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Abstract

The total mass, the Witten type gauge conditions and the spectral properties
of the Sen–Witten and the 3-surface twistor operators in closed universes are in-
vestigated. It has been proven that a recently suggested expression M for the total
mass density of closed universes is vanishing if and only if the spacetime is flat with
toroidal spatial topology; it coincides with the first eigenvalue of the Sen–Witten
operator; and it is vanishing if and only if Witten’s gauge condition admits a non-
trivial solution.

Here we generalize slightly the result above on the zero-mass configurations:
M = 0 if and only if the spacetime is holonomically trivial with toroidal spatial
topology. Also, we show that the multiplicity of the eigenvalues of the (square of the)
Sen–Witten operator is even, and a potentially viable gauge condition is suggested.
The monotonicity properties of M through the examples of closed Bianchi I and IX
cosmological spacetimes are also discussed. A potential spectral characterization of
these cosmological spacetimes, in terms of the spectrum of the Riemannian Dirac
operator and the Sen–Witten and the 3-surface twistor operators, is also indicated.

1 Introduction

In the present paper we discuss three, apparently independent issues: total masses and
mass bounds, the spectral properties of certain differential operators, and gauge condi-
tions on closed spacelike hypersurfaces. (A detailed discussion of these problems will be
given in the following three subsections of the introduction, where we also formulate our
specific questions.) However, it turned out that these questions are not independent, and
our results provide common generalizations of previous particular ones. We review the
key techniques and results (which have already appeared in [20]) in sections 2–5, and, in
section 3, we generalize our previous result on the zero-mass spacetime configuration: the
total mass density is zero if and only if the spacetime is holonomically trivial (and not
only locally flat) with toroidal spatial topology. Then, in section 6, we illustrate these in
the Bianchi I. and FRW spacetimes, and, in section 7, we summarize the message of this
contribution.

Here we use the abstract index formalism, and our sign conventions are those of [14]. In
particular, the signature of the spacetime metric is (+,−,−,−), and the curvature tensor
is defined by −Ra

bcdX
bV cW d := V c∇c(W

d∇dX
a)−W c∇c(V

d∇dX
a)− [V,W ]c∇cX

a for
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any vector fields Xa, V a and W a. Thus, Einstein’s equations take the form Gab :=
Rab − 1

2
Rgab = −κTab, where κ := 8πG and G is Newton’s gravitational constant.

1.1 Total masses

It is well known that, as a consequence of the principle of equivalence, there is no well
defined notion of gravitational energy-momentum density. On the other hand, for space-
times which are asymptotically flat at spatial or null infinity, there are well defined no-
tions of total energy-momentum of the localized matter+ gravity system. These are the
Arnowitt–Deser–Misner (ADM) [1] and the Bondi–Sachs (BS) [3, 17, 5] energy-momenta,
respectively. They are given by two-surface integrals on spheres at the spatial and (e.g.
future) null infinity, rather than integrals of some local expression on spacelike hyper-
surfaces extending to the spatial and null infinity, respectively. The corresponding total
masses are defined as their Lorentzian length.

However, the form of these total energy-momentum expressions is rather different,
and, in fact, completely different formalism and techniques are used to analyze the be-
haviour of the fields and the gravitation in the two asymptotic zones. Hence it is natural
to search for a unified mathematical formulation of the two concepts of total energy-
momentum.

This unified form can be based on an appropriate superpotential u(K)ab, which is a
differential 2-form depending on some vector field Ka, such that in the so-called super-
potential equation,

∇[au (K)bc] = J (K)abc +
1

2
κKfTfe

1

3!
εeabc, (1.1)

the current 3-form J(K)abc is a homogeneous quadratic expression of the first derivative
of the gravitational field variables. Here εabcd is the spacetime volume 4-form, and we
used Einstein’s equations. Then, for any smooth spacelike hypersurface Σ with smooth
boundary S := ∂Σ, the ‘conserved quantity’ generated by the spacetime vector field Ka

is defined by

Q [K] :=
2

κ

∮

∂Σ

u (K)ab =

∫

Σ

(2

κ
J (K)abc +KfTfe

1

3!
εeabc

)

. (1.2)

(If Σ extends to the spatial or future null infinity in an asymptotically flat spacetime,
then the integral on its boundary at infinity is defined in a limiting procedure.) Thus
the key question is how to choose the generator vector field Ka and the superpotential
u(K)ab to recover the ADM/BS 4-momenta in the form Q[K]?

