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1 | INTRODUCTION

The study of growth of products of subsets in finite simple groups has been the subject of sig-
nificant work in the recent decades. Part of the interest revolves around a conjecture of Liebeck,
Nikolov, and Shalev [5], which claims that for any finite simple non-abelian group G and any
set A C G of size at least 2 we can write G as the product of N conjugates of A with N =
O(log |G|/ log|Al). This conjecture generalizes an already deep theorem of Liebeck and Shalev
[7], which proves it for A a normal subset, that is, a union of conjugacy classes of G.

In attempting to prove the conjecture, or partial cases thereof, a natural way is to show that
the product of two subsets has size comparable to the product of the sizes of the two original sets.
A result in this vein is the following, due to Gill, Pyber, Short, and Szab6 [4, Proposition 5.2].
For any € > 0, there exists § > 0 such that if G is a finite simple non-abelian group, A is a subset
with |A| < |G|'~%, and B is a normal subset, then |AB| > |A||B|¢. This theorem strengthens the
expansion result given in [8, Proposition 10.4] for conjugacy classes that are not too large with
respect to the size of G. Liebeck, Schul, and Shalev later used another result of this kind to prove
that for small classes, and indeed for small normal subsets, the expansion is particularly rapid.
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They proved [6, Theorem 1.3] that for any € > 0 there exists § > 0 such that if G is a finite simple
non-abelian group and A, B are two normal subsets with |A|, |B| < |G|?, then |AB| > (|A||B D
In the present paper, we prove the following.

Theorem 1.1. For any € > 0 there exists § > 0 such that if G is a finite simple non-abelian group,
A is a subset and B is a normal subset with |A|, |B| < |G|?, then |AB| > |A||B|*~¢.

Theorem 1.1 is a direct generalization of [6, Theorem 1.3], and it improves [4, Proposition 5.2]
for sets of size at most |G|°.

2 | BOUNDING CONJUGACY CLASS SIZES IN ALTERNATING
GROUPS

In this section, let G be the alternating group of degree r and let x € G. We define A(x) to be (r —
t)/r where ¢ denotes the number of cycles in the disjoint cycle decomposition of x. The purpose
of this section is to show that, unlike the support of x, the invariant A(x) controls the size of the
conjugacy class x°, provided that it is small.

We will need a variant of [2, Lemma 2.3].

Lemma2.1. Foreveryy andewith0 <y < 1and0 < € < 1 there exists N such that for everyr > N,
whenever x € G satisfies |x°| > |G|, then A(x) > (1 — ¢€)y.

Proof. Fixy andewith0 <y < 1and0 < € < 1. According to [2, Lemma 2.3], for every ¢; > 0 there
exists N, such that for every r > N, whenever x € G satisfies |xC| > |G|”, then A(x) > y —¢;. It
is sufficient to choose €; such that y — ¢; > (1 — €)y. This is the case when €; < ye. 1

We need the following bounds of Stirling found in [1, 2.9].

Lemma 2.2. For every positive integer n, we have

n n
\/27rn<ﬁ) <n!l<2 27m<2) .
e e

We are now in position to prove the main result of this section.

Proposition 2.3. Forall ¢ > 0, there exists § > 0 such that whenever G is an alternating group and
x € G with |x%| < |G|°, then

|G|A(x)(1—e) < |xG| < |G|A(x)(1+e).

Proof. Fixe > 0.

We may assume that r, the degree of the alternating group G, is sufficiently large. For if r < ¢
with a universal constant ¢, then by choosing § less than 1/c the condition of the lemma implies
that x = 1. The statement is clear for x = 1. Let us assume that x # 1.

Let &, be such that |x¢| = |G|%. We may assume that §, > 0, for otherwise x = 1. The upper
bound of the proposition amounts to showing that 8, < A(x)(1 + €). For every €; > 0, there exists
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N, such that whenever r > N; then A(x) > (1 — €;)§, by Lemma 2.1. Thus it suffices to choose ¢;
such that 1 < (1 —¢€;)(1 + ¢). This is the case when €; < ¢/(1 + ¢).

It remains to establish the lower bound of the proposition. We first prove the same statement
for the symmetric group H of degree r. For each integer i with 1 < i <r, let ¢; be the number of
cycles of length i in the disjoint cycle decomposition of x. We have

ICH (o)l = (i]jci!><i]jici) < (gci)(giq) = t!(gicl), ey

where ¢ is the number of cycles in the disjoint cycle decomposition of x. Observe that t = r(1 —
A(x)). This and Lemma 2.2 give

t\! r\! r\rA—AG)
<2 zm(-) <2 27Tr<—> =2 27Tr<—> =
e e e

(2)
A(x) ry 1-A(x) A(x)
= 2(\/27rr> <\/27Tr<£) ) < 2(\/27Tr> |H |20,
We have
A(x)
2(Varr) < H|EPA 3)

for every large enough r. By considering the derivative of the function f(x) = x'/*, we see that
il/t < el/¢ for every positive integer i. It follows that

r r r
% = jlic)/i < eiti/e — p(Xisyic)/e (4)
o=«
Now Y\, ic; < Xi_, 2(i — D)e; = 2(X;_, (i — 1)¢;) = 2A(x)r. Applying this to (4) gives
r
Hici < e2A(x)r/e < |H|(e/2)A(x)’ (5)
i=1
holding for every sufficiently large r. By (1), (2), (3), and (5), we obtain

IC(x)] < |H|(€/2)A(x) . |H|1—A(x) . |H|(€/2)A(x) — |H|1—A(x)(1—€).

