
 
Wind blowing across the crop canopy causes crops to lose water through evapotranspiration (Parkash 
and Singh, 2020). Therefore, increased wind speed causes massive water loss. Further water loss 
occurs when temperatures increase with decreasing precipitation. Herein, wind speed and temperature 
remained almost constant during the phenological period (Figure 6a). The observed crop stress was 
therefore attributed to precipitation, which had higher variability compared to others(Figure 5a). 

Figure 6: Graphs for the time series status of wind speed and temperature in the study area from 
August 20, 2019, to December 23, 2019. (a) Wind speed variation, (b) temperature variation 
 
4.1.3 Time Series NPCRI Profile 
The temporal variation of NPCRI values showed a decreasing trend until around the 80th day of 
sowing, when the values started to rise again (Figure 7). At the beginning of the phenological season, 
the NPCRI values for both the controlled and uncontrolled farms were 0, probably because the crops 
had not developed canopies use by this vegetation index to estimate the chlorophyll (Preza et al., 
2019). At around ten days, the values rose to 0.55 and 0.42 for controlled and uncontrolled farms, 
respectively (Fig 7), due to canopy development and the flourishing of crops from fertilizer applied 
during sowing, thus raising the NPCRI values (Wang et al.,2019). Crop development increased 
utilization of available nitrogen, causing NPCRI values to decrease to about 0.33 and 0.31 due to 
decreased photosynthetic processes (Delloye et al., 2018). After top-dressing, the amount of canopy 
chlorophyll optimizes because of replenished nitrogen, hence increased NPCRI values (Govind et al., 
2005). 

(a) (b) 

(a) (b) 
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At around 40 days after the top dressing, the NPCRI values rose to a maximum of 0.6 and 0.44 in 
controlled and uncontrolled farms, respectively. Again, the values begin to decrease at the peak level, 
reaching the lowest point at around the 80th day.  During this period, the wheat is at the booting and 
flowering stage, which precedes the grain formation, thus consuming a lot of nitrogen required to 
facilitate the process (Wang et al., 2019). After this stage, the plant maturity minimizes nitrogen, thus 
raising values without top dressing (Iqbal., 2008). At the end of the phenological circle, the remaining 
nitrogen forms soil's residual nitrogen (Gitelson et al., 2003; Cartelat et al., 2005; Govind et al., 2005). 
 

 
 

Figure 7: The graph is showing the time-series status of NPCRI for wheat both in controlled and 
uncontrolled farms from August 20, 2019, to December 23, 2019 

 
The findings echoed those of  (Cui et al., 2019; Govind et al., 2005), where the highest value of 
NPCRI was observed between the 50th-60th day after sowing and a few days after top dressing. The 
two studies also observed the lowest value at around the 118th day, the day of full maturity as per the 
phenological stage. The difference of days in the highest and lowest values between this study and 
those of (Cui et al., 2019; Govind et al., 2005) is due to different climatic conditions and wheat 
varieties in question.  
 
4.2 Model Validation 
The NDVI, MSI and NPCRI values for wheat were validated in the field by identifying and recording 
the GPS coordinates of the bare ground within the wheat farms. Results helped curate the wheat 
NDVI, MSI and NPCRI. All the fields that had NDVI, MSI and NPCRI that were equal to or less than 
the values for bare soil were removed from the list to ensure the information obtained from the VIs 
only applied to wheat. The MSI condition curve was further validated by comparing it with the rainfall 
received, and the particular instances of water stress coincided with the specific period of low rainfall. 
For example, between 0-10 days, 20-40 days, and 50-55 days, there was reduced rainfall, which 
created stress in unirrigated fields (Fig 5a). 
 
The model's accuracy in the two scenarios used in this study was assessed using RMSE, RRMSE and a 
coefficient of determination (R2).  According to (Jamieson, Porter and Wilson, 1991), the performance 
of the model is excellent when RRMSE<10%; good if 10%<RRMSE<20%; fair if 
20%<RRMSE<30%; and poor if RRMSE≥30%. Furthermore, the model performance is good when 
RMSE is low and (R2) is approaching 1.  
 
Table 1: Linear regression analysis for the two instances the model was deployed 

Model RMSE, Kgha-1 RRMSE, % Coefficient of Determination (R2) 

Conventional APSIM- model 1784 25.99 0.6 
APSIM Model Calibrated with EO Data 501 7.34 0.82 
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The graphical representation of model validation indicates a higher model performance when 
phenological statistics derived from sentinel-2 were used to calibrate the APSIM wheat to fill the data 
gaps. The high model performance is indicated by the strong positive correlation between the 
simulated yields and observed yields in Fig 8 
 

 
Figure 8: The yield predictions by APSIM-Wheat under two circumstances. (a) simulated wheat yield 

using conventional APSIM-Wheat, (b) simulated wheat yield when vegetation indices derived from 
sentinel-2 were incorporated into APSIM-Wheat  

4.3 Sensitivity Analysis 
The sensitivity analysis shows that the improved APSIM-Wheat was more sensitive to precipitation 
changes than nitrogen since a slight change in the rainfall caused a significant margin in the yield. For 
example, a slight change in rainfall from 250mm to 300mm results in yield quantity changes from 
around 750 Kgha-1 to 1500 Kgha-1.  After 350mm, the rainfall increase did not increase the yield as it 
was between 200mm and 340mm. For nitrogen, the saturation point beyond which the additional 
nitrogen does not result in increased yields is 85 KgNha-1 (Fig 9a). These results agreed with those of 
(Zhao et al., 2014; Asseng et al., 2013 

Figure 9: Graphs showing the sensitivity of the model to changes in nitrogen and precipitation. (a) 
Shows how changes in nitrogen levels affect the simulated wheat yields, (b) Shows how changes in 
precipitation affect the simulated wheat yields. 

(a) (b) 

(a) 
(b) 
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4.4 Conclusion 
 
The inadequacy in data for calibration and parameterization of the model resulted in the low 
performance of APSIM-wheat (version 7.5 R3008) in the simulation of crop yield. To address this 
issue, this research developed a new version of the simulator. This new version of the model was 
developed by incorporating the NDVI, MSI and NPCRI sentinel-2. Phenological Statistics for wheat were 
generated from NDVI, MSI and NPCRI and used to compensate for the original simulator version’s data 
inadequacy. A test run of this new version demonstrated the improved performance of 18.65%, 
marked by the drop of RRMSE from 25.99% to 7.34%, R2 from 0.6 to 0.82, and RMSE from 1784 
Kgha-1 501 Kgha-1.  
 
This study concludes that nitrogen in wheat is a critical parameter that is required in the estimation of 
wheat yield and therefore its estimation was a major cause of bigger deviations in yield estimations in 
APSIM-wheat (version 7.5 R3008). Thus, the study recommends that: In places where the available 
agronomic field data is not adequate to calibrate APSIM-Wheat Model, the satellite-derived crop 
nitrogen provides a cheaper alternative of reducing the deviations in the prediction of crop yield.  The 
NDVI and MSI provide insights on the qualitative/quantitative time series analysis of crop water and 
health status. This information thus helps fill the data inadequacy for improved model performance. 
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