This question was addressed (among others) by Horowitz and Tod in [9]. They showed
that a particularly successful strategy is to use two-component spinors, and to choose the
generator vector field to be Ka = λAλ̄A

′

and the superpotential to be the Nester–Witten
2-form

u(λ)ab :=
i

2

(

λ̄A′∇BB′λA − λ̄B′∇AA′λB
)

, (1.3)

where the spinor field λA is still not specified. (The original form of the superpotential
2-form that Witten [22] and Nester [11] used was given in terms of Dirac spinors. The
above form in terms of Weyl spinors was introduced by Horowitz and Tod [9].) To
recover the ADM/BS energy-momenta the spacelike hypersurface Σ should be chosen to
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be asymptotically flat/asymptotically hyperboloidal, and the spinor field λA should tend
to its own asymptotic value ∞λ

A in an appropriate order. In addition, the asymptotic
value ∞λ

A should be constant with respect to the two dimensional Sen type connection
(see [18]), or should solve the asymptotic twistor equation of Bramson [4], respectively,
on the metric 2-spheres at infinity. The geometric meaning of these boundary conditions
is that these spinor fields are the spinor constituents of the asymptotic translations at
spatial and null infinity, respectively. The space of solutions of these equations form a
two-complex dimensional spin space. If {εAA }, A = 0, 1, is a normalized spin frame in

these solution spaces, and ∞λ
A denotes the components of ∞λ

A in this frame, then the
components Pa , a = 0, 1, 2, 3, of the total energy-momenta can be recovered as

Paσ
a

AA ′ ∞λ
A

∞λ̄
A ′

:=
2

κ
lim
r→∞

∮

Sr

u (λ)cd , (1.4)

where σa

AA ′ are the standard SL(2,C) Pauli matrices. (Thus, while Latin indices are

abstract tensor or spinor indices, the underlined and (below) the boldface Latin indices
are concrete name indices, taking numerical values.)

Let Ea
a := εAA ε̄

A′

A ′σAA ′

a , the orthonormal vector basis determined by this spinor dyad. If

on the asymptotically flat Σ the basis {Ea
a } is chosen to be adapted to the hypersurface Σ

(in the sense that Ea
0 is just the future pointing timelike normal of Σ), then the traditional

ADM energy E and linear momentum Pi, i = 1, 2, 3, can be recovered as the time and
spacelike components, respectively, of Pa . If, in addition, the spinor field λA is chosen to be
normalized at infinity with respect to the timelike normal of Σ, i.e. ∞tAA′ ∞λ

A
∞λ̄

A′

= 1,
then the left hand side of (1.4) has the structure E+Piv

i, where vivjδij = 1. We will need
this form of the left hand side of equation (1.4).

Similarly, if on the asymptotically hyperboloidal Σ the spin frame {εAA } in the solution

space of the asymptotic twistor equation is chosen such that the vector Ea
0 = εAA ε̄

A′

A ′σ
AA ′

0

is the BMS time translation of the future null infinity, then the BS energy and linear
momentum are just the time and spacelike components, respectively, of Pa . If, in addition,
the spinor field is normalized such that σ0

AA ′ ∞λ
A

∞λ̄
A ′

= 1, then the left hand side of

(1.4) has the structure E+ Piv
i.

Then the positive energy theorems (see [22, 11, 15, 9, 16, 13]) guarantee that the
total energy-momenta, both the ADM and the BS, are future pointing and timelike with
respect to the natural Lorentzian metric ηa b := diag(1,−1,−1,−1) coming from the
symplectic scalar product of the solution spaces, provided the dominant energy condition
is satisfied on the regular, asymptotically flat and asymptotically hyperboloidal Σ, re-
spectively. Introducing the total mass m according to m2 := ηa b P

a Pb , the positive energy
theorems can be restated as m ≥ 0. The rigidity part of these theorems guarantees that
if the total mass is zero, m = 0, then the domain of dependence of Σ is flat.

The mass positivity results motivate the question whether we can find a strictly pos-
itive lower bound for the total (ADM and BS) masses, i.e. that m2 ≥ M2 > 0 holds for
some M. Another question came from a recent result of Bäckdahl and Valiente-Kroon
[2]. They showed by explicit calculation that in vacuum, asymptotically flat spacetimes
the ADM mass can be expressed as the L2–norm on some spacelike hypersurface of the
3-surface twistor derivative of an appropriate spinor field: mADM = const.‖D(ABλC)‖2L2

.
Thus the question is whether we can have a similar expression for mBS , too, and how this
result can be generalized for the non-vacuum case.

Since the expected general form of the energy-momentum in General Relativity is a
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two-surface integral, it does not seem to be possible to associate any well defined notion
of total energy-momentum, or at least total mass, with closed universes. However, this
does not mean a priori that a reasonable and useful notion of total mass cannot be
associated with closed universes in some other way. This could perhaps be based on the
idea that the total mass should be some positive definite measure of the strength of the
gravitational ‘field’.

