ON SECONDARY STOCHASTIC PROCESSES
GENERATED BY A MULTIDIMENSIONAL POISSON PROCESS")

LAJOS TAKACS

Introduction

In an earlier paper [4] the author deduced some theorems concerning
secondary stochastic processes generated by a one-dimensional Poisson process.
In the present paper a more general case will be investigated. We suppose
that the underlying process is a homogeneous Poisson process defined on an
m-dimensional space. We shall establish theorems which are generalizations
of the theorems formulated in [4]. The proofs are based on the method of [4].

§. 1. Homogeneous Poisson process defined on a Euclidean space of finite
dimension

Let us consider the field © of all Borel-measurable sets § of a Euclidean
space of finite dimension. Denote by u(S) the Lebesgue measure defined on
the sets S€©. For each set 8, with u(S) < oo, let there be defined a
random variable &(S) with the following properties :

12 &(8) assumes only nmon-negative integer values and P{E(S)= 0} 1
if u(S) > 0.

2° The probability distribution of &(S) depends only on the measure u(S).

3% If 8, and S, are disjoint sets, then &(S,) and &(S,) are independent
random variables and we have £(S; + S,) = &(S;) + &(S,).

4? Iim &5(_5_)—;—1} =1
uS)-0 P{§(8) =1}

Another definition of the multidimensional Poisson process has been
given e.g. by C. RYLL-NARDZEWSKI [3].

Theorem 1.: Under the assumptions 1° —4° we have

(1) P{£(8) = k} = ¢=PHS [m;iﬂf

1) This is an address delivered at the Colloquium on Stochastic Processes, Balaton-
vilagos, September 13—15, 1956.
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for all S€©, with pu(s) < oo, where p is a positive constant.
Proof: Consider a decomposition of § :

S=8D4 8D 4. .4+ 8M

where 8P (¢ =1,2,...,n) are disjoint sets and w(8P) = w(8)/n. Let Sp
be one of the sets S(‘) Now, by 3% we have
(2) P{&(8) = 0} = [P{4(S,) = 0}]"

without supposmg the mutual independence of the random variables
§8P)(3=1,2;...,n). -As P{§(8,)=0}=1—P{&(Sn) =1} — P{&(S,) > 1}
and u(S,) = u( )/'n taking 47 into consideration, we obtain that i

(3) lim n P{&(8,) = 1} = — log P{&(S) = 0} .

n—co

This limit cannot be infinite. For P {§(8) = 0} = 0 would imply
P{{(8) = 0} = 0 for all sets 8. Consequently also it would follow that
P{{(8) = k} = 0 for all sets S and for all £, which is impossible. The limit
cannot be equal to 0, for P{§(8) =0} =1 would imply the same relation for
all sets S. But the case P{E (8) = 0} =1 is excluded.

Using the condition 3%, we have

(4) M{etlﬁ(S)} X2 [M{eite(s,,)}]n 5
Clearly, we have
M{eitiSw} = P{&(S,) = 0} + P{&(8,) = 1} €' + P{&(8,) > 1} 9

where |#| < 1. Now putting P{4(S,) =0} =1— P {&(Sy) =1} — P{&(S») > 1},
from (4) it results that

(5) M{cit49)} = exp {(e“ — 1) lim n P{&(S,) = 1}}
or by virtue of (3),
(6) M{eité(S)} Sl (P{f(S) S O})(l—e“) )

Consequently &(S) has a Poisson distribution. The expectation M{&(S)}
exists and by (6) we have

(7) | M{£(8)} = — log P{£(8) =0} .
The expectation M{&(S)} is a non-negative additive set function, which

depends only on u(S8). Consequently M {&(S)} = pu(S) with a positive p.
The cases p = 0 and p = oo are excluded. Finally

(8) M{eils(S)} — g—PH(S)1—e¥)

which proves (1).
In the following we shall call a set of random variables {§(8)} which
satisfies 17 —4° a homogenous Poisson process. -
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Remark 1. If » > 2 and 84,8, ..., 8, are disjoint sets, then &(S;),
&(8,), ..., &(8n) are not necessarily mutually independent random variables.
However, it is easy to construct a set of random variables {£(S)} which satisfies
beside 12— 47 also the following condition :

5° If for an arbitrary n, S, S, . .., 8, are disjoint sets then the random
variables &(8,), &(S,), ... &(Sy) are mutually independent.

