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EDGE DISTURBANCES
OF THE SHALLOW HYPERBOLIC PARABOLOIDAL
SHELL BOUNDED BY FOUR GENERATRICES
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The hyperbolic paraboloid shell bounded by four generatrices subjected at one of"
its edges to bending moments is investigated with the aid of the elastic bending theory of
shallow shells. Inside the shell the decreasing curve of the bending moment is determined.
The result is compared on the one hand with that of the Bleich-Salvadori solution, and on
the other, with the decreasing curve of the bending moment of the plain plate.

1. Introduction

The doubly curved shell structures bear the distributed loads by mem-
brane forces, provided the supports are able to resist the membrane forces
arising at the edges. Thus, the bending moments acting in these types of
shells are not necessary for ensuring the equilibrium. They arise from the
deformation incompatibilities occurring at the edges, and are rapidly dying
out with an increasing distance from the edges.

This decrease of the edge disturbances has been investigated for barrel-
vaults, elliptic paraboloid and saddle-shaped hyperbolic paraboloid shells
(translational surfaces) [2], [5], [4]- However, the decrease of the edge distur-
bances of the hyperbolic paraboloid shells bounded by four generatrices is not
yet clarified. As far as the author’s knowledge goes, up to the present it was
only Duddeck [3] who treated a similar problem: he determined the stress
pattern of a hyperbolic paraboloid simply supported at the straight edges and
subjected to an uniformly distributed load. The edge disturbances themselves
have been analysed by Bleich and Salvadori [1] on the basis of approximate
assumptions. Their results will be compared with those of the present solution.

The aim of this paper is to establish the decreasing bending moment
diagram of a hyperbolic paraboloid (hypar), loaded by bending moments along
a straight edge, and to determine the distance beyond which it may practically
be taken to be equal to zero. Namely, this type of load may be considered
as a basic case, on the base of which one can form a notion of the decrease
of other types of edge disturbances and can estimate the width of the strip
to be reinforced.
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68 L. KO."1.LAR and M. SZOTS

2. Notations

(See also Fig. 1)

iy orthogonal coordinetes;

2 (*e ) ordinate of the shell surface;

r,s, t second order partial derivatives of the shell surface;
XS ny> nxy membrane forces;

flexural shearing forces;
Pz load component parallel to z;
mx, Ty, mxv bending and twisting moments;

M,V displacements parallel to x and y, respectively;

w displacement normal to the surface;

E,G = £/[2(1 f D]moduli of elasticity in tension and shear, respectively;

v Poisson’s ratio (in the deductions: v = 0);

h thickness of the shell;

.a b side lengths of the plan projection of the hyperbolic paraboloid;
f height of the corner of the hypar above the xy plane;

m = M)a re= 1,2,3,..)

Differentiation with respect to x is denoted by prime, differentiation with respect to y is
denoted by dot.

3. Deduction of the governing equations

The investigations will be made on the base of the theory of shallow
shells [4], [7], the calculations thus being simpler and the differential equations
have constant coefficients.

The .general equilibrium equations of the shallow shells consist of three
projection and two moment equations [4]:

xenxy = 0. (la)
n'xy+Tly = 0, (Ib)
rNXE 2 SNxyA tny-\~q'xELy-\-Pz = 0 , (lel
mx+ mxy x =O (1d)
TXY+TNy yy= om (le)

(The third moment equation becomes meaningless for the case of shallow
shells; the reason for it is explained in [4].)

In these equations it is implied that the load has only a vertical compo-
nent, pz parallel to the z-axis.

The internal forces are connected to the displacement components by
Hooke’s latv as follows:

nx= Eh(u -rw) (2a)
nv= Eh(v 4-tw), (2b)
Eh (u’+ v'—2sw) , (2c)
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my =h* (2d)
12

y — 12 v (26)
EE

m,, L (2f)

Substituting the set of equations (2) into (1), and eliminating tne shear
forces gx, qy from (lc) with the aid of (Id) and (le), we arrive at three differen-
tial equations of the displacement components u, v, w:

2U"-j-b1" 4 -10 -2 TM/—2sw’ = 0, (3a)
nm'-\-v"-\-2v- 2tw —2sw'— 0, (3b)
ru'+s(w-j-v )+ tv' -(r2-(-2 s2+ t2) ic

------- (iclvV+ 2iv" “j-tc)-(-pz= 0 .

