GENERALIZED HYPERGEOMETRIC DISTRIBUTIONS
KAROLY SARKADI

1. §. Introduction

The Pélya distribution is treated in several textbooks on probability
theory and mathematical statistics (see e.g. M. FrEcHET [4], W. FELLER [2 |
and M. A. Bricas [1]). It is well-known that it contains the hypergeometric
distribution as a special case. In addition it is known that the generating
function of the Pélya distribution is the hypergeometric function multiplied
by a constant factor. (See\ e.g. CH. JorRDAN [9], [10], M. FrEcHET [4 ] and
M. A. Bricas [1]). For this reason the Pélya distribution is called by Bricas
“generalized hypergeometric distribution.” Furthermore the formula of the
distribution is given by CH. JORDAN [10 | in a form similar to that of the usual
hypergeometric distribution, as well as the formula of the generalized hyper-
geometric distribution of C. D. and A. W. Kemp [12].

In the following we shall see that the generalization made by C. D. and
A. W. Kewmp is wider : their generalized hypergeometric distribution contains
the Pélya distribution as a particular case. The special form by J. G. SKELLAM
an J. O. IrRwiN are Pélya distributions too.

Some other cases of the distribution treated by C. D. and A. W. Kemp
were previously described by CH. Jorpax [10], [11].

The model given by J. O. IRwIx is a case of the Polya urn- model. It is
shown that Poélya’s model, resp. its modification for the inverse sampling
is appropriate for all cases of the generalized hypergeometric distribution
with exception of cases in which both @ and n are non-integral. (See formula (2))

Furthermore, it is shown that the generalization of C. D. and A. W. Kemp
is incomplete. It excludes for example cases in which P(0) = 0, that is, zero
does not belong to the possible values of the distribution. So it does not contain
even all cases of the usual hypergeometric distribution. It will be shown
however that the distributions thus omitted differ from the treated ones by

- shifting only.
Other rediscoveries of the Pélya distribution are also mentioned.

2. §. Comparison of the distributions

The usual form of the Pélya distribution is as follows (see W. FELLER [3 ],
M. A. Bricas [1]):
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T P Z‘?)p(p+7/) s gty =g ). (g dmy —gy —p)

1@y 2y). (L my —9)
(r = 0112 i m)

while 0 < p <1,¢=1— p,y > —-1, m positive integer.
Excluding the case of the binomial "distribution (y = 0) and taking

a= — ply, b = — q/y we obtain the form (see CH. JORDAN [10])
i)
r)\n—r
(2) P(T) &, —‘zi‘jb* M
()
(r=0,1,2,...,n)

where the following relations must hold : @ and b are real numbers of the
same sign, 7 is a positive integer, for positive @ and b 7 < a -+ b; for positive,
non-integer @ resp. b n < a +1resp. n < b + 1.

Thus it can be seen that the Pélya distribution is characterized by the
formula of the hypergeometric distribution, permiting non-integral values
for a and b.

This formula is the starting-point of C. D. and A. W. Kgmp. In their
generalization, also the third parameter, » may be an arbitrary real number
and a,b may have different signs.

(For interpreting the ratio of factorials of negative integers they define

(— =)! (@+y—1)!
3 02 A e RURN YR A 1) 0\ L e R
3) (—x —y)! e (xz —1)!

for positive integer values of x and y.)

So the Poélya distribution is a special case of the generalized hyper-
geometric distribution of C. D. and A. W. Kgwmp.

Investigating the classification of the hypergeometric distribution
given by C. D. and A. W. KBmP it can be seen, that Pélya distributions result
in following cases :

Type I. A(i)

Type I. A(ii) for integer n only

Type II. A.

Additional types can be regarded as Pdlya distributions if we change
the parameters. :

The substitution

(4) aG=n, m=a, b=a+b—mn

interchanges Type I. A (i) with Type I. A (ii); Type 1I. A with Type I11. A;
Type II. B with Type III. B ; the types non-mentioned are unaltered.

So we see that all cases of Types I. A., II. A., III. A can be regarded as
Poélya distributions.
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The comparison of the restrictions shows however that there are several
cases of Pélya distributions not contained in any of the types of C. D. and
A. W. Kemp. We shall return to this question in § 7. extending the class of
generalized hypergeometric distributions with additional types, including
thus the whole class of Pélya distributions.

3. §. Formulae of the distribution

The formula of the distribution can be written in several different
forms. The formulae given by C. D. and A. W. Kewmp differ from well-known
forms of the Pélya distribution. There are various forms given by other
authors, mentioned in §. 5. Yet there can be given additional forms.

