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(Dated: July 19, 2018)

Time delay estimation (TDE) is a well-known technique to investigate poloidal flows in fusion
plasmas. The present work is an extension of the earlier works of A. Bencze and S. Zoletnik 2005 and
B. Tál et al. 2011. From the prospective of the comparison of theory and experiment it seem to be
important to estimate the statistical properties of the TDE based on solid mathematical groundings.
This paper provides analytic derivation of the variance of the TDE using a two-dimensional model for
coherent turbulent structures in the plasma edge and also gives an explicit method for determination
of the tilt angle of structures. As a demonstration this method is then applied to the results of a
quasi-2D Beam Emission Spectroscopy (BES) measurement performed at the TEXTOR tokamak.

PACS numbers: 52.70.Ds

I. INTRODUCTION

Turbulence plays a key role in the transport of en-
ergy and particles in hot magnetized plasmas [1], but it
is still not completely understood, despite intensive sci-
entific investigation. Numerical simulations have shown
that sheared flows play have a significant role in the con-
trolling plasma turbulence [2], while one of the most sig-
nificant experimental results of the last couple of years
is the discovery of quasi-stationary [3, 4] and oscillating
flows (zonal flows) [5].

It is believed that the tilting of eddies could have a sig-
nificant impact on the excitation of sheared flows [6]. Mo-
mentum transfer from turbulent structures to the main
flow can be described by a negative eddy viscosity [7].
One of the requirements for this negative viscosity be-
havior is the presence of some kind of irregularities in
the spatial distribution of turbulent eddies such as non-
circular shape and tilt. Structures are inherently tilted
in the radial-poloidal plane since their emergence (αB –
balooning angle) and are further tilted by the sheared
flows, resulting in a time dependent tilt angle (α) [10].
Theoretical studies of the ITG modes in toroidal geome-
try highlighted that this ballooning angle determines the
linear growth rate of the instability as γ ∝ cosαB [9],
showing that the strongest modes are less tilted. There-
fore the accurate measurement of the ballooning angle
can give insight in the mode dynamics of the underlying
instability.

∗guszejnov@reak.bme.hu

The main goal of the present work is to give a well
grounded time delay estimate (TDE) based method for
the experimental estimation of the time evolution of co-
herent structure parameters, including the tilt angle in
case of moderately sheared flows, where the structure
parameters can be considered constant between observa-
tion points. In this discussion the nonlinear interaction
between coherent structures is neglected, despite the fact
that edge plasma interactions are mainly nonlinear, as
correlation and TDE techniques rely on the assumption
that events are independent. Thus it can recover the
linear and quasi-linear behavior of the plasma. Our dis-
cussion includes the mathematical derivation of the ex-
pected TDE and its variance in two dimensions as well
as the standard deviation of the tilt angle. The results
are applicable for the calculation of the coherent struc-
ture parameters and flow modulations together with their
errors, thus determining the significance of changes.
The outline of the paper is as follows. In Sec. II the

mathematical model will be described, along with its sta-
tistical properties. The analytical results are then com-
pared against simulations in Sec. III. Finally, in Sec. IV
the model will be applied to quasi-2D BES data from the
TEXTOR tokamak as a demonstration.

II. MATHEMATICAL MODEL

Our goal is to give a heuristic description of coherent
density structures in the edge plasma. For this we will
assume a dominant scale on which coherent structures
emerge – in accordance with the experiments, which fil-
ter out small scale (< 1 cm) and short-living fluctuations
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– and these structures take part in no significant nonlin-
ear interaction during the timescale of the measurement
(O (5µs)).
For our analytic calculations we adopted a simple

model, which assumes that the fluctuation of the plasma
density is composed of small coherent structures. These
have both Gaussian spatial distribution (in the direc-
tion of both their axes) and a Gaussian time decay as
experiments have shown, that edge and core coherent
structures exhibit Gaussian-like shape [8] (unlike SOL
structures which can be highly asymmetric). The model
also assumes that the coherent structures move at a con-
stant velocity and have the same size and orientation.
These assumptions are generally true for neighboring ob-
servation channels of turbulence measurements – as the
distance between them is usually 1-2 cms – except for
the cases of strongly sheared flows. This means that the
density fluctuation caused by structure i (ni) can be ex-
pressed as

ni(u,w, t) = G(u, ui + vu(t− ti), σU )× (1)

G(w,wi + vw(t− ti), σW )×G(t, ti, σT ),

where u, w are coordinates in the coordinate system de-
fined by the its axes (Fig. 1), vu, vw are the projected ve-
locity components in these directions, while G(x, xi, σx)
denotes a Gaussian function defined as

G(x, x0, σ) =
1√
2πσ

e
−(x−x0)2

2σ2 (2)

FIG. 1: Coordinate system used for the modeling of coherent
structures, including the observation points.