These three equations together with the boundary conditions fully deter-
mine the three displacement functions u, v and w.

We can also arrive to a different set of equations equivalent to the group
of Eq. (3) in such a way that we consider the internal forces nx, ny, nxy as
second derivatives of a stress function F(x,y):

whereby the equilibrium equations (la, Ib) are automatically satisfied. There
still remains Eq. (Ic) which after substituting Eqs (Id, le) and (2d to 2f)
contains only two unknown functions, F(x,y) and w(x,y)!

EE
_______ (iclV+ 2 —(tjF*—2sFr+ rF") = pz. (5a)

However, we must still deduce from Eqs (2a to 2c) a compatibility
equation starting out from the equality of the mixed second derivatives,
expressing that the three displacements (u, v, w) are continuous functions,
that is, the shell surface gets neither torn, nor crumpled:

(Flv+2F"“+ F:)+Eh{tw" 2sw"”+ rw") = 0. (5b)
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70 L. KOLLAR and M. SZOTS

Thus we obtained for F and w two partial differential equations of the fourth
order [4], [7].

Advantage ofthe set of Eqs (5a, 5b) isthat it contains only two unknown
functions. It has the disadvantage, however, that only the statical boundary
conditions and the displacement boundary conditions in terms of tv may be
easily applied in connection with them. If the displacement boundary condi-
tions also include constraints in terms of the displacements n or v, then it is
commonly prefarable to use the set of Eqs (3a to 3c). In this paper it will
also he started from the set of Eqgs (3), and the three displacement functions
u, V, w should be determined.

In the following, the load component pz will be omitted from the equa-
tions because for the case of the edge disturbance at hand the shell is regarded
as unloaded.

4. Application of the equations to the hypar shell

The boundary conditions to be considered

The equation of the shell surface illustrated in Fig. 1 is:

Zz—aExx. (6)

The second derivatives of the surface are:

r= 0, (6a)
(6b)
t=0 (6¢)

whereby the set of Eqs (3) will have the following simpler form:

2u"-\-u" (7a)
ab
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M AV A2V e W = 0 (7b)
ab

u'+t/—— w—~ (wiv+ 2" =0. (7¢)
ab 12/

We assume a simple support at every edge which allows free rotation
and precludes lateral thrust. The edge y = 0 will be subjected to the effect
of a bending moment with a law of distribution my = M1 sin nx/a =
= Mi esin xxx. Therefore, deflection, bending moment normal to the edge,
and lateral thrust must he equal to zero along all edges. This involves the
following boundary conditions:

At the edgey = O0:

w= 20, (8a)
12 .on -

W = -——-MTr sin — %, (8b)
Eh3 a

ny —0, that is, v =0. (8¢)

At the edges x = 0 and x = a:

w—20 (8d)
mx — 0, that is, w" — 0, (8e)
nx= 0, that is, u'=0. (8f)

We do not consider the conditions of the edge opposite the external
bending moment because we assume that the disturbance dies out before
reaching the other edge. This assumption is subsequently justified by the
moment diagrams obtained as solutions, see Fig. 2.

5. Solution of the set of equations

The equations will be solved with the aid of the usual method of the
theory of edge disturbances: we establish product functions for u, v, w in such
a way that for the terms depending on x we choose trigonometric functions
which, after substituting them into Eqs (7), all yield sine or cosine. These
trigonometric terms can thus be omitted, whereby we obtain for the terms
depending on y a common set of differential equations. The trigonometric
functions depending on x should be selected in such a way as to satisfy — as
far as possible — the boundary conditions along the edges x = 0 and x = a.
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72 L. KOLLAR and M. SzOTS

In comparison with the bending theory of cylindrical shells [4] the cal-
culation now becomes more intricate, for, contrary to the cylindrical shell,
now we cannot find trigonometric functions which, besides the equilibrium
equations, also automatically satisfy every boundary condition along X = 0
and x = a. Some ofthese boundary conditions can only be satisfied — approxi-
mately — by collocation (equalizing in selected points), the more correctly,
the greater the number of terms (and edge points) considered.