Thus, |H|[2®1=¢) < |xH|. This proves the claim for the symmetric group H.
We proved above that for all ¢; > 0 there exists §, > 0 such that if |x| < |H|%1, then

|H| 20020 < Jx). 6)
We fixed € > 0. Take e, = ¢/2and § < &, /2. Inequality (6) gives |xC| > |H|A®)(1=(/2) /2 which is

at least |G|2™)(1-¢) for every sufficiently large r, by noting that A(x) > 1/r. This proves the lower
bound of the proposition. O
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3 | BOUNDING CONJUGACY CLASS SIZES IN SIMPLE CLASSICAL
GROUPS

The purpose of this section is to extend Proposition 2.3 for the case when G is a simple classical
group. We also record a consequence.

Letn > 2 be an integer and g a prime power. Let G be one of the classical groups L(q), PSp, (q)
or PQﬁ(q). Let V = V,(g") be the natural module for the lift of G where u = 2 if G is unitary and

u = 1 otherwise. Let F be the algebraic closure of Fy andletV =V ®F. Let x € G and let £ be a
preimage of x in GL(V). In [6], the support v(x) of x is defined to be

¥(x) = v, =(x) = min{codim(ker(£ — AI)) : 1 € F }.

Define a = a(G) tobe 1if G = L*(q) and 1/2 otherwise.
The following is [6, Proposition 3.4].

Proposition 3.1. For any € > 0, there exists § > 0 such that if x is an element of a simple classical
group G with |x°| < |G|°, then

q(2a—e)nv(x) < |xG| < q(2a+e)nv(x)'

For x € G where G is a simple classical group, let

v(x)-2a-n-logq

Alx) = log |G|

We may now state the main result of this section.

Proposition 3.2. Forall € > 0 there exists & > 0 such that whenever G is an alternating group or a
simple classical group and x € G with |xC| < |G|°, then

|G|A(x)(1—€) < |xG| < |G|A(x)(1+€).

Proof. Fix e > 0. We may assume that G is a simple classical group with parameters n, g and a, by
Proposition 2.3. As |G|2®) = g2¢"()_the conclusion of the proposition is

q2anv(x)(1—e) < |XG| < annv(x)(1+e). (7)

Lete; > O0be such thate; < 2ae. Choose § > 0 for ¢; such that Proposition 3.1 is satisfied. Assume
that |x¢| < |G|°. Then (7) follows from Proposition 3.1. O

We will need the following technical consequence of Proposition 3.2.
Corollary 3.3. There exists § > 0 such that whenever G is a (finite) alternating or simple classical

group and x4, ..., X, € G such that |x?| |fo| < |G|8, then there exists z € xf xlf with A(z) =
AQxy) + -+ 4+ A(xp).
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Proof. Choose § > 0 such that whenever G is an alternating group or a simple classical group and
x € G with |x%| < |G|%, then A(x) < 1/4. Such a § exists by Proposition 3.2.
Let x4, ..., x;, be elements in an alternating or simple classical group G such that |x?| |x1?| <

|G|°. For each i with 1 <i < k, lets; = A(x;). Puts = ¥ s;.

For every i with 1 < i < k, the inequality |xL.G| <|G|)° implies that 5; < 1/4. Let i and j be two
distinct indices from {1, ..., k}. We have |xtijG| < |xl.G||ij| <|G|%,s; < 1/4and s; < 1/4. Asboth
s; and s; are less than 1/4, the normal set xtijG contains a conjugacy class y¢ with y € G and
A(y) = s; +s; by [6, Lemma 3.5], for classical groups G. The same statement holds when G is
an alternating group. As |y°| < |G|°, we have s; + s j = A(y) <1/4. Continuing in this way, we
find that there is an element z € G such that z€ is contained in xlc xg, and z satisfies A(z) =
8§y + -+ + 5, = sand s is less than 1/4. 1

4 | LOWER BOUNDS ON CONJUGACY CLASS SIZES IN SIMPLE
GROUPS

Let G be a non-abelian finite simple group different from a sporadic group. We define the rank of
G to be its untwisted Lie rank if it is a group of Lie type and to be its degree if it is an alternating

group (and not a group of Lie type).