Separate formulae are given below for each type. These formulae are
equivalent, each of them providing the complete generalization with exception
of (1), (6), (7), (8); the use of negatue factorials being inconvenient, they
can be suitably used for one type only.

C. D. and A. W. Kemp classify the generalized hypergeometric distribu-
tions into four general types. In fact there are three different types only, since
— as mentioned before — Type Il and III are identical by substitution (4).

Type 1.
The formula given by C. D. and A. W. KEwmp :

a b n\ (a-+b—mn
(5) P(T)_(mHn—r)_ﬂ(r)( a—r_)_
2 (a+b) 2 (a—{—b) o p
n a |
al n! b! (@ +b—n)!
rl(@—7)! (n—r)! (b —n-+r)! (a4 b)! ;

In case of integral n: (or a) also formula (1) can be used. In formula (1)
p=ala+b), ¢=bla+b), y=—1/@ +b), m=n or p=nfa +b),
g=(a+b—n)@-+b), y=—1/@ 4b), m =a.

If in addition @ and b (resp. n and b) are rational, the well-known formula
of the Pélya urn-model is also appropriate :

r—1 m—r—1
I (M+iR) [[ (N 1[-}-1TR)
(6) : P(r)= (7 ), 70’7_ m—1 RBTRT
' [! (N +iR)
while m=n, M = — Ra, .N = — R(a +0b) (resp. m =a, M = — Rn,
N = — R(a+ b)), R is a negative-integer, —R being the common denomi-

nator of @, n and b.
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Type 11—I111.

Using the relation (3) we obtain the following forms :

(c—{—r‘—l)‘d—}—m—r-—i)

Pk 7 m—r -

(c+d+m_' 1)

m

e+ r—1d4+m—r—1D!m! (c+d—1)!
ol m—n) (=1 (d—1)! (c+d+m—1)

which can be written in a form given by E. J. GuMBEL and H. voN SCHELLING
[5] for the distribution of the number of exceedances (see §. 5.) :

N i
P(,):__,_,(c) i

(m+N)('m+N— 1)
c+r—1

or in a form in which the succession law is given (see §. 5. and J. V. UsPENSKY
FLbBE]) 2

1

3 20+r—1 (l Y Z)m +N—c—1 >

m
’ [zc“‘(l—z)N‘cdz
0
In above formulas ¢ = —a, d= —b, m=n, N=¢ +d — 1 (Type II);
orc=—n,d=—a—>b+n m=a, N=c+d— 1 (Type III).

Altering the notations :

Py = (;) (f)m Lddtimr=){ct+d—-m =)l

(c+d)(m+‘r)ﬂ-! (d— 1) (c —m)! (m — 1)! (¢ - d)!

m—4r

where c=—a—b—1, d=n, m= —a (Type II); or c=—a—b—1,
d=a, m= —n (Type III).

In case of positive integral » (or @) formula (1) is also appropriate (see
case of Type I). Are in addition the other two parameters rational, (6) is also
suitable. Now R is a positive integer.
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Are n and @ both integers, following formula is also appropriate :

m—1 r—1
I @+iy) I (qg+iv)
(7) Plr) = (m—}— 5 1) i=0 " zly o
r m+r—
I (1+iy)

i=0

whilem = —a, p=(a +b +1)/(a +b —n +1), ¢g= — nf/(la +b — n+1)
v=1/(a+b—n +1), (Typell. A); orm=—n, p=(a +b +1)/(b + 1),
g= —al/(b+1), v=1/(b +1) (Type III. A).

Is in addition b rational, following formula is also suitable :

m—1 r—1
AL Il M +iR) [[ (N—M+iR)
(8) P(r) :( r )I:O m+r71’=0
Il (N+iR)
where m = —a, M = R(a +b 4+ 1), N=R(@ +b —n +1); (Typell. A),
or m=—n, M =R@a+b+1), N=Rb +1) (Type III. A); in both

cases I is a negative integer, —R being the denominator of —b.

Type 1V.
Appropriate formulae :
e+ r—D(m+r—1)'d!(d—c+ m)!

