ON SECONDARY STOCHASTIC PROCESSES GENERATED BY A MULTIDIMENSIONAL POISSON PROCESS¹⁾

LAJOS TAKÁCS

Introduction

In an earlier paper [4] the author deduced some theorems concerning secondary stochastic processes generated by a one-dimensional Poisson process. In the present paper a more general case will be investigated. We suppose that the underlying process is a homogeneous Poisson process defined on an *m*-dimensional space. We shall establish theorems which are generalizations of the theorems formulated in [4]. The proofs are based on the method of [4].

§. 1. Homogeneous Poisson process defined on a Euclidean space of finite dimension

Let us consider the field $\mathfrak S$ of all Borel-measurable sets S of a Euclidean space of finite dimension. Denote by $\mu(S)$ the Lebesgue measure defined on the sets $S \in \mathfrak S$. For each set S, with $\mu(S) < \infty$, let there be defined a random variable $\xi(S)$ with the following properties:

1° $\xi(S)$ assumes only non-negative integer values and $\mathbf{P}\{\xi(S)=0\}\neq 1$

if $\mu(S) > 0$.

2°. The probability distribution of $\xi(S)$ depends only on the measure $\mu(S)$. 3°. If S_1 and S_2 are disjoint sets, then $\xi(S_1)$ and $\xi(S_2)$ are independent random variables and we have $\xi(S_1 + S_2) = \xi(S_1) + \xi(S_2)$.

4°.
$$\lim_{\mu(S)\to 0}\frac{\mathbf{P}\{\xi(S) \geqq 1\}}{\mathbf{P}\{\xi(S) = 1\}} = 1 \ .$$

Another definition of the multidimensional Poisson process has been given e.g. by C. Ryll-Nardzewski [3].

Theorem 1.: Under the assumptions $1^{\circ} - 4^{\circ}$ we have

(1)
$$\mathbf{P}\{\xi(S) = k\} = e^{-p\mu(S)} \frac{[p\mu(S)]^k}{k!}$$

¹⁾ This is an address delivered at the Colloquium on Stochastic Processes, Balaton-világos, September 13—15, 1956.

for all $S \in \mathfrak{S}$, with $\mu(s) < \infty$, where p is a positive constant.

Proof: Consider a decomposition of S:

$$S = S_n^{(1)} + S_n^{(2)} + \ldots + S_n^{(n)}$$

where $S_n^{(i)}$ (i = 1, 2, ..., n) are disjoint sets and $\mu(S_n^{(i)}) = \mu(S)/n$. Let S_n be one of the sets $S_n^{(i)}$. Now, by 3° we have

(2)
$$\mathbf{P}\{\xi(S) = 0\} = [\mathbf{P}\{\xi(S_n) = 0\}]^n$$

without supposing the mutual independence of the random variables $\xi(S_n^{(i)})$ $(i=1,2,\ldots,n)$. As $\mathbf{P}\{\xi(S_n)=0\}=1-\mathbf{P}\{\xi(S_n)=1\}-\mathbf{P}\{\xi(S_n)>1\}$ and $\mu(S_n)=\mu(S)/n$, taking 4° into consideration, we obtain that

(3)
$$\lim_{n \to \infty} n \, \mathbf{P} \{ \xi(S_n) = 1 \} = -\log \mathbf{P} \{ \xi(S) = 0 \} .$$

This limit cannot be infinite. For $\mathbf{P}\{\xi(S)=0\}=0$ would imply $\mathbf{P}\{\xi(S)=0\}=0$ for all sets S. Consequently also it would follow that $\mathbf{P}\{\xi(S)=k\}=0$ for all sets S and for all k, which is impossible. The limit cannot be equal to 0, for $\mathbf{P}\{\xi(S)=0\}=1$ would imply the same relation for all sets S. But the case $\mathbf{P}\{\xi(S)=0\}=1$ is excluded.