Lemma 4.1. Every nontrivial conjugacy class of a non-abelian finite simple group of rank r has size
at least |G|'/1°",

Proof. Let G = G,(q) be a finite simple group of Lie type of rank r defined over F, the finite field
of order g. Let x be an arbitrary nontrivial element in G. We have

qr/Z < IxGl < |G| < q872
by [3, Proposition 2.2]. The result follows in this case. Let G be the alternating group of degree
r = 5. As the minimal index of a proper subgroup of G in G is r, every nontrivial conjugacy class
of G has size at least r > r1/16 > |G|1/17, O
The following is [6, Theorem 2.2].

Lemma 4.2. Forany e > 0, there exists N such that if G is a non-abelian finite simple group of rank
at least N and B is a nonempty normal subset of G, then B contains a conjugacy class of G of size at
least |B|1~¢.

We are in position to prove the following result.

Proposition 4.3. For any € > 0, there exists § > 0 such that whenever By, ..., B). are nonempty
normal subsets in a non-abelian finite simple group G with

By | - 1Bi| < IGI°,

then there exists z € By -+ By such that
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1281 > (1B, | -+ |Bi )~

Proof. Fixe > 0. We may assume that ¢ < 1. Let G be a non-abelian finite simple group. Let k be a
positive integer and let By, ..., B; be nonempty normal subsets in G. For each i with 1 < i < k, let
X; be a member of a largest conjugacy class in B;. We may assume that each x; is different from 1.

Assume first that |G| is bounded from above by a constant c. If § is chosen to be less than
1/c, then |G|° < 2, and the statement is clear. Thus from now on we may assume that |G| is
unbounded. In particular, we assume that G = G,(q) is a finite simple group of Lie type of rank r
defined over [, the finite field of order g, or G is the alternating group of degree r > 5.

Assume first that r is bounded from above by a constant c. If § is chosen to be less than 1/16¢,
then the statement follows from Lemma 4.1. Thus, from now on we may assume that r is suffi-
ciently large, that is, G is a finite simple classical group whose lift acts naturally on a vector space
of large enough dimension, or G is the alternating group of large enough degree.

We may assume by Lemma 4.2 that for every i with 1 < i < k we have |xl.G| > |B;|'~4 for any
fixed ¢; > 0. If there exists z € x --- x|/ such that

1—(¢/2)
1281 > (xS - 1xC ', 8)

then
121 = (1B, | - [B ) V2D 5 (1B, | - B )

whenever ¢, is chosen such thate; < €/(2 —¢).

In the rest of the proof, we will find an element z € x{' --- x such that (8) holds.

‘We may assume that |xf| |x€| < |G|% where d, is a constant whose existence is assured by
Corollary 3.3. Let z € x - x7 such that A(z) = ¥ A(x,). For each i with 1 <i <k, lets; =
A(x;). Puts = Zi’c=1 8.

Let €, > 0 be such that €, < €/(4 — €). Let §, > 0 be a constant whose existence is assured by
Proposition 3.2 for €,. Let § be the minimum of §; and §,. On one hand, Proposition 3.2 gives

129] > 1G]~ ©)

and on the other,
X0 1x0] < |G|+ T s = g ¥e)s, (10)
Finally, inequality (8) is satisfied because (1 — €,)s > (1 + €,)s(1 — (¢/2)). O

5 | PROOF OF THEOREM 1.1
Gill, Pyber, Short, and Szabd [4, Theorem 4.3] proved the following important result.
Proposition 5.1. Let A and B be finite sets in a group G with B normal in G. Suppose that |AB)|

K|A| for some positive number K. Then there exists a nonempty subset X of A such that | XB¥|
K¥|X| for k > 1. In particular, |B?| < K|B| implies that |B¥| < K¥|B| for k > 1.

<
<
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Proof of Theorem 1.1. Fix € > 0. We may assume that ¢ < 1. Choose J; satisfying the statement
of Proposition 4.3 with €/2. Let § = (¢/2) - (1 + (¢/ 2))_151. Let G be a non-abelian finite simple
group. Let B be a normal subset in G and let A be a subset of G, both of size at most |G|°. The
result is clear if B = 1. Thus, assume that B # 1. Let k be the smallest positive integer for which
|A| < |B|/?* Then |B|/?®*~D < |A| and so

IBIC/2E < |ANIBI? < IGI|G I/ = |G| HHE/D = |G </22, (1)

Let K > 0 be the number defined by |AB| = K|A|. Let X be a subset of A whose existence is
assured by Proposition 5.1. We get

|B¥| < |XBF| < K¥|X| < K¥|A| < KK|B|E/2K (12)
by Proposition 5.1. We have
|B¥| > |B|(1=(/2Dk (13)

by (11) and Proposition 4.3. Inequalities (12) and (13) provide |B|(1~(€/2)k < Kk|B|(€/2k and so
K > |B|'~¢. The result follows. O
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