P(r) ==
r'd+m47)! (c— 1! (m—1)!(d—c)!

s

7 m

d—|—m—{—r—1)
d

(m-{—r——l‘)(d)
¢
7 c &3
d+m+r—1
d+m—c )

where¢c = —a, d=b, m= —n or ¢c=—n, d=a+b—nm=—a;

(d+wz+7:)(

Aw+m+w(

- further

ert Con

m ) o

%m+ﬂ

c+d+m+r—1
( m-+4r

@+r—Dm+r—1!(c+d—1)(c+m—1)!
rlec+d+m-+r—1)!(c— 1) (d—1)!(m—1)!
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where ¢c=a +b6 +1,d= —n, m= —a, or c=a +b+1, d=—g,
m= — n.

In the case of.integral @ (or n) formula (7) is also appropriate. Are in
addition the other two parameters rational, formula (8) is also suitable.
In this case R is always a positiv integer.

4. §. Model representation

The urn-model mentioned by the authors for the integer case of Type
II. A, given by J. O. IRwIN [7 ], is a special case of the well-known Pélya urn-
model. However, Pélya’s model is appropriate not only for the integral cases,
but for all cases of the Pélya distribution (see e.g. W. FELLER [3], pp. 82—83.,
p- 128.).

The Pélya urn-model is given below in a form connected with formula (2).

In a set of » successive (dependent) trials the probability of success varies
from trial to trial in the following way : In the first trial the probability of
success is a/(a + b). If the first £ trials resultated in s successes and k — s
failures, the (conditional) probability of success in the (£ + 1)-st trial is
(@ — 8)/(@ +b — k). Then the probability of exactly r successes out of »
trials is given by formula (2).

The above model illustrates that Pélya’s distribution is the generalization
of the hypergeometric one in the sense that the parameters @ and b may take
any real value instead of integers only.

If we modify Pélya’s model for the inverse sampling, we get appropriate
models for types III. A and IV. in case of integral n, for types II. A and IV.
in case of integral a. The modified model is as follows :

In a set of successive trials, the probability of success varies from trial -
to trial in the following way. In the first trial the probability of success is p.
If the first k trials resulted in s successes and & — s failures, the (conditional)
probability of success in the (k¢ + 1)-st trial is (p + s7)/(1 + k7). The trials
are continued until m successes have been obtained (r is now the number
of failures). This model leads directly to formula (7).

Are the other parameters rational, the above model can be modified
for urn model in a proper sense which leads to formula (8). So we have appro-
priate models for all cases in which 7z or a is integral. Are both » and a integral,
we have two different models in general.

5. §. Other derivations and special cases

C. D. and A. W. KeEMP mention two authors (J. G. SKELLAM [18];
J. O. Irwin [7]) who described some types of their distribution previously.
These types belong to the class of Pélya distributions. It follows from the
paper of C. D. and A. W. KempP and from our last § that the main types of
the generalized hypergeometric distributions can be derived in three different
ways : 1. by extending the formula of the hypergeometric distribution ;
2. by urn models ; 3. by allowing the probability parameter of a binomial
(negative binomial) distribution to be a Beta variable.

As it is well-known, the Pélya distribution was introduced in the second
way. It is known however, that it can be derived in the third way too
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(O. LuxpBERG [14 ]). Applications of this kind are treated in papers of J. W.
HopriNs [6] and the present author [16 | too. I myself ignored at that time
that the distribution investigated was of type Pélya. J. W. HoPKINS uses
the name "negative hypergeometric distribution” for the distribution adopted
from SKELLAM.

Cu. JORDAN [10 ] describes a simple form of the inverse sampling types,
namely the case m =1 (see formula (8)).

1t seems that the fact that there are three possible derivations of the
distribution, is the main cause for its repeated rediscovery. Another cause
is that different forms of the law of distribution are possible.

Finally we wish to discuss several problems each of which leads to a
special case of the Pélya distribution, namely to the integer case of C. D.
and A. W. Kemp II. A (ITI. A.) type. As mentioned before this type has two
different urn-model representations : a direct Pélya samphng model, in which
a similar ball is added after each drawing and an inverse sampling model
without replacement. It seems to be suitable to restrict the name ,,negative
hypergeometric distribution’ to this type, as this is the analogon of the nega-
tive binomial distribution for sampling without replacement.

The inverse sampling without replacement appears in several statistical
problems : e.g. random walk (W. FELLER [2]), waiting time (W. FELLER (3 |
Pp. 35—37.) etc.

A problem of another kind, which leads to this distribution is that of
the number of exceedances. (See e.g. E.J. GumBEL and H. von SCHELLING [5 ]).
It has been shown by the present author [17], that the distribution of the
number of exceedances is of this type. Furthermore it is mentioned that the
formula of the distribution derived by E. J. GuMBEL any H. von SCHELLING
by combining the binomial and Beta distributions can be derived through
the Pélya urnmodel too ; and it is shown that Laplace’s law of succession (see

e.g. J. V. UsPENSKY [19 ]) and the inverse problem (by using Bayes’ rule) of
~ sampling without replacement lead to the same distribution.