1.2 Spectral characterization of geometries

A potentially viable strategy to characterize Riemannian manifolds in an invariant way
could be based on the study of the (structure of the) spectrum of elliptic (e.g. Laplace,
Dirac, etc.) operators. The key idea is that e.g. the eigenvalues of elliptic operators
encode (maybe in some highly non-explicit, but invariant way) certain properties of the
geometry, and in the ideal case the whole geometry could be hoped to be characterized
completely by the spectrum of a sufficiently large number of elliptic operators. Thus first
it should be clarified e.g. how the eigenvalues reflect the properties of the geometry.

The first who obtained such a link between the eigenvalues and certain properties of
the geometry was probably Lichnerowicz [10]. He showed that on closed m dimensional
spin manifolds M with non-negative scalar curvature R for the 1st eigenvalue of the
Dirac operator, iγαe βD

eΨβ = α1Ψ
α, one has α2

1 ≥ 1
4
inf{R(p)|p ∈ M}. This lower bound

is, however, not sharp. Lichnerowicz’s bound was increased by Friedrich [7] by giving
the sharp lower bound: α2

1 ≥ m
4(m−1)

inf{R(p)|p ∈ M}. This bound is, in fact, saturated
by the metric spheres. Later, several other sharp bounds were derived under various
geometrical conditions.

From the point of view of General Relativity it would be desirable to extend the
above results from Riemannian manifolds to initial data sets. In fact, Hijazi and Zhang
[8] derived a sharp lower bound for the 1st eigenvalue of the Sen–Witten operator on
closed hypersurfaces in Lorentzian geometries. In terms of the standard notions in GR
their bound is

α2
1 ≥

3

4
κ inf

la

∫

Σ
taTabl

bdΣ
∫

Σ
tclcdΣ

, (1.5)

where the infimum is taken on the set of all the future pointing null vector fields la on
the hypersurface. Thus the bound is the infimum of an average of the total matter energy
in Σ. (The bound of Hijazi and Zhang was rediscovered independently in [19], and the
form (1.5) of their bound is taken from [19].)

Nevertheless, the lower bound (1.5) is zero in vacuum, giving no restriction on the
eigenvalues. This motivates the question whether we can find an even greater, and hence
sharp, lower bound which is not trivial even in vacuum. A more ambitious claim is to
derive an expression for the first eigenvalue itself, rather to have only a lower bound for
it.

1.3 Gauge conditions

In various specific problems of General Relativity (e.g. in the energy positivity proofs,
evolution problems, numerical calculations, etc) it is desirable to reduce the huge gauge
freedom of the theory. These conditions are used to single out some ‘preferred’ frame
of reference, which are built from a special spinor field (see e.g. [6]). Such conditions
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are, for example, the Witten [22], the Parker [13] and the Nester [12] gauge conditions;
and the so-called approximate twistor equation of Bäckdahl and Valiente-Kroon [2] can
also be interpreted as a gauge condition. In the present contribution we discuss only the
gauge conditions of Witten and of Bäckdahl and Valiente-Kroon.

Witten’s gauge condition is simply the differential equation DA′Aλ
A = 0 for the spinor

field on Σ which satisfies some boundary condition, where Da := P b
a∇b is the projection

to Σ of the spacetime Levi-Civita derivative operator ∇a, known as the Sen connection.
Similarly, the approximate twistor equation on Σ is T ∗T (λ) = 0, which is the composition
of the 3-surface twistor operator T of Tod [21] and its formal adjoint T ∗. The former
is defined to be the totally symmetric part of the derivative, i.e. T : λA 7→ D(ABλC),
where DAB is the unitary spinor form of DAA′ (see e.g. [15]). The formal adjoint T ∗ is
defined with respect to the L2 scalar product, and we give its explicit form by (5.1) in
section 5. It is known that both the Witten and the approximate twistor equations admit
non-trivial solutions on asymptotically flat hypersurfaces. (For the proofs see e.g. [16]
and [2], respectively. The existence of solutions of the Witten equation on asymptotically
hyperboloidal hypersurfaces was also demonstrated in [16].)

Nevertheless, as far as we know, it has not been clarified whether these gauge condi-
tions admit non-trivial solutions on closed spacelike hypersurfaces. Hence it is natural to
ask whether these gauge conditions can be imposed in closed universes, and if not, then
how they can be modified to obtain an appropriate one.