If N structures are present in the vicinity of two ob-
servation points ([ua;wa] and [ub;wb]), then – assuming
linearity – the local density can be written as

n(u,w, t) =

N
∑

i=1

ni(u,w, t). (3)

From Eq. (3) the cross correlation between the signals
measured at point A and B can be formally expressed as

C(ua, wa, ub, wb, t) = (n(ua, wa, t)− n(ua, wa, t))(n(ub, wb, t+ τ)− n(ub, wb, t+ τ)), (4)

where the overline means time averaging as f(t) =

1/∆T
∫∆T/2

−∆T/2
f(t)dt.

A. Assumptions

Let us assume that there is a significantly large number
of structures so that a statistical description is appropri-
ate. For this description it is essential to know the dis-
tribution of the structure parameters (u0, w0, t0). In our
model we take these to be independent, uniform random
variables, thus the probability density function is

P (t0) =

{

1
∆T −∆T/2 ≤ t0 ≤ ∆T/2
0 otherwise.

(5)

A similar expression can be given for u0 and w0, but
a physical meaning is still necessary, thus we attribute
∆T to the time length of the experimental signal and
∆U , ∆W are the spatial extents of the observed poloidal
plane. Due to the fact that the coherent structures van-
ish at much smaller than the size of the poloidal plane

and the time length of the measurement, temporal and
spatial averages can be taken as infinite integrals (e.g.
∫∆T/2

−∆T/2 f(t)P (t)dt ≈
∫

∞

−∞
f(t)P (t)dt).

To simplify further calculations let us rewrite Eq. (4)
as

Ca,b(τ) ≡ C(ua, wa, ub, wb, τ) (6)

(na(t)− na(t))(nb(t+ τ)− nb(t+ τ)) =

na(t)nb(t+ τ)− na(t) · nb(t+ τ).

To reduce the complexity of future formulas let us also
define the following quantity

κ2 ≡ 1

σ2
T

+
v2u
σ2
U

+
v2w
σ2
W

, (7)

which is the inverse of the characteristic decorrelation
time [11].



3

B. Expected value of the total correlation function

Using Eqs. (3) and (6) the expected value of the cross
correlation function (CCF) can be calculated, leading to
the following expression

〈Ca,b(τ)〉 = N 〈cai,bi(τ)〉 +N(N − 1)
〈

cai,bj (τ)
〉

(8)

−N 〈sai
sbi〉 −N(N − 1) 〈sai

〉
〈

sbj
〉

,

where

sai
≡ na(ui, wi, t), (9)

is the average contribution of the ith structure to the
density in observation point A, and

cai,bj (τ) ≡ na(ui, wi, ti, t)nb(uj, wj , tj , t+ τ), (10)

is the contribution to the CCF originating from two dif-
ferent coherent structures, called pair correlation func-

tion. The individual terms of Eq. (8) can be easily eval-
uated as they are basically Gaussian integrals. Thus

sai
=

√
2π

∆Tκ
e
−

(wi−ws(a,i))2(vu2σT
2+σU

2)
2κ2σT

2σU
2σW

2 e
−

(ua−ui)
2

2(vu2σT
2+σU

2) ,

(11)
where

ws(a, i) ≡ wa +
vuvwσT

2

vu2σT
2 + σU

2
(ui − ua). (12)

Meanwhile the pair correlation function for two struc-
tures is

cai,bj (τ) =

√
π

κ∆T
Ai,jfi,j(τ), (13)

where

Ai,j ≡
∆T 2κ2

2π
sai

sbj , (14)

fi,j(τ) ≡ e−
1
4κ

2(τ−τi,j)
2

, (15)

and

τi,j ≡ (tj − ti) +
vu

κ2σU
2
(ui − uj + ub − ua) (16)

+
vw

κ2σW
2
(wi − wj + wb − wa) .