Using the condition 3°, we have

(4)
$$\mathbf{M}\left\{e^{it\xi(S)}\right\} = \left[\mathbf{M}\left\{e^{it\xi(S_n)}\right\}\right]^n.$$

Clearly, we have

$$\mathbf{M}\{e^{it\xi(S_n)}\} = \mathbf{P}\{\xi(S_n) = 0\} + \mathbf{P}\{\xi(S_n) = 1\}e^{it} + \mathbf{P}\{\xi(S_n) > 1\}\vartheta$$

where $|\vartheta| \le 1$. Now putting $\mathbf{P}\{\xi(S_n) = 0\} = 1 - \mathbf{P}\{\xi(S_n) = 1\} - \mathbf{P}\{\xi(S_n) > 1\}$, from (4) it results that

(5)
$$\mathbf{M}\{e^{it\xi(S)}\} = \exp\{(e^{it} - 1) \lim_{n \to \infty} n \, \mathbf{P}\{\xi(S_n) = 1\}\}$$

or by virtue of (3),

(6)
$$\mathbf{M}\{e^{it\xi(S)}\} = (\mathbf{P}\{\xi(S) = 0\})^{(1-e^{it})}.$$

Consequently $\xi(S)$ has a Poisson distribution. The expectation $\mathbf{M}\{\xi(S)\}$ exists and by (6) we have

(7)
$$\mathbf{M}\{\xi(S)\} = -\log \mathbf{P}\{\xi(S) = 0\}$$
.

The expectation $\mathbf{M}\{\xi(S)\}$ is a non-negative additive set function, which depends only on $\mu(S)$. Consequently $\mathbf{M}\{\xi(S)\} = p\mu(S)$ with a positive p. The cases p=0 and $p=\infty$ are excluded. Finally

(8)
$$\mathbf{M}\{e^{it\xi(S)}\}=e^{-p\mu(S)(1-e^{it})}$$
.

which proves (1).

In the following we shall call a set of random variables $\{\xi(S)\}$ which satisfies 1°. — 4° a homogenous Poisson process.

Remark 1. If n > 2 and S_1, S_2, \ldots, S_n are disjoint sets, then $\xi(S_1)$, $\xi(S_2), \ldots, \xi(S_n)$ are not necessarily mutually independent random variables. However, it is easy to construct a set of random variables $\{\xi(S)\}$ which satisfies beside 1°—4° also the following condition:

5°. If for an arbitrary n, S_1, S_2, \ldots, S_n are disjoint sets then the random

variables $\xi(S_1), \xi(S_2), \ldots \xi(S_n)$ are mutually independent.

The stochastic process $\{\xi(S)\}$ can be interpreted as follows: Let us consider random points (random events) distributed in the space. Denote by $\xi(S)$ the number of the random points or random events taking place in the set S. For a realization $\{\xi(S)\}$ a point P is one of the random points if $\lim \xi(S) \ge 1$ in such a way that $P \in S$, where S is an open set.

We prove two lemmas:

Lemma 1. Let us consider the Poisson process $\{\xi(S)\}$ fulfilling 1° . -4° . Let $\mu(S) > 0$. Under the condition $\xi(S) = 1$ the random point in S is distributed uniformly in S.

Proof: Let $S = S_1 + S_2$, where S_1 and S_2 are disjoint sets. Then we have

$$\begin{split} \mathbf{P} &\{ \xi(S_1) = 1 \, | \, \xi(S) = 1 \} = \frac{\mathbf{P} \{ \xi(S_1) = 1, \, \xi(S_2) = 0 \}}{\mathbf{P} \{ \xi(S) = 1 \}} = \\ &= \frac{\mathbf{P} \{ \xi(S_1) = 1 \} \, \mathbf{P} \{ \xi(S_2) = 0 \}}{\mathbf{P} \{ \xi(S) = 1 \}} = \frac{\mu(S_1)}{\mu(S)} \; , \end{split}$$

as was to be proved.