The three product functions will he chosen as follows:

U= Un(y) sin anga:, (9a)
n

V= W(y) cos X, (9b)
n

W = mA(y) sina x. (9c)
n

In these expressions

% — nnja (10)

and in the Fourier series we consider as many terms as are needed for the
degree of accuracy required.

Substituting the reth term of the expressions (9) into the set of Eqs (7),
and simplifying with the trigonometric expressions, we arrive at the following
three differential equations:

2f
2shun+ un —xnvn------- wn= 0, (11a)
ab
Xxnun ahvn+ 2 vn-----z-t--a,, tvn= 0, (lib)
ab
2/ h2ab

U, -Xnur, — wn .-—;K wn~2xn +wr) = 0 ilic)’

ab 12/ ) )

The solution of this set of homogeneous, linear equations may be
written as

un(y) = UneNe, (12a)
vn(y) = Vne ", (12Db)
w,,(y) = K eRYy, (12c)

where Un, Vn and Wn are, for the moment, unknown constants.

Placing the functions (12) into the group of equations (11) yields the
following set of homogeneous, linear equations for the unknowns Un, Vn
and Wn:

( 2&+R1)Un xnlnVn ZE-Banz 0, (13a)
al
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EDGE DISTURBANCES 73

*nBn Un+ {—a?,+ 2R1)Vn ----%/Oann = 0, (13b)
ab
Bn Un--acn Vn - A h'ab 'Kz_ [§'2|f2 wn= o0 . (13c)

ab 12/

This set of equations has a system of nontrivial solutions only in case
when its determinant equals zero. Thus Bn, hitherto unknown, should be
defined by this condition (from the so-called characteristic equation). This
determinant represents an equation of the fourth order in respect to (fn,
therefore, each n is associated with four B®-values (j = 1, 2, 3, 4). From these
we only consider those four Bnj-s which give decreasing curves with an in-
creasing distance from the edge y = 0, that is only those, the real part of
which are negative. Two of these four roots (B8nl and Bn2) are real, and two of
them are conjugated complex values:

Bn3AY m + i-an (14))
Bm —Y¥n t . (14b)

We take over the values of gnl, 8n2, yn and sn referring to a hyperbolic
paraboloid of a square base (a = b) and to two characteristic ratios of f/h
from [3]. In Table I the values of these four quantities, multiplied by the
side-length a (thus becoming nondimensional) are given for four or five n
terms, respectively.

Table |1
/N = 125
n= 1 3 5 7
a’Rn\ — — 7,400 — 13,99 — 20,30 — 26,62
a'Rri2 = —0,349 - 5,00 —11,12 — 17,35
a mVn = — 3,875 - 9,50 — 15,71 —21.99
a's,s= +4,765 + 4,76 + 4,69 + 4,63
f/h = 50
n 1 3
5 7 9
a *Bni — — 10,90 — 18,23 —24,77 — 31,17 —37,50
a*fRm ~ — 0,0892 — 2,165 — 7,09 — 12,98 — 19,15
a mvn = — 5,495 — 10,20 — 15,93 — 22,08 — 28,32
a'on = + 8,36 + 9,78 + 9,61 + 9,51 + 9,45
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74 L. KOLLAR and M. SzOTS

It is worth while to observe that in case of re= 1, Rn2< 1 which
means that the stresses diminish but slowly with the increasing distance
from the edge, and the more slowly, the greater the ratio f/h is, that is, the
greater is the membrane stiffness in comparison to its bending rigidity. (Had
the bending rigidity been equal to zero, so it would also be Rn2, and we should
arrive at the case of the membrane forces propagating undiminished along the
straight generatrices.)

As a matter of course, every Bnj is associated with different Unj, Vnj
and W nj. Thus, because ofj = 1,2,3, 4, we shall have 4 < 3re = 12re unknown
constants if we consider re number of terms in the Fourier series (9) in the
~N-direction.