As the previous equations have shown, the results are
rather complex, although still Gaussian. From now on
only the most essential formulas will be presented to con-
serve space and allow the reader to follow the derivation.
It follows from Eq. (8) that the expected value of the
CCF is

〈Ca,b(τ)〉 = N
π3/2σTσUσW

∆T∆U∆W
e
−

v2σ2
T sin2 β+δu2σ2

W +δw2σ2
U

4κ2σ2
T

σ2
U

σ2
W

[

e−
1
4κ

2(τ−〈D̂〉)2 − 2
√
π

κ∆T

]

, (17)

where δu ≡ ub−ua, δw ≡ wb−wa, and κ is set according

to Eq. (7), while
〈

D̂
〉

is the expected time delay – the

central quantity of the paper – which will be defined in
the next section in Eq. (19). We also introduced β, which
is the angle between the velocity vector ([vu;vw]) and the
vector defined by the observation points ([δu;δw]), and
δl which is the distance between the observation points
(see Fig. 1).
Eq. (17) also shows that κ is in fact the characteristic

time delay scale on which correlation vanishes, thus κ is
the decorrelation time.

C. Time delay estimation and its variance

In signal processing the position of the CCF peak –
from now on referred to as time delay estimate (TDE) –
is essential in determining several key parameters of the
turbulent structures (see Sec. IV). The TDE (denoted as

D̂) can be derived by solving

dCa,b

dτ

∣

∣

∣

∣

τ=D̂

=
∑

i,j

dcai,bj

dτ

∣

∣

∣

∣

τ=D̂

= 0. (18)

Using Eq (17) the expected TDE
(〈

D̂
〉)

becomes

〈

D̂
〉

=

vuδu
σ2
U

+ vwδw
σ2
W

κ2
, (19)

where κ is defined according to Eq. (7), vu = vz sinα +
vr cosα, vw = vz cosα− vr sinα, δu = δz sinα+ δr cosα
and δw = δz cosα− δr sinα (see Fig. 1).
It should be noted that a similar result was derived for

the case of a single elliptical structure by Fedorczak et
al. [13], which can be considered the σT → ∞ limit of
this result. It can be shown that Eq. 19 remains valid for
not only Gaussian, but any other spatio-temporal distri-
butions with elliptical contour surfaces.
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The determination of time dependent parameters (e.g.
flow velocity) based on TDE methods implies the us-
age of small time intervals for the calculation of cross-
correlation function with reasonable time resolution.
Thus a very valid question can be formulated: what are
the relevant parameters determining the error (variance)
of the calculation as a function of the time interval, or in
other words for a given time resolution (frequency) and
given error how long the time subintervals should be.
Based on the arguments in [12] it is reasonable to as-

sume that D̂ is close to
〈

D̂
〉

, which means that cai,bj (D̂)

can be approximated with a Taylor-series around
〈

D̂
〉

.

Taking a second order approximation of cai,bj (D̂) and
substituting it into Eq. (18) yields

∑

i,j

dcai,bj

dτ

∣

∣

∣

∣

τ=〈D̂〉
=
∑

i,j

dcai,bj

dτ

∣

∣

∣

∣

τ=〈D̂〉
+ (20)

∑

i,j

d2cai,bj

dτ2

∣

∣

∣

∣

τ=〈D̂〉

(

D̂ −
〈

D̂
〉)

= 0.

Let us define the following quantity

∆τi,j ≡ τi,j −
〈

D̂
〉

, (21)

which is the difference between the position of the peak
of the pair correlation function and the expected TDE.

Using Eq. (21) we can derive D̂ −
〈

D̂
〉

. Substituting

the form of Eq. (13) and introducing Bi,j ≡ fi,j

(〈

D̂
〉)

yields

D̂ −
〈

D̂
〉

=

∑

i,j Ai,jBi,j∆τi,j
∑

i,j Ai,jBi,j

(

∆τi,j
σ2 − 1

) . (22)

Equation (22) is rather complex and our goal is to cal-
culate its first and second moments, where we expect the
first moment to be zero, while the second moment will

be the variance of the TDE. Since D̂ −
〈

D̂
〉

is small, it

is possible to expand the expression as

Y

X
= Y

(

1

〈X〉 −
1

〈X〉2
(X − 〈X〉) + ...