Lemma 2. Let us consider a Poisson process $\{\xi(S)\}$ fulfilling $1^{\circ}-5^{\circ}$. Let $\mu(S) > 0$. Under the condition $\xi(S) = k$, the k random points in S are distributed independently and uniformly in S.

Proof: For an arbitrary n, let $S = S_1 + S_2 + \ldots + S_n$ where S_1, S_2, \ldots, S_n are any disjoint sets and $k = k_1 + k_2 + \ldots + k_n$ where k_1, k_2, \ldots, k_n are any non-negative integers. Then we have

$$\begin{split} \mathbf{P} & \{ \xi(S_1) = k_1, \xi(S_2) = k_2, \dots, \xi(S_n) = k_n | \xi(S) = k \} = \\ & = \frac{\mathbf{P} \{ \xi(S_1) = k_1, \xi(S_2) = k_2, \dots, \xi(S_n) = k_n \}}{\mathbf{P} \{ \xi(S) = k \}} = \\ & = \frac{\mathbf{P} \{ \xi(S_1) = k_1 \} \cdot \mathbf{P} \{ \xi(S_2) = k_2 \} \dots \mathbf{P} \{ \xi(S_n) = k_n \}}{\mathbf{P} \{ \xi(S) = k \}} = \\ & = \frac{k!}{k_1! \ k_2! \dots k_n!} \left(\frac{\mu(S_1)}{\mu(S)} \right)^{k_1} \left(\frac{\mu(S_2)}{\mu(S)} \right)^{k_2} \dots \left(\frac{\mu(S_n)}{\mu(S)} \right)^{k_n}. \end{split}$$

This completes the proof.

Remark 2. If we assume more generally that $\mu(S)$ is any non-atomic measure other than the Lebesgue one, then similar theorems are valid as above. In this case $\{\xi(S)\}$ is called a non-homogeneous Poisson process.

§. 2. Secondary stochastic processes generated by a Poisson process

Let us consider a homogeneous Poisson process $\{\xi(S)\}$ defined on the Euclidean space of m dimensions. For the sake of brevity we introduce the vector notation $\mathbf{x} = (x_1, x_2, \ldots, x_m), \mathbf{y} = (y_1, y_2, \ldots, y_m), \mathbf{r} = (r_1, r_2, \ldots, r_m)$ etc., for denoting the points of the space. Let us suppose that every event in the Poisson process gives rise to a signal depending on a random parameter. If \mathbf{y} is the point representing an event and a is the value of the corresponding parameter, then denote the magnitude of this signal at the point \mathbf{x} by $f(\mathbf{x}, \mathbf{y}, a)$. Suppose that the parameters belonging to different events are mutually independent random variables with a common distribution function H(a) and further that the different signals linearly superpose. In the following we suppose that $f(\mathbf{x}, \mathbf{y}, a)$ is a Baire function.

Let us consider the random variable

(9)
$$\eta(\boldsymbol{x}; S) = \sum_{\boldsymbol{y}_v \in S} f(\boldsymbol{x}, \boldsymbol{y}_v, \alpha_v)$$

which represents at the point x the sum of the signals arising from the random events occurring in the set S. Here y_{ν} denote the different random points and α_{ν} the random parameters. In the case when $S = \mathbf{R}_m$ (the whole space), let us write $\eta(x)$ instead of $\eta(x_m; \mathbf{R}_m)$. These sums do not necessarily converge. If they do, we say that the process $\eta(x; S)$ resp. $\eta(x)$ exists. If $\mu(S) < \infty$ then the process $\eta(x; S)$ exists with probability 1. If $S = \mathbf{R}_m$ we obtain the following

Theorem 2. If for all x we have

(10)
$$\int_{\mathbf{R}_m} \left[\int_{-\infty}^{\infty} |f(\boldsymbol{x}, \boldsymbol{y}, a)| dH(a) \right] d\boldsymbol{y} < \infty$$

then the process $\{\eta(x)\}$ exists with probability 1.