2 The norm identity

In our investigations the key geometric ingredient is the Reula–Tod (or SL(2,C) spinor)
form [16] of the Sen–Witten identity:

Da

(

tA
′Bλ̄B

′DBB′λA − λ̄A
′

tAB′DB′Bλ
B
)

+ 2tAA′
(

DAB′ λ̄B
′
)(

DA′Bλ
B
)

=−tAA′hef
(

Deλ
A
)(

Df λ̄
A′
)

+
1

2
κtaTabλ

Bλ̄B
′

, (2.1)

where ta is the future pointing unit timelike normal of Σ, P a
b = δab − tatb the projection

to Σ, and hab := P c
aP

d
b gcd is the induced negative definite metric on Σ. This equation is

just the Hodge dual of the pull back to Σ of the superpotential equation (1.1), in which
the superpotential is the Nester–Witten 2-form, and Einstein’s equation is used. The
total divergence on the left is just the Hodge dual of the pull back to Σ of the exterior
derivative of u(λ)ab.

The key observation is that the (algebraically) irreducible decomposition of the unitary
spinor form [15] of the De–derivative of the spinor field into its totally symmetric part
and the traces,

DEFλA = D(EFλA) +
2
√
2

3
tF

E′

PCC′

EE′ εCADC′Dλ
D, (2.2)

is tAA′-orthogonal, and hence it is an L2–orthogonal decomposition also. Here the totally
symmetric part of the derivative defines the 3-surface twistor operator, while the second
term is proportional to the action of the Sen–Witten operator (i.e. the Dirac operator
built from the Sen connection on Σ) on the spinor field.
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Substituting this decomposition into the Sen–Witten identity and taking its integral
on Σ we obtain

Q[λλ̄] +
4
√
2

3κ
‖DA′Aλ

A‖2L2
=

√
2

κ
‖D(ABλC)‖2L2

+

∫

Σ

taTabλ
Bλ̄B

′

dΣ. (2.3)

Here Q[λλ̄] is the integral of 2
κ
u(λ)ab on the boundary ∂Σ, and the L2–norm of the

spinor field is defined to be the integral on Σ of the pointwise Hermitian scalar prod-
uct

√
2tAA′λAλ̄A

′

. This equation will play a key role in what follows and we call it the
basic norm identity. Clearly, if Σ is asymptotically flat or asymptotically hyperboloidal,
then the existence of the L2 norms and the integral of the energy-momentum tensor
require appropriate fall-off properties both for the geometry and the energy-momentum
tensor, and also for the spinor fields.

3 Total masses and mass bounds

3.1 The asymptotically flat/asymptotically hyperboloidal cases

By the expression (1.4) of the ADM/BS energy-momenta, the basic norm identity (2.3)
and Witten’s gauge condition we obtain the following simple expression for the total
energy-momenta:

Paσ
a

AA ′ ∞λ
A

∞λ̄
A ′

=

√
2

κ
‖D(ABλC)‖2L2

+

∫

Σ

taTabλ
Bλ̄B

′

dΣ. (3.1)

This expression is an extension of the result of Bäckdahl and Valiente-Kroon for the
ADM energy in vacuum, mentioned in subsection 1.1: It gives both the ADM and BS
total energy-momenta, even in the non-vacuum case, in terms of the L2–norm of the
3-surface twistor derivative of an appropriate spinor field and the integral of the energy-
momentum tensor of the matter fields.

The right hand side of (3.1) motivates the introduction of the following quantity:

M := inf
{

√
2

κ
‖D(ABλC)‖2L2

+

∫

Σ

taTabλ
Bλ̄B

′

dΣ
}

. (3.2)

Here the infimum is taken on the set of the spinor fields satisfying the boundary and
normalization conditions that we had in the asymptotically flat/asymptotically hyper-
boloidal cases, respectively.

Let us write the components of the energy-momentum as Pa = (E, Pi). Then, by the
positive energy theorem E ≥ |Pi|, for the total mass we obtain that m2 := Pa Pb ηa b =
E2−|Pi|2 = (E−|Pi|)(E+ |Pi|) ≥ (E−|Pi|)2, where |Pi| denotes the magnitude of the linear
momentum Pi. However, since E − |Pi| = inf{ E + Piv

i | vivjδij = 1 } = M, the expression
(3.2) provides a lower bound for m. (Here the infimum is taken on the set of the unit
vectors vi.) By the rigidity part of the positive energy theorems (i.e. if E = |Pi| then
the spacetime is flat), the lower bound M for the ADM and BS masses is strictly positive,
unless the spacetime is flat.