The stochastic process {£(8)} can be interpreted as follows: Let us
consider random points (random events) distributed in the space. Denote by
&(S) the number of the random points or random events taking place in the
set S. For a realization {£(S)} a point P is one of the random points if lim §(8) > 1
in such a way that P €S, where S is an open set. S—P

We prove two lemmas :

Lemma 1. Let us consider the Poisson process {&(S)} fulfilling 1°—42.
Let u(S) > 0. Under the condition &(S) = 1 the random point in S is distributed
uniformly in 8.

Proof: Let 8§ =8, +8,, where 8; and §, are disjoint sets. Then
we have

P{&(8,) =1|&(8) =1} = P{&(8,) =1,4(8,) =0} _

P{&(8) =1}
¥ P{&(8,) = 1} P{&(S,) = 0} : #(8y)
P{£(8) =1} u(s) ’

as was to be proved.

Lemma 2. Let us consider a Poisson process {£(S)} fulfilling 17— 5°.
Let p(S) > 0. Under the condition &(S) =k, the k random points in S are
distributed independently and uniformly in S.

Proof: For an arbitrary n, let S=8;4+ S,+. ..+ 8, where §;, 8,,..., 8
are any disjoint sets and k=%, + %y + ... + %k, where k;, k,, ..., ks
are any non-negative integers. Then we have
P{E(Sl) o kl: f(Sz) T kz: 1899 S(Sn) 7 k,,]f(S) = k} S

g P{E(Sl) T kv E(Sz) o kz, o= 3 §(8h) =T kn} s

P{£(S) =k}
_ P{&(S,) = Iy} - P{&(S,) =k} . . . P{E(Sn) = Kn}
P{£(8) = k}
i k! [ﬂ(Sl) J’“ (ll'(Sz)Jk" 3 [g(S_n)]"
kylky! .. kn! \(S) | () #(S)

This completes the proof.

Remark 2. If we assume more generally that u(S) is any non-atomic
measure other than the Lebesgue one, then similar theorems are valid as
above. In this case {£(8)} is called a non-homogeneous Poisson process.
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§. 2. Secondary stochastic processes generated by a Poisson process

Let us consider a homogeneous Poisson process {{(8)} defined on the
Euclidean space of m dimensions. For the sake of brevity we introduce the
vectior. Notation & — (Ty; T4, v s Tm) s Y = Yas-Yas swiss Uy Bi= AP B gyiioie. s Brn)
etc., for denoting the points of the space. Let us suppose that every event in
the Poisson process gives rise to a signal depending on a random parameter.
If y is the point representing an event and a is the value of the corresponding
parameter, then denote the magnitude of this signal at the point & by f(x,y,a).
Suppose that the parameters belonging to different events are mutually inde-
pendent random variables with a common distribution function H(a) and
further that the different signals linearly superpose. In the following we
suppose that f(x, y, a) is a Baire function.

Let us consider the random variable

(9) n(@; S)‘ = 2 f(@e, y», o)

Y,eS

which represents at the point & the sum of the signals arising from the random
events occurring in the set S. Here y, denote the different random points
and a, the random parameters. In the case when §=R,,(the whole space),
let us write n(x) instead of 7(®m; R,,). These sums do not necessarily converge.
If they do, we say that the process 7n(x; S) resp. 7(x) exists. If u(S) < oo
then the process n(ax ; S) exists with probability 1. If § = R,, we obtain the
following

Theorem 2. If for all x we have

©

(10) \ I [ [ |f(x, y, a)]dH(a)]dy < oo

Ry, —=
then the process {n(x)} ewists with probability 1.

