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Introduction

   It is well-known, that applications of the 
exact symmetry theory of discrete crystalline-
type quasi-one-dimensional (Q1D) systems 
[1] has been playing, and plays even 
nowadays a role of crucial importance in both 
experimental and theoretical investigations of 
different types of condensed matter systems. 
Throughout this paper we will call the 
relevant symmetry groups line groups, as it 
has been widely accepted in literature e.g. [2], 
[3]. From the most important applications of 
them, structural investigation of chain 
molecules by X-ray diffraction has been 
known for decades e.g. [4], and played a 
crucial role in experimental studies at 
revealing of fundamental structural properties 
of the DNA-molecule [5-6]. An exact and 
detailed reformulation of the precise abstract 
algebraic theory of line groups [2], [7] and 
their irreducible representations [8-9] came 
later. A detailed and up-to-date description of 
this symmetry technique can be found in a 

recent monograph by Damnjanović and 
Milošević [3]. 

A relatively recent important research 
area, where the application of the line group 
theory has been demonstrated to be very 
useful is the investigation of carbon-
nanotubes, where after a study of fundamental 
importance by Damnjanović and co-workers 
[10] numerous useful applications of the exact 
representation theory of the symmetry groups 
of Q1D systems has been succesfully 
demonstrated [11]. Among them, calculation 
of diffraction intensities on the base of the 
symmetries of carbon nanotubes e.g. [12] also 
represents a particularly important and 
promising technique from the point of view of 
future applications. 

Besides, some very general types of 
structural phase transitions (including those 
resulting in incommensurately modulated 
crystal structures) have also been investigated 
in detail – but within frame of the mean field 

ABSTRACT 
 
   After a detailed investigation of some fundamental general orthogonal symmetry properties of 
incommensurate condensed systems, the line groups are applied for describing the structure of 
such modulated crystals. It is demonstrated, that use of projective representations of these 
groups may give a more refined description of such structures and significantly extends 
applicability of the diffuse scattering formalism. 
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approximation (MFA) only - by the theory of 
line groups and their irreducible 
representations [13-18]. 

Finally, we would like also to mention 
here the crucial domain of biopolymers, 
where beyond the newest modelling results of 
the elementary excitations (which are in 
general case of strongly nonlinear character) 
of the DNA molecules in both quantum-
mechanical [19] and classical mechanical 
sense, (i.e. using tools of the classical 
elasticity theory [20]), the alpha-helix protein 
molecule is also one of the best-known 
examples, whose soliton-type elementary 
excitations represent active research topic for 
decades e.g. [21-22], but which have been 
treated without any detailed application of the 
theory of line groups and their irreducible 
representations. 

Therefore, it may be stated, that since 
their discovery, the mathematical formalism 
of line groups plays a role of continuously 
increasing importance in various branches of 
the condensed matter theory, despite of the 
fact, that there are many intensively studied, 
but still open research domains where they 
have not been applied in detail, e.g. in the 
theory of Peierls’ transitions, basic 
symmetries of liquid crystals and 
contemporary theories of biopolymers, just to 
mention a few. In the present work, the author 
intend to demonstrate, that projective 
representations of line groups represent a very 
suitable tool for further refinements of the 
existing mathematical formalism of scattering 
processes at Q1D systems and propose on this 
base a novel, more refined description of the 
diffuse X-ray scattering formalism.  
 

 
A BRIEF DISCUSSION OF ESSENTIAL FEATURES OF THE EXACT ABSTRACT 
SYMMETRY AND REPRESENTATION THEORY OF Q1D SYSTEMSAND THEIR 

APPLICATIONS IN THE EVALUATION OF SCATTERING PROCESSES
 
Basic elements of the theory of line groups and their irreducible representations 
  
1. The basic algebraic structure 
 

According to the definition, the complete 
set of symmetry transformations leaving 
invariant a Q1D system belongs to one of the 
(discrete) infinitely many line groups gathered 
into 13 families [2]. (We mention here in 
advance, that the irreducible representation 

( ) ( )LD µ  of a full line group L can be obtained  
 

from the irreducible representation of 
symmetry groups (i.e. point groups) of the 
motifs ( ) ( )PD ν  by use of the induction 
technique elaborated in the theory of group 
representations and widely applied in solid 
state physics e.g. [23-24] and usually denoted 
by ( ) ( ) ( ) ( ) LPDLD ↑= νµ ). 