3.2 The closed case

If Σ is closed, i.e. compact with no boundary, then no total energy-momentum (and hence
mass) can be introduced in the form of a two-surface integral. However, the quantity M
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can still be introduced by (3.2) with an appropriately chosen set of spinor fields on which
the infimum is taken. Clearly, since Σ is closed, we do not have any boundary condition
for the spinor fields, but we should impose a normalization condition. The most natural
such condition seems to be ‖λA‖2L2

= 1, which was used in [20]. However, the condition

1 =
∫

Σ
tAA′λAλ̄A

′

dΣ = 1√
2
‖λA‖2L2

is even more natural, since it is just the integral of

the pointwise norm tAA′λAλ̄A
′

whose asymptotic form, ∞tAA′ ∞λ
A

∞λ̄
A′

= 1, was used to
normalize the spinor field e.g. at spatial infinity in the asymptotically flat case. Another
normalization condition could be ‖λA‖2L2

=
√
2vol(Σ), i.e. the ‘average’ of the pointwise

norm tAA′λAλ̄A
′

on Σ would be required to be 1. The physical dimension of M in the
two cases is mass-density and mass, respectively. However, although the second choice
appears to yield a dimensionally correct mass expression, for later convenience we choose
the first normalization condition. Note that with this normalization M is

√
2-times of the

M introduced in [20].
Since Σ does not have a boundary, the basic norm identity (2.3) for any spinor field

and the definition of M yield that

4
√
2

3κ
‖DA′Aλ

A‖2L2
=

{

√
2

κ
‖D(ABλC)‖2L2

+

∫

Σ

taTabλ
Bλ̄B

′

dΣ
}

≥ 1√
2
M‖λA‖2L2

. (3.3)

Since M was defined as the infimum of an expression on a set of certain smooth spinor
fields, it is not a priori obvious that there is a smooth spinor field which saturates the
inequality on the right. Nevertheless, one can in fact show that such a spinor field does
exist [20]. We will call such a spinor field a minimizer spinor field. Thus, if λA is such a
minimizer spinor field and 〈 ·, · 〉 denotes the L2 scalar product, then, for this spinor field,
by (3.3) we have that

〈 2DAA′DA′Bλ
B − 3

4
κ MλA , λA〉 = 2‖DA′Aλ

A‖2L2
− 3

4
κ M‖λA‖2L2

= 0. (3.4)

This implies that either the minimizer spinor field is necessarily L2–orthogonal to the
spinor field 2DAA′DA′Bλ

B − 3
4
κ MλA, or that 3

4
κ M is an eigenvalue and the minimizer

spinor field is a corresponding eigenspinor of the operator 2DAA′DA′B. We will see in the
next section that this is, indeed, the case, and 3

4
κ M is its smallest eigenvalue.

The (geometrical and physical) significance of M is shown by the result [20] that the
vanishing of M is equivalent to the flatness of the spacetime with toroidal spatial topol-
ogy. However, if we allow to have locally flat, but holonomically non-trivial spacetime
configurations, then in such domains the constant spinor fields are not necessarily contin-
uous everywhere, and hence our previous theorem should be modified. This possibility
motivated the following generalization of our previous result:

Theorem 3.1. Let the matter fields satisfy the dominant energy condition. Then M = 0
for some (and hence for any) Σ if and only if the spacetime is holonomically trivial and
the topology of Σ is torus: Σ ≈ S1 × S1 × S1.

Proof. Since the detailed proof (with a different line of argument) of the original statement
is given in [20], here we only summarize its key points and concentrate on the difference
between the present and the original statements. Clearly, in holonomically trivial space-
time with R × S1 × S1 × S1 global topology there are globally defined constant spinor
fields, which satisfy the 3-surface twistor equation. Therefore, M = 0.
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Conversely, suppose that M = 0. Then the minimizer spinor field satisfies D(ABλC) = 0,
and hence by the basic norm identity Deλ

A = 0 follows. This implies that Za := P b
aλBλ̄B′

is surface-orthogonal, i.e. Za = Dau for some (locally defined) function u on Σ. Using
the Gauss equation for hypersurfaces one can show that the level sets Su := { u = const }
are locally flat 2-surfaces in Σ.

Next, one can show that the level sets Su are closed surfaces, which by the Gauss–
Bonnet theorem are necessarily two-tori. Σ is globally foliated by these tori, and hence
it is a 3-torus.

Finally, we use the field equations. In an appropriate spacetime coordinate system
adapted to the geometry they reduce to a single Poisson equation with a source term on
the level sets Su. This source is, however, non-negative by the dominant energy condition.
To have a non-trivial solution to this equation both the source term and the not a priori
zero components of the curvature have to be zero, i.e. the spacetime is flat. Let γ be
any smooth homotopically non-trivial closed curve. Then the constant spinor field λA is
clearly parallelly propagated along γ. However, if the holonomy Hγ were not trivial, then
λA could not be continuous everywhere along γ. Thus the whole holonomy group must
be trivial.

