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During the last decade, ab initio methods to calculate electronic structure of materials based on
hybrid functionals are increasingly becoming widely popular. In this Letter, we show that, in the
case of small gap transition metal oxides, such as VO2, with rather subtle physics in the vicinity
of the Fermi-surface, such hybrid functional schemes without the inclusion of “expensive” fully
self-consistent GW corrections fail to yield this physics and incorrectly describe the features of the
wave function of states near the Fermi-surface. While a fully self-consistent GW on top of hybrid
functional approach does correct these wave functions as expected, and is found to be in general
agreement with the results of a fully self-consistent GW approach based on semilocal functionals,
it is much more computationally demanding as compared to the latter approach for the benefit of
essentially the same results.

PACS numbers:

During the last few decades, new materials based on
transition metal oxides (TMOs) as the key parent com-
ponent have surprised us with their novel and unex-
pected behaviors. These include high temperature super-
conductivity in the cuprates, giant magnetoresistance in
magnanites and a plethora of fascinating new phenom-
ena which has been recently reported on oxide hetero-
structures of TMOs and devices [1–3]. For example, an
interface between two insulators behaves as a metal [2]
which becomes superconducting at sufficiently low tem-
peratures, while an interface between two antiferromag-
nets becomes ferromagnetic [4]. These new structures not
only create a playground for unexpected physical phe-
nomena to be observed, but, in addition, they open up
the possibility for new applications based on radically
different foundations. The complex, unusual, and as yet
not fully discovered or understood behavior of small-gap
TMOs can be manipulated in a variety of fundamentally
new applications [5].

While in the late 80’s, immediately after the discov-
ery of the cuprate superconductors, electronic structure
calculations could not predict the correct ground state of
TMO based materials, during the following decades sig-
nificant progress has been made which has restored some
of the faith in the newly developed ab initio computa-
tional schemes.

The room temperature M1 phase of VO2, a proto-
typical material[6] in the family of TMOs, is such a small
gap system of correlated d-electrons. Small-gap TMOs
have a very rich, complex and interesting phase diagram,
where understanding their electronic structure and wave
functions is of high importance. As a result these TMOs

have been widely studied with sophisticated ab initio

methods. A recent Letter reported [7] that HSE06 non-
local range-separated hybrid density functional theory
(DFT) [8] is able to correctly describe the ground state
wave functions of VO2, and produces a reasonable though
larger gap than the experimental one. HSE is a slower
method than traditional (semi)local DFT functionals but
much faster than many-body perturbation methods, such
as the GW-method or the dynamical mean field theory;
thus, it has been assumed with a growing number of fol-
lowers [9–12] that HSE06 may be a very practical method
to explore the properties of small-gap TMOs.

Here we show by a fully dynamical self-consistent GW
(scGW) calculation [13, 14] that HSE06 does not provide
accurate wave functions and a semi-local DFT functional
is as good a starting point for the scGW calculation as
the computationally demanding HSE06 method. Fur-
thermore, we demonstrate that even if the admixture of
the Fock-exchange in the hybrid functional is tuned to
reproduce the scGW fundamental gap, still, the result-
ing wave functions deviate from those obtained by scGW
close to the Fermi-level. We conclude that (semi)local
functionals are as good starting points for the scGW pro-
cedure as the hybrid functionals for small-gap TMOs.
The former, however, is much less computationally de-
manding.

We carried out DFT calculations on the M1 phase of
VO2 as implemented within the VASP package [15–17].
We used small core projectors for vanadium ions, so we
explicitly included 3s and 3p electrons as valence. The
valence electron states were expressed as linear combi-
nations of plane waves. We found that the plane wave
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cutoff of 400 eV provided convergent single particle lev-
els. As we applied various functionals and GW schemes
for calculating the quasi-particle energies, we used the ex-
perimental geometry[18]. The Brillouin-zone integration
was approximated by a weighted sum on a special k-point
set. We found that the required size of the Monkhorst-
Pack [19] k-point set depends strongly on the existence
of a gap. Convergent charge density could be achieved
with a 5× 5× 5 Monkhorst-Pack k-point set when there
is a gap, while an 18× 18× 18 k-point set was required
without a gap. We applied 146 conduction bands in the
GW calculations.