2. Application of projective representations 
 

Although some applications of the 
projective representations of crystallographic 
point groups in solid state physics are known 
for decades [25-26] (their relevance in the 
case of classical description within frame of 
the Schönfliess-Fedorov Shubnikov theory of 
crystallographic space groups was also 
pointed out by Landau and Lifshitz [27]), they 
are completely absent even from the most 

complete works about applications of line 
groups in various types of structural 
investigations of condensed matter systems 
[3-4]. 

In the next section we will demonstrate – 
following our own earlier basic result [17] 
(which may be considered as a simple first 
attempt to introduce the projective 
representations of line groups into exact 
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symmetry theory of incommensurately 
modulated crystals) – formalism of the 
projective representations of groups in order 
to refine the already existing mathematical 
formalism of the theory of invariants relevant 
for phase transitions resulting in different 
types of modulated crystal structures. The 
same symmetry method will also be applied 
in formalism of the applied Fourier-analysis 
necessary for describing the diffuse scattering 
processes from modulated structures of 
general type. Finally, we also think, that it 

must also be pointed out here, that the 
mathematical terminology emanating from 
line group theory (which may be considered 
as the most general algebraic formalism of 
fractional translations), is not to be confused 
directly with terminology connected to the 
most general theory of transport processes, 
known nowadays under name of anomalous 
diffusion theory, too (e.g. [28]), despite of the 
fact, that the latter one has also been topic of 
very serious and detailed symmetry analyses, 
too [29]. 

 
 

A novel concept for applying the line group technique in the case of incommensurate systems  
 

In this section we will represent the 
essential result of the present study on the 
base of the general symmetry methods 
explained in [2] and [26]. Accordingly, if a 
line group L is composed from line groups L1 
and L2, which have the same translational 

subgroup T, then its relevant point group P is 
in relation P = P1˄P2 with the point groups of 
its constituent line groups. Then, the 
following condition (explained by point group 
elements „R” and fractional translations „v”) 
must be satisfied: 

 
 

2 2 1 2 , 0, 1, 2,...,v R v R v v t t′ ′+ − = + = ± ±                                        (1) 

 

where ( )1 1R v  and ( )2 2R v  are any coset 

representatives in L1 and L2, respectively 

(then, the relation 1
2 1 2R R R R−′ =  is also valid). 

Then, if we compare this condition with the 
one emanating from the general treatment of 
 

basic properties of the unimodular group in 
two dimensions (i.e. characterized by three 
(continuously varying!) parameters), defined 
by use of the elementary linear transformation 
formulae 1 2 1 2,a bg x a x a g x b x b′ ′′ ′≡ = + ≡ = + , 

it is represented by 

1 2

1 2

a a

b b

ξ
ξ

ξ
+
+

֏                                                                   (2) 

 
(see also the Appendix in this respect). Then, 
the relevant most general conjugate 

transformation 1
a b ag g g−  from the unimodular 

group is realized by 
  

1 2 1 1 2 2.a x a b a b x b′+ − = −                                                    (3) 

 
Although the simultaneous application of the 
formulae (1-3) may explain the essential 
symmetry features of two different 
translationally invariant (with translational 
invariance in the same direction, but with 
generating elements, which can not be 

interrelated with integer numbers!) Q1D 
systems, this possible connection has not been 
applied in detail in the case of 
incommensurately modulated condensed 
matter systems. Therefore, the essential main 
new result of the present study is to fill this 
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gap in the literature and to lay down 
mathematical foundation for the relevant 
Fourier-analysis formalism to be applied in 

the elastic-, and inelastic scattering 
experiments playing crucial role in material 
structure investigation.  