By definition, M is non-negative, and hence the content of this theorem is analogous
to the rigidity part of the positive energy theorems for the ADM/BS masses. Thus M is
a positive definite measure of the strength of the gravitational field. Since the physical
dimension of Mvol(Σ) is mass, moreover it is given by precisely the formula that we
had in the previous subsection for the positive lower bound for the ADM/BS masses, it
seems plausible to interpret M as the total mass density of closed universes at the instant
represented by the hypersurface Σ.

4 The eigenvalue problem

Since in four dimensions the spinors are the four-component Dirac spinors (see e.g. the
appendix of [14]), and the Sen connection from which the Sen–Witten operator is con-
structed is defined on a vector bundle over Σ whose fibers are four dimensional Lorentzian
vector spaces, the eigenvalue problem should be formulated in terms of Dirac spinors. (For
the discussion of the difficulties with other approaches, see [20].) Thus, the eigenvalue
problem for the Sen–Witten operator is defined by iγαeβDeΨβ = αΨα, where the Greek
indices are abstract indices referring to the space of the Dirac spinors, and γαeβ are Dirac’s

‘γ-matrices’. Recalling that a Dirac spinor Ψα is a pair (λA, µ̄A′

) of Weyl spinors, with
the explicit form of γαeβ given in [14] the eigenvalue problem is equivalent to the pair

iDA′Aλ
A =

α√
2
µ̄A′, iDAA′µ̄A′

=
α√
2
λA, (4.1)

of equations. Taking the action of DBA′

on the first of these equations and eliminating µ̄A′

by the second, we obtain that the eigenvalue problem is equivalent to 2DAA′DA′Bλ
B =

α2λA. Moreover, (4.1) implies that the eigenvalue α is real : 0 ≤ 2‖DA′Aλ
A‖2L2

=

2〈 DAA′DA′Bλ
B, λA 〉 = α2‖λA‖2L2

. Now we show that the multiplicity of every non-

zero eigenvalue α2 is even. In fact, if λA is an eigenspinor, then µA = −i
√
2

α
DA

A′ λ̄A
′

is
also an eigenspinor. But if µA were not independent of λA, then µA = cλA would hold
for some non-zero complex constant c. Substituting this back into (4.1) we obtain that

8



α(1 + |c|2)λA = 0, which would contradict α 6= 0. Thus, for each Dirac eigenspinor Ψα,
we have a pair of independent eigenspinors of 2DAA′DA′B.

Applying the basic norm identity to the eigenspinor λA we obtain that α2 ≥ 3
4
κ M,

i.e. 3
4
κ M is a lower bound for all the eigenvalues of 2DAA′DA′B. We will see that this is

precisely the smallest eigenvalue α2
1, i.e. a sharp lower bound. The proof of this statement

is based on the following functional analytic properties of the operator:

Theorem 4.1. There is a dense subspace Dom(D∗D) ⊂ H1(Σ, S
A) of the first Sobolev

space of the unprimed spinor fields on Σ such that it contains the space C∞(Σ, SA) of the
smooth spinor fields, and there is an extension of the operator DAA′DA′B from C∞(Σ, SA)
to Dom(D∗D) such that DAA′DA′B : Dom(D∗D) → L2(Σ, S

A) is a positive self-adjoint
Fredholm operator with compact resolvent.

There is a similar result for the composition T ∗T of the 3-surface twistor operator
and its adjoint, too. The detailed proof of these statements is given in the Appendix of
[20].

The significance of this theorem is that, via standard theorems of functional analysis,
it guarantees that (1) the spectrum of 2DAA′DA′B (and of 2T ∗T , too) is purely discrete,
and that (2) the corresponding eigenspinors span the whole space L2(Σ, S

A). Thus we
can order the eigenvalues into the increasing sequence α2

1 ≤ α2
2 ≤ · · · ≤ α2

i ≤ · · · , and the
sequence of the corresponding independent eigenspinors are denoted by {λAi }. (Because
of the multiplicity of the eigenvalues we should allow equality in the sequence of the
eigenvalues.) Clearly, the eigenspinors {λAi } can be chosen to form an L2-orthogonal
system.

Then let us expand the minimizer spinor field as λA =
∑

i ciλ
A
i , where ci ∈ C. Sub-

stituting this form of λA into (3.4) we find

0 = 〈 2DAA′DA′Bλ
B − 3

4
κ MλA , λA〉 =

∑

i

|ci|2
(

α2
i −

3

4
κ M

)

‖λAi ‖L2
. (4.2)

Taking into account that 3
4
κ M is a lower bound for all the eigenvalues α2, we conclude

that

α2
1 =

3

4
κ M, (4.3)

otherwise λA would have to be zero. Therefore, the total mass (density) of closed universes
can be recovered as the first eigenvalue of the Sen–Witten operator, which result makes
M a well computable quantity. Looking at (4.3) from the point of view of the spectral
characterization of geometries, it is an explicit formula for the first eigenvalue of the Sen–
Witten operator rather than only a lower bound for it. Hence (4.3) is a generalization of
the result [8] of Hijazi and Zhang.