The moments of Pélya’s distribution were treated e.g. by CH. JORDAN
[10], M. FRECHET [4] and M. A. Bricas [1], the limiting forms by M. A.
Bricas [1] in detail. I. KozNTEwskA [13] determined the first absolute
central moment.

6. §. The equivalency of the drawings

As well-known, a random variable of binomial probability distribution
can be regarded as the sum of independent, equally distributed random variables
with the possible values 0 and 1. Similarly, a random variable of Pdlya distri-
bution can be regarded as the sum of the caracteristic random variables of the
drawings. Here however the terms are dependent, but it is known that these
characteristic variables have the same apriori distribution. G. Porya [15 ]
showed that they are equivalent random variables (see also CH. JORDAN [11 ],
M. FrECHET [4 ]).

The converse of the above theorem does not hold. L. Wgiss [20 ] showed
by a counter-example that Pdlya’s distribution cannot be uniquely derived
from the assumption of its variable being the sum of equally distributed
random variables on the numbers 0 and 1, having by pairs the same correlation
coefficient. Furhermore it follows from his counter-example that even the
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assumption of equivalency of the terms is insufficient for being the sum
Pélya variable.
Here we show the following

Theorem : Every random variable & with the possible values 0,1,2, ..., n
can be written as the sum of n equivalent random variables :

"S:Cl"i‘gg”{—---‘*‘gn

while each of the equivalent random variables Cy, s, ..., Cn 18 distributed on the
numbers 0 and 1. This decomposition of & is uniquely determined.

Proof :

It follows from the assumption that if such a decomposition exists,
then the probability that & of the variables &;,(,, ..., , in a given order
have value 1 and the remaining » — k value 0, is

£ —
(9) P =k)

(&)

since there are Z orders of this kind, each order with the same probability
by virtue of equivalehcy.

The joint distribution of y, {,, ..., {n is uniquely determined by the for-
mula (9). Evidently, any permutation of the variables does not effect the
distribution. Thus is follows that (;, (s, ..., {, are equivalent random vari-

ables.

7. §. Completion of the generalization

The generalization given by C. D. and A. W. Kemp is — as mentioned
before — incomplete. There are cases in which formula (2) defines a probability
distribution, but does not satisfy the restrictions given by C.D. and A. W.
Kewmp. The classification needs a completion in two directions :

A4) C. D. and A. W. Kewmp consider cases only in which the smallest
possible value of the distribution is zero. In addition, it seems reasonable to
consider cases in which n — b is a positive integer and formula (5) gives
P(r) > 0 in the range n — b < r < R (R positive integer or infinite) and
formula (5) sums to unity in this range.

The reason for above assumption is that in each case for which formula
(5) gives P(0) == 0 but gives positive values for some positive integral values
of r, n — b must be a positive integer and P(n — b) == 0 but P(r) = 0 if
O <r<n—>.

Namely we obtain from (5)

2O @l Bl b =ndr)

P(r) a! _b! (b —mn)!
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The first three factors are eﬂways finite and different from 0. Thus
P(0)/P(r) = 0 if and only if

(b—n-i—r)!:O
(b —mn)!

from which follows that b — n must be a negative integer and r > n — b.

It will be shown that the probability distribution arising from (5) and
having the smallest possible value » — b, can be reduced by the transforma-
tion

(10) a=b, b=a,;, B=a4+b— N, r=b—w+¥

feg]

P,(0)=Pn —b) >0 .

to those considered above. Namely,

Pyry) = Plr) =

while

The detailed comparison gives that we get new types by the transformation
(10) from Types I. A (i), I. A (ii) and IV. of C. D. and A. W. Kemp.

B) For Type II. A. the authors exclude the case b = —1, similarly for
Type I1I. A.the case b = n — a — 1. These exclusions are unjustified. It is
true that in the cases mentioned the hypergeometric series are infinite and
divergent, but n or a is a positive integer and thus (5) sums to unity in the
range 0 < » < n resp. 0 < 7 < a which can be proved in the same way as
in case of finite series. ‘

An important particular case: If @ = b = —1, n positive integer, we
obtain
P(r) e _~_1,_.
n -+ 1
(r = 0,1, , M)

that is our random variable is uniformly distributed on the numbers 0, 1, 2,
NeniTts

(Received : 5. VIIIL. 1957.)