Proof: Let us decompose the space R_m as the countable union of disjoint sets with finite measures: $R_m = S_1 + S_2 + \ldots + S_n + \ldots$ Then we have

(11)
$$\eta(\boldsymbol{x}) = \sum_{n=1}^{\infty} \eta(\boldsymbol{x}; S_n) .$$

As

$$\mathbf{M}\{|\eta(\boldsymbol{x};S_n)|\} \leq p \int\limits_{S_n} \left[\int\limits_{-\infty}^{\infty} |f(\boldsymbol{x},\boldsymbol{y},a)| \ dH(a) \right] d\boldsymbol{y}$$

and

$$\sum_{n=1}^{\infty} \mathbf{M}\{|\eta(\boldsymbol{x}\,;S_n)|\} \leq p \int\limits_{\boldsymbol{R_m}} \left[\int\limits_{-\infty}^{\infty} |f(\boldsymbol{x},\boldsymbol{y},a)| \; dH(a)\right] d\boldsymbol{y} < \infty \;\;,$$

it follows from the known theorem of Beppo Levi or from the known inequality of Markov concerning non-negative random variables that the process $\{\eta(x)\}$ exists with probability 1. Evidently, $\eta(x)$ is independent of the partition of R_m .

Theorem 3. Let $\mu(S)$ be finite. The characteristic function of the random variable $\eta(x; S)$ has the following form:

(12)
$$\mathbf{M}\left\{e^{it\eta(\boldsymbol{x};S)}\right\} = \exp\left\{p\int\limits_{S}\left[\int\limits_{-\infty}^{\infty}e^{itf(\boldsymbol{x},\boldsymbol{y},a)}\;dH(a) - 1\right]d\boldsymbol{y}\right\}.$$

Proof: Let be $S = S_1 + S_2 + \ldots + S_n$ where S_1, S_2, \ldots, S_n are disjoint sets with the same measure. According to the condition 3° concerning $\{\xi(S)\}$ we can write

(13)
$$\mathbf{M}\left\{e^{it\eta(\boldsymbol{x};S)}\right\} = \prod_{k=1}^{n} \mathbf{M}\left\{e^{it\eta(\boldsymbol{x};S_k)}\right\}$$

without supposing the mutual independence of the random variables $\eta(\boldsymbol{x}; S_k)$ (k = 1, 2, ..., n). By the theorem of total expectation and Lemma 1 we obtain

$$\begin{split} \mathbf{M}\{e^{it\eta(\boldsymbol{x};\,S_k)}\} &= \sum_{j=0}^{\infty} \mathbf{P}\{\xi(S_k) = j\} \, \mathbf{M}\{e^{it\eta(\boldsymbol{x};\,S_k)} | \, \xi(S_k) = j\} = \\ &= \mathbf{P}\{\xi(S_k) = 0\} + \mathbf{P}\{\xi(S_k) = 1\} \frac{1}{\mu(S_k)} \int\limits_{S_k} \left[\int\limits_{+\infty}^{\infty} e^{itf(\boldsymbol{x},\,\boldsymbol{y},\,a)} \, dH(a) \, \right] d\boldsymbol{y} + \mathbf{P}\{\xi(S_k) > 1\} \, \vartheta \end{split}$$

where $|\vartheta| \leq 1$. Taking into consideration that $\mathbf{P}\{\xi(S_k) = 0\} = 1$ — $\mathbf{P}\{\xi(S_k) = 1\}$ — $\mathbf{P}\{\xi(S_k) > 1\}$ and $\mu(S_k) = \mu(S)/n$ we obtain by taking logarithms

$$\log oldsymbol{\mathsf{M}}\{e^{it\eta(oldsymbol{x}\,;\,S_k)}\} = p \int\limits_{S_k} igg[\int\limits_{-\infty}^{\infty} e^{itf(oldsymbol{x},oldsymbol{y}\,,a)}\,dH(a) - 1igg] doldsymbol{y} + C_k igg[rac{p\;\mu(S)}{n}igg]^2\,,$$

where $|C_k| < 4$. Letting $n \to \infty$ we obtain by (13)

$$\log \mathbf{M}\{e^{it\eta(\boldsymbol{x};\,S)}\} = p \int\limits_{S} \left[\int\limits_{-\infty}^{\infty} e^{itf(\boldsymbol{x},\boldsymbol{y},\,a)} \, dH(a) - 1 \right] d\boldsymbol{y}$$

which proves (12).