)

, (23)

where we denoted the denominator of Eq. (22) as X and
the numerator as Y . It can be shown that in the N → ∞
limit

〈

(X − 〈X〉)2
〉

∼ O
(

1

κ∆T

)

〈X〉2 , (24)

where 1
κ∆T =

1
∆T

√

1

σ2
T

+
v2u
σ2
U

+
v2w
σ2
W

≪ 1. This means that a

low order estimation around the expected value would
be sufficient. It is of course just an intuitive argument

as Y and X are not independent in this case (see Eq.
(22)). In the N → ∞ limit the first moment of Eq.
(22) gives zero in all orders of expansion as all terms are
O
(

1
N

)

or lower, while the second moment gives a finite
value in zeroth order. It should be noted that taking
only the zeroth order term is identical to assuming that
the nominator (Y ) and denominator (X) of Eq. (22) are
independent. This gives the following expression for the
TDE variance in the high density limit:

σ2
0

(

D̂
)

=

√

π
2

κ5∆TσT
2

[

δu2

σU
2
+

δw2

σW
2
+

δl2σT
2v2

σU
2σW

2
sin2 β

]

,

(25)
where β and δl are the same as in Eq. (17) (see Fig. 1).
As in zeroth order the velocity is inversely proportional

to the TDE, its error can be estimated as

σv ≈ v

〈

D̂
〉

σ0
∝ 1/∆T, (26)

which clearly shows the trade-off between the accuracy
of the velocity estimation and the frequency resolution.
The results in this section can be considered two-

dimensional generalizations of the model presented in
[12], but derived without further approximations.

III. COMPARISON WITH SIMULATION

To arrive at the result Eq. (25) we have employed
a number of approximations, thus, to test the correct-
ness of our analytical predictions for the TDE variance,
a numerical simulation code was developed in Matlab,
which directly simulated the model depicted in Sec. II,
then calculated the TDE and the orientation angle from
the simulated signals. The simulation was rerun with
a multitude of random initial conditions from which the
statistics of the TDE and the tilt angle were derived. The
structure parameters used by the simulation are detailed
in Table I.

∆T 2400 µs σT 50µs

∆u 200 cm σU 2 cm

∆w 30 cm σW 1 cm

vx 0m/s δx 1 cm

vy 1000m/s δy 1 cm

α π/6

TABLE I: Default parameters of numerical simulation.

To study the transition into the high density limit it is
useful to define the filling quantity, which is the ratio of
the volume occupied by coherent structures in parameter
space to its total volume

filling ≡ (8NσTσUσW) / (∆U∆W∆T) . (27)
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The filling value can be considered a time average of the
so-called packing fraction, which is the fraction of the
poloidal surface occupied by coherent structures.

Fig. 2 shows the standard variation of the TDE as
the filling increases. It is apparent from Fig. 2 that
the deviation of the TDE reaches the high density limit
even for very low filling values (∼ 2%), thus using the
high density limit is justified in experimental situations,
where the filling value is usually ∼ 10% [14].

0.001 0.0050.010 0.0500.100 0.5001.000

0.5

1.0

5.0

10.0

50.0

100.0

Fill ratio

Σ
HD`
L
@Μ

sD

FIG. 2: Standard deviation of TDE using simulation results
for different filling values (blue dots) compared to analytical
prediction in the high density limit (Eq. (25) – red line).
Filling is defined according to Eq. (27).

The parameter dependence of Eq. (25) was also vali-
dated against simulations as shown on Figs. 3-5.
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FIG. 3: Standard deviation of TDE in the high density limit
as a function of β (see Fig. 1) according to simulation (blue
dots) and analytical formula (red line).
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FIG. 4: Standard deviation of TDE in the high density
limit as a function of the structure’s lifetime (σT ) according
to simulation (blue dots) and analytical formula (red line).
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0.05
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HD`
L
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FIG. 5: Standard deviation of TDE in the high density limit
as a function of the structure’s major axis (σU ) according to
simulation (blue dots) and analytical formula (red line).