5 On the gauge conditions

An immediate consequence of the basic norm identity and Theorem 3.1 is that Witten’s
gauge condition admits non-trivial solution if and only if M = 0, i.e. precisely when the
spacetime is holonomically trivial with toroidal Σ.

To discuss the existence of solutions to the approximate twistor equation we need
the explicit form of T ∗T . First, the formal adjoint of the 3-surface twistor operator,
µABC 7→ T ∗(µ)A, µABC = µ(ABC), is
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T ∗(µ
)

A
= +DBCµABC , (5.1)

where +DABλC := DABλC − 1√
2
χABC

DλD and χABCD is the unitary spinor form of the

extrinsic curvature. Then, comparing the explicit form of T ∗T with that of DAA′DA′B

(given e.g. in terms of the Levi-Civita derivative operator Da and the extrinsic curvature
χab), we find that

T ∗T (λ)A =
4

3
DAA′DA′BλB − κ teT

eA′BtA′AλB. (5.2)

Thus, apart from a zeroth order operator, the approximate twistor operator is essentially
the square of the Sen–Witten operator. Since the kernel of the Sen–Witten and the square
of the Sen–Witten operators coincide, this implies that in vacuum it does not admit any
solution.

On the other hand, the results of section 4 suggest a potentially viable alternative
gauge condition. Namely, let us choose the eigenspinors of the Sen–Witten operator
corresponding to the first eigenvalue. We showed in section 4 that there exist at least
two such linearly independent spinor fields. Our conjecture is that the eigenspinors with
the first eigenvalue can have no zeros, and hence, in particular, the number of these
eigenspinors is precisely two. (In fact, if there were three such linearly independent
eigenspinors, say λA1 , λA2 and λA3 , then, since the spin space is two-complex dimensional,
for any point p ∈ Σ there would be non-zero complex constants c1, c2 and c3 such that
c1λ

A
1 (p)+c2λ

A
2 (p)+c3λ

A
3 (p) = 0 would hold, i.e. the eigenspinor λA := c1λ

A
1 +c2λ

A
2 +c3λ

A
3

would have a zero at p.) Therefore, this gauge condition would yield a geometrically
distinguished 3-parameter family of globally defined orthonormal vector bases and lapse
functions on Σ.

6 Examples

6.1 Bianchi I. spacetimes

Let Σ be a t = const hypersurface in the Bianchi I. cosmological model with toroidal
spatial topology. The induced intrinsic metric on Σ is flat, and let us write the corre-
sponding line element as dh2 = −(a2dψ2 + b2dθ2 + c2dφ2), where a, b, c ∈ (0,∞) and the
coordinates are ψ, θ, φ ∈ [0, 2π). In the global orthonormal basis adapted to the spatial
symmetries the extrinsic curvature of Σ can be written as χab = diag(χ1, χ2, χ3), where
the diagonal elements are constant on Σ.

First, we calculate the spectrum of three differential operators. The simplest one is
the square of the Riemannian Dirac operator, built from the intrinsic (flat) Levi-Civita
connection De. Since the Sen–Witten operator reduces to the Riemannian Dirac operator
when the extrinsic curvature is vanishing, it seems natural to define its eigenvalue problem
by 2DAA′

DA′Bλ
B = β2λA. Then elementary calculations yield its spectrum:

β = ±
√

(
n1

a
)2 + (

n2

b
)2 + (

n3

c
)2, n1, n2, n3 ∈ Z, (6.1)

Thus, from the first few eigenvalues of the Riemannian Dirac operator we can recover the
constants a, b and c, i.e. the spatial geometry (Σ, hab) can be characterized completely by
the spectrum of the Riemannian Dirac operator.
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Since χab is constant on Σ, it is easy to see that 2DAA′DA′Bλ
B = 2DAA′

DA′Bλ
B +

1
4
χ2λA. Therefore, if the eigenvalue problem for the Sen–Witten operator is defined by

2DAA′DA′Bλ
B = α2λA (as in section 4), then

α2 = β2 +
1

4
χ2. (6.2)

Thus the spatial geometry and the mean extrinsic curvature can be characterized com-
pletely by the spectrum of the Sen–Witten operator.