The displacement functions (9a to 9c) obtain then the following forms:

«= £ 1 UnjeM'j sin snX, (15a)
n o j=1 1

V=Y | >VnjerYl cosxnX, (15b)
n V=1

w = JE\JPW njeRiy sina, X. (15¢)
n ;=i

The unknown values, 12re in number, are related to each other by the
equilibrium Eqs (13) in such a way that from every three values Uni, Vni
and Wni only one remains free. Therefore, only 4re of the boundary conditions
may be satisfied.

From the boundary conditions (8a to 8f) given in section 4 the assumed
functions (9) automatically satisfy the conditions (8d) and (8e). Therefore,
the remaining four boundary conditions are just enough for the determination
of the four unknowns associated with every re

Had the boundary condition (8f) not existed, we could satisfy the bound-
ary conditions separately for every re that is, the distribution of the external
moment (8b) considered (Fig. 1) would only require the consideration of the
term re= 1. The boundary condition (8f), however, can only “forcedly”,
in separate points, be imposed upon the uri-functions having the form of (9a),
and only in case if we consider several re terms. This is why four or five re
terms should be considered, though the higher reterms yield bending moments
which are dying out more rapidly.

In the following, the functions (12) will be rewritten in pure real forms
wherein the Un3, Uni; Vn3, Vi and Wn3, JFd are conjugated complex constant
values. On the basis of the known complex relation

e'2= cos z-f-isinz (16)
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EDGE DISTURBANCES 75

(i = y—1) we can, for example, write down that

Una e el' + Uniety =

evVny[(Uni+u m)cos Ony+ (U n3—Und) isin <5,y] = 17)
= Unbe¥ycos Un6evtysin 6ny .

Therefore, the new real constants are:

Uns — Un3-\-Un4, (18a)
Uné = i(Un3-U ni) (18b)
and in the same way
K= Un3-\-Vni, (18c)
V,B=i(Vn3-v j, (18d)
Wns = Wn3-\-Wn i, (18e)
. (18f)

From the set of the homogeneous equilibrium equations (13a to 13c)
we use the first two equations because they have a simpler form. For the
cases j = 3 and 7 = 4 also these have to be rewritten into real form. For
example for j = 3, substituting the new real constants by making use of
(18a to 18f) and writing down also the root Bn3 according to (14a), Eq. (13)
takes the form

{- 227+ fn+ 2iynbn-6%) U">-iUr* _

*n(Yn+i*n) (192)

L -1Yn+ ian) W” --iWr*~ = 0.
ab 2

The equations associated with 7 = 4 may be rewritten in the same way,
and once adding and once subtracting them, we arrive at two real equations.
Finally we shall have four boundary conditions:

(8a): An+ MN2+An3+~nd= 81

that is, in a real form, making use of (18e):

= 8. (20a)
(8b):

if n= 1: & Wu+R(2W2+RfsWI+R*uWu = ’LE M,
ihr
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76 L. KOLLAR and M. SZOTS

That is, in a real form:

ro_ir
AN+ /PN a+(r+2»Y1 ~4fp °° ) Lo

(20b)

A R 12
o (ri 2iy, al-aB "N te M.
( y ) Ev

It is to be seen that the imaginary terms have dropped out.
For the case n < 1, yn and dn should be written instead of yx and G-
and zero at the right-hand side.

(8¢c):
gnl K1+ gn2 M2+ YBki~\~zni ki —8

and rewritten to the real form:
; Ki5 Ks+iK
gm Ki-bgn2 M0 (7ﬂ+ *an) ! " 4 (Yn~ Mn) sTIR 0. (20c)

The boundary condition (8f) cannot be written down for the whole edge
line, only to n points of it, that is, to the points

YK=(k 1)— (21)
(k 1)—
where
K=1,2,...n. (22)
Thus the equation

n

Y Y Unje”A xn=0 (22a)

n=1 U=j

must be valid for every k. This, expanded and rewritten in a real form, be-
comes for every K:

y U ni e’ TYic\- U n2 e’ Tyi{-
nli

Urs A A»A(cos Cnyk+ isin dny k) + (23)

Uns+iu., micos any k—i sin 6ny k)

from which the imaginary terms also fall out.
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On the basis of what has been said above, the equilibrium Eqs (13a, 13b)
must be rewritten for all of the n-s and j-s in the real form corresponding to
(19a), as well as the boundary conditions (20a to 20c) for all of the n-s, and
finally the boundary condition (23) for all of the k-s. Thus we obtain exactly
the 12n equations for the determination of the 12n unknown constants.