It should be noted that the perturbations of the model
discussed in Sec. II are non-physical in the sense that
their spatial average is not zero, thus violating particle
conservation. A better model would be, if the spatial
distribution of coherent structures was not simply Gaus-
sian, but polynomial times Gaussian. The simplest of
such models is

ni(u,w, t) = nGauss
i (1− û2 − ŵ2), (28)

where nGauss
i is the density perturbation from Eq. (1),

while û2 and ŵ2 are the exponents of their respective
Gaussians. Carrying out the analysis of Sec. II for this
model would be challenging as the complexity of the pre-
vious formulas would drastically increase. Meanwhile nu-
merical simulations showed that using this more accurate
model causes no significant deviation from the TDE cal-
culated in Sec. II.
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A. Standard deviation of orientation angle

The TDE (Eq. (19)) of the correlation function de-
pends on the tilt angle of structures (α on Fig. 1) thus
by measuring the TDE α – among other parameters –
could be determined (see Sec. IV). However, to ascertain
the validity of those calculations knowing the variance of
the calculated α is necessary. Using a linear estimation

∆α =
dα

dD̂
σ(D̂) +O

(

σ2
(

D̂
))

. (29)

From Eq. (19) the derivative can be easily calculated

dα

dD̂
=

(

dD̂

dα

)

−1

=
κ2

(

1
σ2
U

− 1
σ2
W

)(

δwvu + δuvw − 2D̂vuvw

) .

(30)
Using this result and Eq. (29) the high density limit of
the standard deviation of α yields

σ0(α) ≈

√

√

π
2

κ∆TσT
× (31)

√

δu2

σU
2 + δw2

σW
2 + δl2σT

2v2

σU
2σW

2 sin2 β
(

1
σ2
U

− 1
σ2
W

)(

δwvu + δuvw − 2D̂vuvw

) .

Fig. 6 shows numerical results for different filling val-
ues along with the high density limit of σ(α) (Eq. (31)).
Although the analytical formula of Eq. (31) does not
reproduce the simulation results perfectly – due to the
linear estimation used in Eq. (29) – it does give an order
of magnitude estimate on the standard deviation of the
angle.

0.001 0.0050.010 0.0500.100 0.5001.000

10.0

5.0

20.0

3.0

15.0

7.0

Fill ratio

Σ
HΑ
L
@d

eg
.D

FIG. 6: Standard deviation of tilt angle values calculated from
simulated signals for different filling values (blue dots) com-
pared to the high density analytical prediction of Eq. (31)
(red line). Filling is defined according to Eq. (27).

IV. APPLICATION TO TEXTOR DATA

The results from Sec. II allow a more detailed anal-
ysis of measured turbulence signals, for instance regard-
ing the orientation of coherent structures. As a demon-
stration several parameters of turbulent structures in the
TEXTOR tokamak (R = 1.75m; a = 0.47m; limited,
circular plasma; ne = 1019m−3) were calculated. For
that purpose measured data from the Lithium Beam
Emission Spectroscopy (Li-BES) [15, 16] diagnostic was
used. In the examined discharge (#113917, Ip = 350 kA,
Bt = −1.9T) the diagnostic was in ’fast deflection mode’,
which means that during the discharge the beam was de-
flected by charged plates at high frequency before neu-
tralization. This method allows the measurement of den-
sity fluctuations along not one but two beam lines hence
it is called a ’quasi-2D ’ measurement [17] (Fig. 7).

FIG. 7: Schematic of a quasi 2D measurement with Li BES.

After calculating the cross-correlation between indi-
vidual channels, the time delay had to be determined
as well. Unfortunately one of the disadvantages of the
quasi-2D measurement is the greatly reduced time reso-
lution (2.4µs in this case) which is of the same order of
magnitude as the time delays (O (3µs)). Thus the posi-
tion of the peak was determined by fitting a parabola at
the peak of the measured signal.

A. Fitted results

In the model we adopted the turbulent structures have
6 independent parameters (α, vr, vz, σT , σU , σW ). It
is known that the turbulent structures have a poloidal
velocity of several km/s-s while the poloidal distance be-
tween observation points are several cm-s, which implies
a characteristic time of flight of 10µs, which is much
shorter than the lifetime of the structures (thus we can
take the σT → ∞ limit). This simplify the expected TDE
of formula of Eq. (19) to

〈

D̂
〉

≈ vuδu+ vwδwǫ
2

v2u + v2wǫ
2

, (32)

where ǫ = σU/σW is the elongation of the structure. This
means that only 4 parameters need to be fitted (α, vz, vr,
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ǫ). To be able to fit these parameters the TDE of cross
correlations between 4 neighboring points (Fig. 8) were
calculated (6 equations). As only the position differences
of the observation points matter in Eq. (19), the geom-
etry of the quasi-2D measurement is rather problematic
due to the parallel lines, which reduce the number of in-
dependent equations to 4 (see 9).