The ground state electronic structure and wave func-
tions were calculated by the standard semi-local Perdew-
Burke-Ernzerhof (PBE) functional [20] as well as non-
local, range separated hybrid functionals as proposed by
Heyd-Scuseria-Ernzerhof (HSE) [8, 21]. The HSE func-
tional for the exchange-correlation part of the energy in-
volves a parameter α which mixes the contribution of the
short-range parts of the Fock-exchange and the PBE ex-
pression for the exchange energy [8]. It also involves a
second parameter ω which defines what is meant by the
short and long ranged part of the Coulomb potential.

The value of the parameter ω = 0.2a−1
0 is determined

to give a balanced description that provides good accu-
racy and speed for both molecules and solids [21]. The
Fock-exchange part is calculated using the short-range
part of the Coulomb interaction. The PBE [20] expres-
sion for the exchange energy functional is modified to
use the short and long range parts of the Coulomb in-
teraction [8]. The choice of ω and α may depend on the
actual system. We fixed the parameter ω at 0.2a−1

0 while
we varied the parameter α. This parameter is often tuned
to agree with experimental data, such as the band gap
[22–24] or the dielectric constant [25] of a given crystal.
α=0.25 corresponds to the HSE06 functional [21] that we
call now HSE-0.250. We note that α=0.25 was rational-
ized in Ref. 26 where they showed that a smaller value is
needed for systems with nearly-degenerate ground-states.
VO2 may fall into this category, thus we applied α=0.125
and α=0.172 (HSE-0.125 and HSE-0.172 functionals, re-
spectively).

As HSE functionals contain external parameters they
are not truly ab initio methods. Nevertheless, HSE DFT
functionals may provide a good starting point for many-
body perturbation methods, such as the GW-method
which may result in quasi-particle energies and wave
functions that are ideally independent from the start-
ing point. We applied several levels of approximations
within the GW quasi-particle scheme as implemented in
VASP [27–30]. (i) First, we applied the simplest single-
shot GW approach, i.e., the G0W0 approximation. This
means that we have used the Kohn-Sham eigenvalues and
orbitals in G0 and W0. For W we took W0 = ǫ−1V ,
where the dielectric matrix ǫ−1

G,G′(q, ω), with G and G′

denoting reciprocal lattice vectors, were calculated in the

TABLE I: We list the direct gaps in the M1 phase of VO2

calculated using different methods and compare with the re-
sults of other work and experimental values. Abbreviations
of functionals are explained in the text. We note that PBE
results in a metallic state (no gap).

Source Gap

PBE (GGA) N/A

HSE-0.250 1.01 eV

HSE-0.125 0.26 eV

HSE-0.172 0.55 eV

HSE-0.250+G0W0 1.01 eV

HSE-0.125+G0W0 0.69 eV

HSE-0.250+G4W0 1.01 eV

HSE-0.125+G4W0 0.69 eV

HSE-0.250+scGW 0.54 eV

HSE-0.125+scGW 0.54 eV

PBE+scGW 0.54 eV

LDA+COHSEX+G0W0
a 0.6 eV

LDA+empirical correction+G0W0
b 0.6 eV

Experimentc ∼0.6 eV

aRef. 33 (with LDA lattice constant)
bRef. 34 (empirical correction on d-orbitals)
cRef. 35

random phase approximation and the self-energy correc-
tions were evaluated to first order in the difference be-
tween the self-energy Σ and the Kohn-Sham potential
[31, 32]. (ii) As a higher level approximation, we solved
for G self-consistently within the GW approximation fol-
lowing the procedure described in Ref. 30. Typically, four
iterations in G were sufficient to achieve convergence of
the self-consistent quasi-particle energies within 0.02 eV,
and we denote this procedure by G4W0. (iii) Last, we
applied a fully self-consistent dynamical GW correction
as proposed by van Schilfgaarde et al. [14] and imple-
mented in VASP [30]. In this case, the G and W are
updated together with the wave functions by means of
the following equation:

[T + V +Σ(En)] |ψn〉 = En|ψn〉, (1)

where T is the kinetic energy operator, V is the elec-
trostatic potential, and, Σ(En) is the energy-dependent
Hermitian part of the self-energy as calculated from the
GW approximation. En and ψn are the quasi-particle
energies and wave functions. Formally, Eq. 1 looks like
an ordinary Kohn-Sham DFT equation. Thus, the re-
sulting wave functions and energies can be used to re-
calculate G and W of the system, and, the (Hermitian)
part of Σ(En), until self-consistency has been reached.
We found that typically 13-18 iterations were sufficient
to obtain self-consistent quasi-particle energies and wave
functions.
First, we discuss our results for the quasi-particle en-
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ergies close to the Fermi-level obtained with DFT and
quasi-particle correction calculations on the M1 phase of
VO2. The M1 phase of VO2 has a small gap of ∼0.6 eV
[35]. PBE falsely predicts a metallic state while HSE-
0.250 (HSE06) yields too large a gap of 1.01 eV, in agree-
ment with a previous work [7]. If we apply HSE-0.125
then the gap becomes too low at 0.26 eV. One may as-
sume that HSE functionals are a much better starting
point for GW-calculation as they provide a gap, thus
G0W0 may result in good results on top of HSE func-
tionals. However, G0W0 did not improve the results
on HSE-0.250. The calculated gap did not change, (Ta-
ble I) which might imply that HSE-0.250 produces very
good quasi-particle energies and wave functions. How-
ever, the G0W0 correction on top of HSE-0.125 gave a
very different result, yielding a gap of 0.69 eV . When
G was self-consistently updated, the quasi-particle en-
ergies did not change (see HSE-0.250+G4W0 and HSE-
0.125+G4W0 results in Table I). We conclude that G0W0

and G4W0 corrections do not supply a ground state in
close agreement with experiment near the Fermi-level.
A more complete calculation is needed to approach the
experimental situation.

We then applied a fully dynamical self-consistent GW-
method where the wave functions were updated together
with the G and W. The calculated HSE-0.250+scGW
and HSE-0.125+scGWband gaps are the same (0.54 eV),
which is quite close to the experimental one. In addition,
the calculated density of states agrees well with the ex-
perimental photo-emission spectrum (see Fig. 1) [36].

A previous theoretical study indicated that the local-
density-approximation (LDA) can be a good starting
point for the self-consistent GW procedure for VO2 [33].
Gatti et al. applied the self-consistent GW-method in
the static COHSEX approximation first, which opened a
band gap from the metallic solution. Then, they applied
a fully dynamical G0W0 correction on the quasi-particle
energies [33]. Here, we applied a fully dynamical self-
consistent GW on top of a semi-local PBE functional.
The calculated PBE+scGW band gap agrees well with
HSE+scGW. From this, it is fairly clear that starting
from the computationally “expensive” hybrid functional
wave functions is not advantageous when a self-consistent
GW calculation is required, as seems to be the case in
many small-gap systems, such as the TMOs [34].

As the wave functions are updated in the scGW pro-
cedure, it is intriguing to study the change in the wave
functions due to the scGW correction. This analysis was
already carried out when starting from LDA wave func-
tions [33]. Now, we analyze the case of HSE functionals.
To show the change in wave functions, we present the
projected density of states (PDOS) onto the spherical
harmonics around one unique vanadium atom close to
the Fermi-level where the change is the most significant.
From these plots we observed several interesting issues:
(i) starting with PBE [c.f., Figs. 2(a) and (b)], the scGW
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FIG. 1: (Color online) The photo-emission data taken from
Ref. 36 is compared with the density of states (DOS) of the
occupied states as calculated within scGW on top of different
HSE functionals. The calculated data was smoothed using an
exponentially weighted moving average with smoothing factor
of 0.25. We averaged each data point with its seven neighbors
using a decreasing weight (1− α)n, where n is the number of
points to the central point.