 
 
Generalization of the concept of structure factors within frame of the theory of projective 
representations 
 

In the present section we give a 
refinement of the existing formalism of the 
diffuse X-Ray scattering formalism on the 
base of the line group formalism. As it is 
well-known from the classic literature of the 

topic e.g. [30] for a non-ideal condensed 
matter system being able to scatter X-rays 
coherently, the electron density function can 
be given in the form of 

 

( ) ( ) ( )r r rρ ρ ρ= + ∆
� � �

                                                           (4) 

 

where ( )rρ
�
 denotes the electron density 

function for the „averaged part” of the lattice 
being investigated, while ( )rρ∆

�
is related to 

fluctuational inhomogeneities. Then, the 

intensity of the diffracted beams can be 
explained by use of the Patterson 
autocorrelation function ( )P r

�
defined e.g. 

[30] by the convolution operation 

 

( ) ( ) ( ){ } ( ) ( ){ } ,P r r r r rρ ρ ρ ρ= ∗ − + ∆ ∗∆ −
� � � � �

                               (5) 

 
and its Fourier-transformed form as 
 

( ) ( ){ } 2 2
,I P r F Fκ = ℑ ≡ + ∆

� �
                                              (6) 

 

where 0k kκ = −
� ��

 is the scattering vector (in 

an elastic scattering process), while F and 
F∆ denote the Fourier transformed forms of 

the functions ( )rρ
�
and ( )rρ∆

�
, respectively. 

It must also be pointed out here, that from all 
of the possible variants of diffusively 
scattered X-rays, electrons or thermal 

neutrons from condensed matter systems, we 
base here our modeling work in agreement 
with the general formalism also described in a 
suitable manner by Cowley for extended 
defects, and particularly for the case of 
stacking faults. Accordingly, the electron-
density function is given by the following 
convolution operation: 

 

( ) ( ) ( )0 d ,r r rρ ρ= ∗
� � �

                                                       (7) 

 
where ( )0 rρ

�
denotes the electron density 

function of a layer consisting of scattering 
centres, while ( )d r

�
is a distribution function. 

The relevant generalized autocorrelation 
function is given by: 

 

( ) ( ) ( ) ( )0 0 ,P r r r D rρ ρ= ∗ − ∗
� � � �

                                            (8) 
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where ( )D r

�
is the generalized autocorrelation 

function relevant for distribution of layers. It 
is generally accepted within frame of this 
formalism, that it can be characterized by 

Poisson’s type probability distribution 
functions. 

Then, in a more specified manner, for 
the diffuse scattering intensity contribution 
we may write after [31]: 

 

( ) ( ) ( )2 2e ,i r
DS

r

F I H r C r π κκ −∆ ≡ = ⋅∑
��

�

� � �
                                         (9) 

where ( )H r
�
denotes the supersymmetry 

function, for which we also postulate here, 
that it is invariant against symmetry 
transformations from a group having 
generalized translations, too (i.e. from a given 
line group) and which can be therefore 
represented in a Fourier series form as: 

( ) 2 .ihr

h
h

H r T e π= ⋅∑
��

�

�

�
 

The function ( ) rC r e λ−�
∼ is the so-called 

spatial correlator realizing randomization of 
the superstructure being investigated, and 
whose Fourier-transformed form is of 
Lorentzian shape (if we accept – following 
again Naish and Grebennikov – the correlator 
to be of exponentially decaying character, 
with characteristic correlation length 

1ξ λ−≡ ):
 

( ){ } ( )
( )