Remark 3. Assuming also 5° for the process $\{\xi(S)\}$ we may prove Theorem 3 in a simpler way using Lemma 2. For by the theorem of total expectation we get

$$\mathbf{M}\{e^{it\eta(\boldsymbol{x};S)}\} = \sum_{j=0}^{\infty} \mathbf{P}\{\xi(S) = j\} \mathbf{M}\{e^{it\eta(\boldsymbol{x};S)} | \xi(S) = j\}$$

and by Lemma 2

$$\mathbf{M}\{e^{it\eta(\boldsymbol{x};S)}\big|\,\xi(S)=j\}=[\,\mathbf{M}\{e^{it\eta(\boldsymbol{x};S)}\big|\,\xi(S)=1\}]^j$$

where

$$m{\mathsf{M}}\{e^{it\eta(m{x};S)}|\xi(S)=1\} = rac{1}{\mu(S)}\int\limits_{S}\left[\int\limits_{-\infty}^{\infty}e^{itf(m{x},m{y},a)}\;dH(a)
ight]dm{y}\;.$$

Carrying out the corresponding substitutions we get (12), what was to be proved.

Now we shall prove the following limit theorem:

Theorem 4. Let us suppose that $\mathbf{D}\{\eta(x;S)\}$ exists; then we have

(14)
$$\lim_{p\to\infty} \mathbf{P}\left\{\frac{\eta(\boldsymbol{x};S)-\mathbf{M}\{\eta(\boldsymbol{x};S)\}}{\mathbf{D}\{\eta(\boldsymbol{x};S)\}} \leq \boldsymbol{x}\right\} = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-\frac{u^{2}}{2}} du.$$

Proof: By Lemma 2

$$\eta(\boldsymbol{x};S) = \sum_{\boldsymbol{y}_{\nu} \in S} f(\boldsymbol{x}, \boldsymbol{y}_{\nu} \alpha_{\nu})$$

can be considered as a sum of a random number of identically distributed independent random variables, where the number of the variables is independent of the variables themselves. The number of the variables follows a Poisson distribution with mean $p\mu(S)$. If $p \to \infty$ then we obtain the limiting distribution (14) by the theorem stated by H. Robbins [2] (Cf. R. L. Qobrushin [1]).

Remark 4. Theorem 3 may be easily proved also for the case when the underlying process is a non-homogeneous Poisson process. In this case we have

$$\mathbf{M}\{e^{it\eta(oldsymbol{x};S)}\} = \exp\Big\{p\int\limits_{S}\Big[\int\limits_{-\infty}^{\infty}e^{itf(oldsymbol{x},oldsymbol{y},a)}dH(a)-1\Big]\mu(doldsymbol{y})$$
 .

Theorem 5. If for all x we have (10), then

(15)
$$\mathbf{M}\{e^{it\eta(\boldsymbol{x})}\} = \exp\left\{p \iint_{R_{m}-\infty} e^{itf(\boldsymbol{x},\boldsymbol{y},a)} dH(a) - 1\right] d\boldsymbol{y}\right\}.$$

Proof: (15) follows from the existence of the random variable $\eta(x)$. However, we may prove it directly by the known theorem of P. Lévy and H. Cramér concerning the convergence of a sequence of characteristic functions.