FIG. 8: Measurement configuration for TEXTOR quasi 2D
Li BES.

One could consider taking into account the CCFs be-
tween far away points, but that is generally not feasi-
ble as the signal-to-noise ratio would be too small for
non-neighboring points, while the parameters (e.g. veloc-
ity) are not necessarily constant on larger scales ( 2 cm).
Combined with the non-linear relation between parame-
ters and the TDE in Eq. (19), fitting the TDEs by itself
can not provide a unique solution for all parameters, but
it can restrict their possible values. According to our nu-
merical tests – with exact TDEs– taking the measured
decorrelation time (κ in Eq. (17)) into account leads to
unique solutions.
The parameters are fitted numerically using an itera-

tive method (standard Levenberg-Marquardt algorithm)
from randomly chosen initial parameters. The conver-
gence is established using χ2

red < 1, where χred is the
reduced χ2. The errors are calculated from the statis-
tical error of the TDE and the systematic error of the
calibration of distances between observed points, which
– in this case – are much more significant.
The fitting procedure also takes advantage of the fact

that coherent structures in the plasma edge primarily
propagate In the poloidal direction. In case of #113917
the zeroth order approximation of their poloidal velocity
is vz ≈ ∆z/D̂ ≈ 3.5 km/s, while the apparent radial

velocity is vappr = ∆r/D̂ ≈ 10 km/s. This means that
the high apparent radial velocity can only be explained
by the presence of a tilt, which is responsible for the
major part of vappr . This is fortunate, because in general
the effects of radial propagation and structure tilt are
hard to distinguish, but in this case the effects of vr are

negligible.

FIG. 9: Dependence of the TDE on the tilt angle in a re-
alistic scenario. The dashed lines show measured TDEs for
#113917 around BES channel 6, while the solid lines show
TDE curves according to Eq. (19). The rest of the parameters
are taken from the results of the fitting procedure mentioned
before. Due to the measurement geometry, only 4 equations
are independent, of which only 3 are have significant angle
dependence.
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FIG. 10: Fitted poloidal velocities and tilt angles for TEX-
TOR discharge #113917. The error bars are determined by
χ2

red ≤ 1.

Figure 10 shows that the tilt angle of coherent struc-
tures is around 10-20 degrees, while Fig. 9 shows there
are other solutions around 90 degrees. The reason these
were discarded is, that the TDE changes around this
value are very sharply (see Fig. 9), which means that
virtually no scatter in the orientation of structures could
be allowed in order to reproduce the measured TDEs.
The fitting also determined that ǫ ∈ [1.9; 2.9], which

means that the structures were significantly elongated.
It is important to note that at R > 220 cm the velocity
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gradient steepens drastically, causing a significant defor-
mation of the structures, thus violating the assumption
of spatially constant structure parameters between ob-
served points, thus fitted parameters in that range are
likely erroneous.
The fitting results were compared against the results

from the TEXTOR Correlation Reflectometry (CR) [18].
The CR results show, that poloidal velocity at R =
216 cm is −3.2 km/s, while the tilt angle is 5.1 degrees.
Although there is a discrepancy between this angle and
Fig. 10, it is explained by the fact, that BES and CR
measurements are carried out at different poloidal posi-
tions.

V. CONCLUSION

Time Delay Estimation (TDE) is one of most com-
monly used method to study turbulent structures in fu-

sion plasmas. To describe the coherent structures at the
plasma edge a simple two-dimensional Gaussian model
is considered, which can be seen as the generalization of
the model of Tal et al. [12]. The key statistical quantities
of the model were calculated and it was established that
in the high density limit the variance of the cross corre-
lation function’s (CCF) peak – the time delay estimate
(TDE) – is low, while its dependence on structure pa-
rameters is relatively simple, making it a good candidate
to determine the parameters of coherent structures. A
possible application of the model was demonstrated on a
TEXTOR discharge, where the radial profiles of several
key blob-parameters (poloidal velocity, tilt angle, elonga-
tion) were determined. A systematic application of the
method will be detailed in a follow-up publication.
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