( ) ( )
( )2 2

1

2 , .
sin 2 sin

sh
C r C

λ
κ κ λ

λ πκ
ℑ ≡ = ≡ Λ

+

� ��
ɶ                               (10) 

 
Then, the diffuse scattering intensity contribution is given by: 

( ) ( ) ( )
( )

( ) ( )2 2

1

2, .
sin 2 sinDS h h h

h h h

sh
I T C h T h T

h

λ
κ κ κ λ

λ π κ
= ⋅ − ≡ ⋅Λ − = ⋅

+ −  
∑ ∑ ∑� � �

� � �

� �� � �
ɶ   (11) 

 
In an earlier paper of ours [15], we supposed 
validity of the following simple type 
invariance properties of the supersymmetry 

function with respect to symmetry 
transformations from a given line group L: 

 

( ) ( ) ( ) ( )ˆ .RR v t g L D g H r H r+ ≡ ∈ ⇒ =
�� � �

                                         (12) 

 
According to the basic new concept 

being elaborated in the present paper, the 
above given simple invariance relation (12) 

must be generalized in the sense of projective 
representations.  Accordingly (see also the 
Appendix in this respect), we will have: 

 

( ) ( ) ( ) ( )ˆ ,R gR v t g L D g H r H rε+ ≡ ∈ ⇒ =
�� � �

                                     (13) 

 
i.e., the relevant projective representations of a given line group must be elaborated in detail and 
applied. 
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Appendix 

 

In this Appendix, we summarize 
briefly some basic features of projective 
representations of groups after [26]. 
Accordingly, in the case of projective 

representation of a group G, the basic 
homomorphism relation relevant for a 
representation ( )D G of its, i.e. 

 

( ) ( ) ( ) ( )D D D , , ,g h gh g h G= ∀ ∈  

 
must be replaced by 

 

( ) ( ) ( ) ( ), ,D D D , , : 1 .g h g hg h gh g h Gε ε= ∀ ∈ =  

 
Then, from relation of the associative law for group elements ( ) ( ) ( ), , ,f g h f g h f g h G⋅ ⋅ = ⋅ ⋅ ∀ ∈ , 

we then get directly for the phase factors: 
 

, , , , .f g fg h f gh g hε ε ε ε⋅ = ⋅  

 
It can also be directly seen, that general 
representations of the Möbius group obey 
exactly the same system of relations, i.e. they 
are de facto projective representations. 

Namely, if we would like to connect 
the concept of projective representations to 
the Bessel’s function formalism necessary for 
description of the X-Ray scattering from ideal 

Q1D systems within frame of kinematic 
approximation e.g. [4], [30], it is necessary to 
study bilinear transformations leaving 
invariant the unit complex circle (whose 
center is identical with the origin of a 
complex plane z). Therefore, the following 
type of transformations must be applied: 

 

( ) ( )z w , ,
az b

z ad bc
cz d

+
= ≠

+
֏  

 
(a,b,c,d are in general case all complex 
numbers), mapping the unit circle 

1z = conformally into 1w = , i.e. into 

another one unit circle. These types of 

transformations may be combined and form a 
group of Möbius’ (or: homographic type) 
transformations [32]. 

  
 

Conclusions 

 

The projective representations of line 
groups are proposed for detailed analyses of 
crystals with incommensurately modulated 
structures. It is shown, that use of projective 
representations does not lead to contradictions 
with the already existing formalisms and may 

significantly extend their domain of 
applicability. The relevant new mathematical 
formulae of structure factors are introduced 
by use of these representations. Finally, the 
mathematical formalism of the diffuse 
scattering of X-rays from modulated 



Ágnes BÁLINT, István NIKOLÉNYI and Csaba MÉSZÁROS - Journal of Universal Science Vol 2(2): 10-17, 2015 

 
 

 
 

16 

structures is also extended via novel-type 
formulae of structure factors also generalized 
by use of projective representations of the 

exact symmetry groups of quasi-one-
dimensional systems. 
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