Remark 5. Let us denote the s-th semi-invariant of $\eta(x)$ by $\Lambda_s \{\eta(x)\}$ $(s=1,2,\ldots)$. By (15) we get

if this exists at all. By (16) we obtained a new generalization of the formulae of N. CAMPBELL well-known in physics. Especially we have

$$\mathbf{M}\left\{\eta(\boldsymbol{x})\right\} = \mathbf{\Lambda}_1\left\{\eta(\boldsymbol{x})\right\} \text{ and } \mathbf{D}^2\left\{\eta(\boldsymbol{x})\right\} = \mathbf{\Lambda}_2\left\{\eta(\boldsymbol{x})\right\}.$$

Remark 6. Let us suppose that f(x, y, a) depends only on the difference r = x - y. In this case let us put f(x, y, a) = g(r, a). Then the distribution function of $\eta(x)$ is independent of x and its characteristic function is

(17)
$$\mathbf{M}\{e^{it\eta(\boldsymbol{x})}\} = \exp\left\{p\int\limits_{\boldsymbol{R}_m} \left[\int\limits_{-\infty}^{\infty} e^{itg(\boldsymbol{r},a)} \, dH(a) - 1\right] d\boldsymbol{r}\right\} .$$

In such cases we shall call the process $\{\eta(x)\}\$ a homogeneous one.

If further, g(r, a) depends only on r = |r|, then let us put g(r, a) = h(r, a). In this case the characteristic function of $\eta(x)$ is

(18)
$$\mathbf{M}\{e^{it\eta(\mathbf{x})}\} = \exp\left\{\frac{p^{\frac{m}{\pi^2}}}{\Gamma\left(\frac{m}{2}\right)} \int_0^\infty r^{m-1} \left[\int_{-\infty}^\infty e^{ith(r,a)} \, dH(a) - 1 \right] dr \right\} .$$

We shall say in this case that the process $\eta(x)$ is a homogeneous and isotropic one.

Theorem 6. If $\{\eta(x)\}$ is a homogeneous process and $\mathbf{M}\{(\eta(x))^2\} < \infty$, then the correlation function $R(r) = \mathbf{R}\{\eta(x), \eta(x+r)\}$ exists and is independent of x. We have

(19)
$$R(\mathbf{r}) = \frac{\int \left[\int_{\mathbf{R}_m}^{\infty} g(\mathbf{y}, a) g(\mathbf{y} + \mathbf{r}, a) dH(a)\right] d\mathbf{y}}{\int \left[\int_{\mathbf{R}_m}^{\infty} \left(g(\mathbf{y}, a)\right)^2 dH(a)\right] d\mathbf{y}}.$$

Proof: Let r be fixed and $\eta^*(x) = \eta(x) + \eta(x+r)$. Then $\{\eta^*(x)\}$ is also a homogeneous process and $\mathbf{M}\{(\eta^*(x))^2\} < \infty$. $\{\eta^*(x)\}$ differs from the process $\{\eta(x)\}$ merely by taking the signal $g^*(y,a) = g(y,a) + g(y+r,a)$ instead of g(y,a). Then by (16) we have

$$\mathbf{D}^2\{\eta^*(oldsymbol{x})\} = \int\limits_{oldsymbol{R}_m} \left[\int\limits_{-\infty}^{\infty} (g^*(oldsymbol{y},a))^2 \, dH(a)
ight] doldsymbol{y}$$

i. e.

$$\mathbf{D}^2\{\eta(\boldsymbol{x}) + \eta(\boldsymbol{x} + \boldsymbol{r})\} = \int\limits_{\mathbf{R}_m} \left[\int\limits_{-\infty}^{\infty} (g(\boldsymbol{y}, a) + g(\boldsymbol{y} + \boldsymbol{r}, a))^2 dH(a) \right] d\boldsymbol{y}$$
.

On the other hand, evidently

$$D^{2}{\eta(x) + \eta(x+r)} = 2 D^{2}{\eta(x)}[1 + R(r)]$$
.

Comparing the latter two formulae we get R(r).