5 A Matematikai Kutat6 Intézet Kozleményei 11./1—2.
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A HIPERGEOMETRIKUS ELOSZLAS ALTALANOSITASA
SARKADI K.

Kivonat

C. D. and A. W. KemP [12] a hipergeometrikus eloszlas képletébdl (2)
kiindulva altalanositottdk az eloszlist arra az esetre, ha a paraméterek nem
egész, hanem altaldban valés szamok.

Ebben a cikkben a szerzé megmutatja, hogy a C. D. és A. W. Kemp-
féle éltalanositds a Pélya-féle eloszlast specidlis esetenként tartalmazza,
tovédbbd ugyancsak tartalmazza a Pélya-modell inverz (Pascal-féle) meg-
felelGje altal szarmaztatott eloszlasokat.

AT

PSErI T



GENERALIZED HYPERGEOMETRIC DISTRIBUTIONS 69

Az emlitett cikk részletes térgyaldsit is tobb tekintetben kiegésziti,
igy pl. megmutatja, hogy az indokolatlanul kizdr egyes olyan tipusokat,
amelyek az eredeti feltevésnek megfelelnek.

Megemlit még a szerz6 a cikkben tobb ismert vagy az irodalomban
targyalt eloszldst is, melyekrél eddig nem volt ismeretes, hogy Pélya-eloszlasok.
Ezek : a Laplace-féle kovetkezési szabély, tovabba a visszatevéses mintavétel
(Bayes-féle) inverz problémajanak megoldasa, valamint az [5], [6], [7],
[16 ], [18] cikkekben targyalt eloszlésok.

J. O. IrwiN [7] cikke kritikajat (lasd: [20]) kiegészitve, a szerzé
bebizonyitja, hogy barmely valdészintiségi valtozd, amelynek 0, 1, 2, ..., »
a lehetséges értékei, felirhaté n darab ekvivalens esemény karakterisztikus
valtozonak Osszegeként.

OBOBUIEHHBIE TUMIIEPTEOMETPUUECKHUE PACNPENEJEHUSA
K. SARKADI :

Pe3siome

C. D. u. A. W. Kemp [12], ucxojsi u3 GopMyJibl THIIEPIEOMETPUYECKOTO
pacrnpejesnenus (2), 06001muIN pacrpejesieHie Ha TOT CJIyyaii, KOoTaa napameTpst
He IieJible, a, BOOOWIe roBopsi, BELIECTBEHHbIE YKCIa.

B Hacrosimeil craTbe aBTOP II0KAa3blBAET, YTO 3TO 000OLIEHME COJEPIKUT
pacnpesesenve POLYA Kak cnenyasbHbl cllyyaid, a TakyKe COAEPIKUT pacrpe-
JleJIeHus1, mpoucxojaume or obpaTtHoro (Pascar) anamora mojenu Porya.

JomoyiHsieTcs1 Takyke I0JPOOHBIE pacCy )KJAeHUsl YIOMSIHYTOM CTaThbH,
NOKa3bIBaeTCsl, HAIIPUMep, YTO OHA HEOGOCHOBAHHO MCKJIIQUAeT HEKOTODbIE THIIHI,
KOTOpBIE COOTBETCTBYIOT HCXOAHBIM TPE/TIOJI0KEHHUSIM.

YromMuHaTCsl e1E B CTaThbe M3BECTHBIE WJIM PACCHOTPEHHBIE B Jm'repaType
pacnpeziesienysi, 0 KOTOPbIX He OBbLIO M3BeCTHO, YTO OHM SIBJISIIOTCSI paclpeje-
Jusimu POLYA. Jro: npaBuio 3axiiioueHusi LAPLACE, penieHue 00paTHOM
npoGyiembl BbiOopa 00pastoB C BO3pajkKeHMeM, a TaK)Ke pacripejesieHust,
paccmaTpuBaemble B cratbsa [5], [6], [7], [16], [18].

Jonoansis kputuky [20] cratbu J. O. IRWIN] [7], aBTOp H0Kasaer, 4To
J00ast ciayvaiiHasi BeJIMYMHA, BOBMOYKHbIE 3HAYeHUs] KOTOPOM  SIBISIIOTCS
0,1, 2,..., n, Mo>XeT ObITb NPe/JCTABJIEHA B BUE CYMMbI XapaKTepUCTHUECKUX
IePEMEHHBIX 71 9KBUBAJIEHTHBIX COOBITHIA.
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