procedure is needed to open the gap near the Fermi-level
so that the contribution of d2

z
and (dxz,dyz) will be sig-

nificantly smaller than that of dxy and dx2
−y2 just below

the Fermi-level and vice versa just above the Fermi-level,
(ii) the unoccupied wave functions with energies of ∼1 eV
above the Fermi-level in PBE and PBE+scGW calcula-
tions are very similar, (iii) HSE naturally opens the gap
[Figs. 2(c,e)], but the wave functions significantly differ
from those obtained with HSE+scGW [c.f., Figs. 2(d)
and (f)], particularly, at energies above the Fermi-level
where HSE+scGW yields similar contributions from d2

z

and dx2
−y2 orbitals at around 2 eV above the Fermi-level

while they “split” in the HSE calculations. Apparently
[Figs. 2(b,d,f)], the convergent scGW wave functions are
the same regardless of the starting point. The semi-local
PBE functional provides relatively good wave functions
for states with energy 1 eV above the Fermi-level, unlike
HSE-0.125 or HSE-0.250 functionals.
Recently, it has been claimed that for this material,

the hybrid functional HSE-0.250 gives a good descrip-
tion of the ground state [7]. According to our analysis,
this is questionable. Apart from close vicinity to the
Fermi-level, the semi-local PBE wave functions are supe-
rior to the HSE-0.250 wave functions in the VO2 crystal.
Given the similar number of iterations required to achieve
convergence in the scGW procedure, and the decreased
workload, it seems that using the HSE family of func-
tionals as a starting point for the more accurate scGW
approximation does not provide an improved calculation
at all.
We further note that HSE functionals have been used

as a basis for investigating previously unknown materi-
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FIG. 2: (Color online) The partial density of states (PDOS) near the Fermi-level projected onto the spherical harmonics around
one of the unique vanadium atoms (V1) in the M1 phase of VO2, for a variety of functionals. The ~x axis is parallel to the M1

”a” axis, ~y is parallel to the M1 ”b” axis [18], and ~z is perpendicular to those, using a right-hand rule.

als [10], and to explore the complicated physics of phase
transitions [9, 12]. In addition, the parameter α has been
tuned to agree with experimental data such as the band
gap [22–25]. In order to demonstrate the danger of fit-
ting the α parameter to the band gap of M1 phase of
VO2, we show that the “tuned” HSE functional does not
produce the appropriate quasi-particle energies and wave
functions. We found, by a simple linear interpolation of
our HSE-0.250 and HSE-0.125 results, that the HSE func-
tional with α=0.172 yields about the same gap of 0.55 eV
as that found by the scGW approach. Comparing the
wave functions of scGW and HSE-0.172 [c.f., Figs. 2(f)
and (g)], it is clear that the tuned functional and scGW
calculations significantly disagree for the wave functions
with energies above the Fermi-level. Since the charac-
ter of the wave functions is quite important for several
properties such as optical excitations [5, 37, 38], it seems
that using such tuned functionals as a starting point may
be not appropriate for VO2, and this “tuning” has to be
carefully checked in small-gap TMOs.

In conclusion, we demonstrated that the HSE-type of
functionals should be applied with great care on small-
gap TMOs such as the M1 phase of VO2. We found
that scGW calculations on top of semi-local PBE or the
non-local HSE functionals provide the same results and
they are in agreement with the experimental data. Fur-
thermore, we have found that the PBE wave functions
for states which have energy 1 eV above the Fermi-level
are superior, thus, the PBE provides at least as good
starting point as the HSE functionals for detailed scGW
calculations.

This work was supported in part by the U.S. Na-
tional High Magnetic Field Laboratory which is partially
funded by the U.S. National Science Foundation.
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