6. Numerical results

We can solve the set of equations obtained in the foregoing section by
making use of the /S-roots given to the hyperbolic paraboloid of a square base
(@ = b) by Duddeck [3], reproduced in Table I for two values of the ratio
fjh by considering four or five n terms, respectively. This leads to a set of

equations with 48 or 60 unknowns, respectively. The numerical calculations
were carried out at the Centre of Computation of the Ministry of Heavy
Industry with the aid of the computer National Elliot 803 B.

In the equations, besides the ratio f/h, also the ratio fja is included.
But carrying out the computation with several values of fja, it was found
that every//«-ratio associated with the same value off/h, resulted in the very
same moment diagram.

Since we are interested first of all in the decrease of the edge moment
inside the shell, we only plotted the diagram of the bending moment my
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versus y, along the section x = a/2 (Fig. 2). The formula of this moment is
my=E ~w =FEO-2 {l«i' +
Xz XZ n
+ eVr[(y*—iS)"i5+27n*n"e] cosf,j + (24)

+ o«'[(y?;—06®)JTne - 2y,,6nJFn.] sin dny} sinxnx .

7. Approximate calculation of the edge disturbances

According to the suggestion of [1], by neglecting the displacement
components in the plane of the shell (u = v = 0), we can obtain a simple
approximate solution for the calculation of the edge disturbances.

Our presented solution permits to check the accuracy ofthis approximate
method. From the equations of equilibrium (7a to 7c) we omit the first two
equations retaining only the third one, leaving out the terms containing u
and v. Thereby Eq. (7c) becomes

24 — MP)-NjIVA-2 w'*-\-ui" = 0 . (25)
abJ h2

We take again for w a series of product functions of the form
eP¢ysin <X X. (26)

After substituting it into Eq. (25) we obtain for Bnthe following characteristic
equation
*4_(«5_/£)* = 0. (27)

Here we will introduce the abbreviation:

ed= 24 Jl;l' JF] (28)
a 2

From Eq. (27) we obtain four Bmps ( = 1, 2, 3, 4):

Rni = an[zh(-*+ iH)iM —iB)] (29)
where
A =m 05 nN- — +1 (30a)
«p'
and
B = + 05 (30b)
1+ 1la -1
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From the four Bnj-s we only retain the two roots which give a decreasing
bending moment with increasing y, and rewrite w to the real form

w =" (Inle~(A+'BEY Wn2e~64-/R)*ny)sin xnx —
n (31)

= N e- A&=>(Wn3cos Bxny-\-Wn4sin Bxny) sin xnx.

n

The explanation of the new constants Wn3 and JVM is

W,3= W,1-\-Wri2, (32a)
Wnd = i(Wnl-W n2) (32h)

and Wnl and Wn2 are the complex constants associated with Bnl and Rn2
respectively.

To the two constants (JFn3, Wni) two equations of boundary conditions
are needed. As a matter of course, they can now be expressed only by w. Thus,
from the boundary conditions (8) used earlier, the following should be satisfied

(Fig. 1):

y=0;tv=0, (33a)
_ Misinx, x (33b)
E{h312)

Since we do not need to take into accountthe boundary conditions x = 0
and x = a, it is sufficient to consider from the series of w (31) merely the
term n = 1, corresponding to the external moment. Therefore, from the
boundary condition (33a) we obtain

wB= 0. (34)

To the boundary condition (33b) the second derivative of w with respect to
y is needed:

w" = Wu e~Ax,y [(A2—B2) x\ sin Bx4y —2 A B xf cos B x4y] sin xxx . (35)

Substituting this into (33b) yields

M
Wi, = ~ . (36)
2ABX2E(h3I2)
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Now we can write down the expression of the bending moment in the y-direc-
tion which is the most significant from our viewpoint

m,, = h’,-f\-s-w M 1sinxxX — 4+ — sin Bxxy-j-cos Bxxy e-A«Y. (37)
12 2B 2A

The variation of my versus y is also represented in Fig. 2.