Finally, we define the eigenvalues of the 3-surface twistor operator by 2T ∗T (λ)A =
τ 2λA, where the adjoint T ∗ of the 3-surface twistor operator has been given explicitly by
(5.1). For its eigenvalues we obtain that

τ 2 =
4

3
β2 +

1

2

(

χab −
1

3
χhab

)(

χab − 1

3
χhab

)

. (6.3)

Hence the spatial geometry and the magnitude of the trace free part of χab can be charac-
terized completely by the spectrum of the 3-surface twistor operator. It could be interesting
to see whether, in addition to the trace of χab and of χacχ

c
b, the trace of the cube of the

extrinsic curvature also can be recovered from the spectrum of some additional (probably
higher order) elliptic operator. In this case we would have a complete characterization of
the initial data sets for the geometry of the closed Bianchi I. cosmological spacetimes.

Next, let us calculate the total mass density in the closed Bianchi I. cosmological
model. Since by the Hamiltonian constraint χ2 = 2κµ+ χabχ

ab, by (4.3) and (6.2) it is

M =
1

3κ
χ2 = µ+

1

2κ
(χab −

1

3
χhab)(χ

ab − 1

3
χhab). (6.4)

Thus the anisotropy of the extrinsic curvature, which is essentially the first eigenvalue of
the 3-surface twistor operator, contributes to M. Equation (6.4) illustrates how Theorem
3.1 works: M = 0, together with the Hamiltonian constraint, really imply flatness.

We calculate the time derivative of M with respect to an evolution vector field com-
patible with the spacetime symmetries, Ka = Nta, where N is constant on Σ. It is

Ṁ = Nχ
(1

3
habσab − µ− 1

κ

(

χab −
1

3
χhab

)(

χab − 1

3
χhab

)

)

, (6.5)

where σab := P c
aP

d
b Tcd, the spatial stress of the matter fields, and whose trace gives

the average (isotropic) pressure: p = −1
3
habσab. In the ‘mean expanding phase’ (i.e.

when χ > 0) with ‘normal’ matter (i.e. µ, p ≥ 0) the total mass density M is decreasing.
Similarly, we can compute the time derivative of the total mass Mvol(Σ), too. In the ‘mean
expanding phase’ it is also negative. This behaviour is compatible with the interpretation
that M is a positive definite measure of the strength of the gravitational field.

6.2 FRW spacetimes

In the initial data set for a closed Friedman–Robertson–Walker spacetime there are only
two independent geometrical quantities, the spatial scalar curvature R and the trace
χ of the extrinsic curvature. These can be recovered from the first eigenvalue of the
Riemannian Dirac and of the Sen–Witten operator, respectively: β2

1 = 3
8
R, α2

1 = β2
1+

1
4
χ2.

To calculate the total mass density we need the Hamiltonian constraint. It is 1
2
R +

1
3
χ2 = κµ. Thus
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M = µ, Ṁ =
1

3
Nχ

(

habσab − 3µ
)

. (6.6)

In the expanding phase (i.e. when χ > 0) with ‘normal’ matter both M and Mvol(Σ) are
decreasing.

7 Summary

The quantity M, defined by equation (3.2) with the set of smooth spinor fields satisfying
appropriate boundary conditions at infinity on asymptotically flat or asymptotically hy-
perboloidal hypersurfaces, provides a positive lower bound for the ADM and Bondi–Sachs
masses, respectively.

On closed hypersurfaces for the same M (defined with a different set of the spinor
fields) the following statements have been proven:

• M = 0 iff the spacetime is holonomically trivial with toroidal Cauchy hypersurface,

• M gives the first eigenvalue α2
1 of the square 2DAA′DA′B of the Sen–Witten operator:

α2
1 =

3

4
κ M,

• Witten’s gauge condition, DA′Aλ
A = 0, admits a non-trivial solution iff M = 0.

Here we showed that in general the so-called approximate twistor operator cannot be
used to determine a gauge condition in closed universes. Nevertheless, we suggested an
alternative gauge condition, viz. the use of the eigenspinors of 2DAA′DA′B corresponding
to the first eigenvalue above.

Through simple examples we illustrated how the geometry of the data sets for closed
universes could be characterized by the spectrum of the Sen–Witten and the 3-surface
twistor operators. In these examples we also calculated the quantity M and its time
derivative. The results support the interpretation of M, suggested the general properties
listed above: It, as a positive definite measure of the strength of the gravitational ‘field’,
can be interpreted as the total mass density of closed universes at the instant represented
by the closed hypersurface Σ. Nevertheless, the ultimate answer to the question whether
this is a reasonable and useful notion will be given by the future applications.

I would like to thank the organizers for the invitation to the Spanish Relativity Meet-
ing in Portugal at Guimarães, 2012 September, where these results could be presented.
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