Remark 7. If $\{\eta(x)\}$ is a homogeneous and isotropic process, then the correlation function R(r) depends only on r = |r| and in this case let us put R(r) = R(r) for which we have

$$= \frac{\frac{\pi^{\frac{m-1}{2}}}{\Gamma\left(\frac{m-1}{2}\right)^{0}}\int_{0}^{\infty}y^{m-1}\left\{\int_{0}^{\pi}\left[\int_{-\infty}^{\infty}h(y,a)h(\sqrt{r^{2}+y^{2}-2\,ry\cos\varphi},a)\,dH(a)\right]\left|\cos\varphi\right|^{m-2}d\varphi\right\}dy}{\frac{\pi^{\frac{m}{2}}}{\Gamma\left(\frac{m}{2}\right)^{0}}\int_{0}^{\infty}y^{m-1}\left[\int_{-\infty}^{\infty}\left(h(y,a)\right)^{2}dH(a)\right]dy}.$$

The spectral function of the process $\{\eta(x)\}$. As the correlation function of a stationary stochastic process can be expressed by the known formula of A. J. Khintchine, similarly the correlation function of $\{\eta(x)\}$ may be expressed as follows:

(21)
$$R(\mathbf{r}) = \int_{\mathbf{R}_m} e^{i\lambda \mathbf{r}} dF(\lambda)$$

where $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_m)$, $r = (r_1, r_2, \dots, r_m)$, $\lambda r = \lambda_1 r_1 + \lambda_2 r_2 + \dots + \lambda_m r_m$ and $F(\lambda) = F(\lambda_1, \lambda_2, \dots, \lambda_m)$ is a distribution function of m dimensions.

Theorem 7. If

(22)
$$\Gamma(\lambda, a) = \left(\frac{1}{2\pi}\right)^{\frac{m}{2}} \int_{\mathbf{R}_m} e^{-i\lambda x} g(\mathbf{x}, a) d\mathbf{x} ,$$

the Fourier transform of g(x, a) exists and $|\Gamma(\lambda, a)|^2$ is Stieltjes-integrable with respect to H(a) then $F(\lambda)$ has a density function $f(\lambda)$ and we have

(23)
$$f(\lambda) = \frac{\int\limits_{-\infty}^{\infty} |\Gamma(\lambda, a)|^2 dH(a)}{\int\limits_{0}^{\infty} \left[\int\limits_{-\infty}^{\infty} (g(\boldsymbol{y}, a))^2 dH(a)\right] d\boldsymbol{y}}.$$

Proof: $f(\lambda)$ may be determined from (21) by Fourier inversion:

$$f(\lambda) = \frac{1}{(2\pi)^m} \int_{R_m} e^{-i\lambda r} R(r) dr$$
.

Remark 8. If $\eta(x)$ is a homogeneous and isotropic process, then

(24)
$$R(r) = 2^{\frac{m-2}{2}} \Gamma\left(\frac{m}{2}\right) \int\limits_{0}^{\infty} \frac{J_{m-2}\left(\lambda r\right)}{\left(\lambda r\right)^{\frac{m-2}{2}}} dF(\lambda)$$

where $F(\lambda)$ is a distribution function of a non-negative random variable and $J_{\frac{m-2}{2}}(z)$ is the Bessel function of order (m-2)/2. If

$$\Gamma(\lambda,a) = \int\limits_{0}^{\infty} rac{r^{rac{m}{2}}J_{rac{m-2}{2}}\left(\lambda r
ight)}{rac{m-2}{\lambda^{rac{m}{2}}}} \; h(r,a)\,dr$$

exists and $|\Gamma(\lambda, a)|^2$ is integrable with respect to H(a), then the density function $f(\lambda) = F'(\lambda)$ exists and we have

(25)
$$f(\lambda) = \frac{\lambda \int\limits_{-\infty}^{\infty} \left[\int\limits_{0}^{\infty} r^{\frac{m}{2}} J_{\underline{m-2}} (\lambda r) h(r, a) dr \right]^{2} dH(a)}{\int\limits_{0}^{\infty} r^{m-1} \left[\int\limits_{-\infty}^{\infty} (h(r, a))^{2} dH(a) \right] dr}$$

(Received: 1. IV. 1957.)