8. Decrease of the edge moment of the plain plate

For comparison, the decrease of the edge moment in a plate, freely
supported at three edges and infinitely long in the fourth direction (Fig. 3)

Fig. 3. Plain plate

should be established on the basis of [6]. Omitting the deduction, here only the
expression of the my should be given:

my = Mj sin xxX 1 e~*Y. (38)
The corresponding moment diagram is also represented in Fig. 2.

9. Comparison and evaluation

Analysing Fig. 2, the following could be established.

The diagrams clearly show that the higher the corner point of the shell (/)
lies in comparison to its thickness A the more rapidly the edge moment dimin-
ishes. The extreme case, f = 0, is realized by the plain plate. However,
as was mentioned above, the ratio f/a is indifferent, therefore, in a steeper
and thicker shell the moment can diminish in the same way as in a flatter
and thinner one, provided their y/A-ratio should be the same.

From Fig. 2 we can establish by interpolation, practically for all of the
hypars of any geometric ratio,the width of the zone of the edge disturbance,
that is, the width to he reinforced.
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The moment diagrams calculated both with f/h = 12,5 and f/h = 50
follow a somewhat irregular trace. This could be corrected by considering
some more terms in the series of the deformation functions. In the author’s
opinion, however, we should not profit at all thereby, because the rate of the
diminution of the moment would remain the same, even in case of a greater
number of terms considered and, in turn, the amount of the computation
work would considerably increase.

The moment diagram gives negligibly small moment values even in
case of plates in a distance equal to a. Thus the assumption is justified that
the effect of the edge opposite to the disturbance on the internal forces might
be neglected in a shell of a square base.

Finally, it is clearly to he seen that the moment diagram obtainable by
the approximate assumption u = v = 0 shows a much more rapid decrease
than the more exact computation. The reason for this might be that the assump-
tion n = v = 0 represents a much stronger constraint on the shell than the
real boundary conditions (especially nx = 0, being valid for the edges x — 0
and x = a). As a result, the shell will be, so to say, more rigid, and we obtain
an unreal rapid decrease of the moment. Therefore, the application ofthe above
approximation cannot be recommended.
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Randstérungen der windschiefviereckférmigen flachen hyperbolischen Paraboloidschale.
Es wird die an einem Rand durch Biegemoment beanspruchte, windschiefviereckférmige
hyperbolische Paraboloidschale aufgrund der elastischen Biegetheorie der flachen Schalen
untersucht, und die Abklingungskurve des den Rand belastenden Moments ermittelt. Das
Ergebnis wird einerseits der Bleich-Salvadorischen Naherungsldsung, andererseits der Momen-
tenabklingungskurve der ebenen Platte gegenubergestellt.

KpaeBble BO3MYLLEHUA NIOCKOW rmnepboamyeckoin napabonongHoi 060104k B BUAE
NCKaXXeHHOro yeTblpexyrofibHuka (/1. Konnap, M. CeTu). B pa6oTe uccnefyetcs Harpy>eHHas
Ha OfHOM Kpart un3rubatolymM MOMeHTOM runep6onunyeckas napabonoufHas o60no4vka B Buge
MCKaXXEHHOTO YeTbIPEXYrONIbHNKA Ha OCHOBE TeOpuW YMPYroro uarmba MiaoCKMX 060/104eK.
OnpefienseTcs KpuBas 3aTyXxaHWs MOMeHTa, HarpyXatoLlero Kpai, BHyTpU camoii 060/104KMN.
MonyyeHHbIV pe3ynbTaT CpaBHMBAETCSH, C OfHOV CTOPOHbI, C MPUBAMKEHHbIM peLleHnem Bneiixa
— CanbBajopa, a C JpYyroli CTOPOHbI, C KPUBOIA 3aTyXaHUsi MOMeHTa MNJIOCKOW NAacTWHBbI.

6 Acta Technica Academiae Scientiaruin Hungaricae 69, 1970
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