REFERENCES

- [1] Добрушин, Р. Л.: ,,Лемма о пределе сложной случайной функции." Успехи Математических Наук 10:2 (1955) 157—159.
- [2] Robbins, H.: , The asymptotic distribution of the sum of a random number of independent random variables." Bulletin of the American Mathematical Society 54 (1948) 1151—1161.
- [3] Ryll-Nardzewski, C.: "On the non homogeneous Poisson process, I." Studia Mathematica 14 (1954) 124—128.
- [4] Takacs, L.: "On secondary processes generated by a Poisson process and their applications in physics." Acta Mathematica Academiae Scientiarum Hungaricae 5 (1954) 203—236.

TÖBBDIMENZIÓS POISSON-FOLYAMAT ÁLTAL SZÁRMAZTATOTT MÁSODLAGOS FOLYAMATOKRÓL

TAKÁCS LAJOS

Kivonat

Egy véges dimenziójú euklideszi tér Borel-féle S részhalmazain legyen értelmezve egy $\{\xi(S)\}$ homogén Poisson folyamat, amelyre

$$\mathbf{P}\{\xi(S) = k\} = e^{-p\mu(S)} \frac{[p \,\mu(S)]^k}{k!}$$
,

ahol $\mu(S)$ az S halmaz Lebesgue mértéke és p pozitív állandó.

A Poisson folyamat eseményei előfordulási pontjainak sokaságát jelölje $\{y_v\}$. Tegyük fel, hogy a Poisson folyamat minden egyes eseménye létrehoz egy jelet. Jelölje az y_v ponthoz tartozó jel nagyságát x pontban $f(x, y_v, \alpha_v)$, ahol α_v egy véletlen paraméter. Feltesszük, hogy az $\{\alpha_v\}$ paraméterek egyforma eloszlású független valószínűségi változók. A szerző az

(1)
$$\eta(\boldsymbol{x};S) = \sum_{\boldsymbol{y}_{\boldsymbol{v}} \in S} f(\boldsymbol{x},\boldsymbol{y}_{\boldsymbol{v}},\alpha_{\boldsymbol{v}})$$

sztochasztikus folyamat vizsgálatával foglalkozik. Meghatározza az $\eta(x; S)$ változó eloszlását és az $\{\eta(x; S)\}$ folyamat korrelációs függvényét és spektrális eloszlását, midőn S az egész tér.

о процессах порожденных многомерным процессам роіsson-а

L. TAKÁCS

Резюме

Пусть $\{\xi(S)\}$ однородный процесс Poisson-а, определенный на Borel-евских подмножествах S некоторого конечномерного эвклидового пространства, и пусть

$$\mathbf{P}\{\xi(S) = k\} = e^{-p\mu(S)} \frac{[p\mu(S)]^k}{k!}$$

где $\mu(S)$ Lebesgue-овская мера множества S и p положительное число. Пусть $\{y_v\}$ означает множество точек нахождения событий процесса Poisson.

Предположим, что всякое событие процесса Poisson-а создаёт сигнал. Пусть $f(x, y_v, \alpha_v)$ означает в точке x величину сигнала, принадлежащего точке y_v , где α_v случайный параметр. Будем предполагать, что параметры $\{\alpha_v\}$ независимые, одинаково распределённые случайные величины. Автор занимается исследованием стохастического процесса

$$\eta(\boldsymbol{x}; S) = \sum_{\boldsymbol{y}_{\boldsymbol{v}} \in S} f(\boldsymbol{x}, \boldsymbol{y}_{\boldsymbol{v}}, \alpha_{\boldsymbol{v}}) .$$

Определены распределение случайной величины $\eta(x;S)$, коррелационная и спектральная функции процесса $\{\eta(x;S)\}$, когда S является польным пространством.