Proof: Let us decompose the space Ry, as the countable union of disjoint
sets with finite measures: R, =8; + 8, + ... +8,+ .... Then we have

/s

0 () =
As

>n(®; S, .

n

M@ S)=p [ | [ .y.ol @) dy
Sn

-0

and

S M{jn@; S0} < p J [_j:mw, y, ) dH(@)| dy < oo,

it follows from the known theorem of Brppo LEVI or from the known in-
equality of MARKOV concerning non-negative random variables that the
process {n(x)} exists with probability 1. Evidently, #(x) is independent of
the partition of Rp.
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Theorem 3. Let u(S) be finite. The characteristic function of the random
variable mn(ax; S) has the following form :

oo

(12) M{ettres9) = oxp {p [ [ [ etema dH@) —1]dy| .
N

— o

Proof: Let be S=8; + 8, + ... + 8, where 84, 9,, ..., S, are disjoint
sets with the same measure. Accordlng to the condition 3° concernmg {&(8)}
we can write

(13) M{citn@:9)} = ]n] M{eitr(x; sn)
k=1

without supposing the mutual independence of the random variables
n(@e; Sk) (k=1, 2, ...,n). By the theorem of total expectation and Lemma 1
we obtain

M50} = 3 PLE(S1) = ) M{o9](85) = ) =

~

— P{E(SK) = 0} -+ P{&(S)) — 1}_(8_’() J U itf(@,u,0 dH(a)]dy + P{ESY) > 1} 9

T o0

where |9 | < 1. Taking into conmderatlon that P{&(Sx) =0}=1 —
— P {£(Sk) = 1} — P{&(Sk) > 1} and u(Sx) = ,u(S /n we obtain by taking
logarithms

Ey A
log M{eitn(e; S0} — pJ | J ¢itfe,0,0) dH (1) — 1] dyf + Os [ ?%(S)] ,
where |Cy| < 4. Letting n — o= we obtain by (13)

log M{eit"@®; $) } = p H f et1@ v, dH () — 1] dy
S —w
which proves (12).

Remark 3. Assuming also 5° for the process {¢(S)} we may prove
Theorem 3 in a simpler way using Lemma 2. For by the theorem of total expec-
tation we get

M{eim(z;S)} =S p{g(S) = 7'} M{eim(z;S)lg(S) = j}
j=0
and by Lemma 2

M{citr@: )| £(8) = j} = [M{eitn@: 9| &(8) = 1})/
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where

M{einei9)|&(S) = 1} :?%S) J [ J?euf(,,y,@ dH(a)] dy .
S -

Carrying out the corresponding substitutions we get (12), what was to be
proved.
; Now we shall prove the following limit theorem :

Theorem 4. Let us suppose that D{n(a; S)}exists; then we have

i P{n(w;S)—M{n(w;S)} 7t RS e xe-"{du
Din@8} ~ | V2= ;

Proof: By Lemma 2 ‘
n(@; 8) = = fla, y, a,)
yrveS

(14)

p—>®

can be considered as a sum of a random number of identically distributed
independent random variables, where the number of the variables is inde-
pendent of the variables themselves. The number of the variables follows
a Poisson distribution with mean pu(S). If p— oo then we obtain the limi-
ting distribution (14) by the theorem stated by H. Rossins [2] (Cf. R.
L. DoBrusHIN [1]).

Remark 4. Theorem 3 may be easily proved also for the case when the
underlying process is a non-homogeneous Poisson process. In this case we
have

©

M{eitn(z;S)} M exp{ pf[ j eitf(@,y,a) dH(a) = 1] ‘u(dy) 4
S

=00

Theorem 5. If for all & we have (10 ), then

o

(15) M{cit"@} — exp {p I[ J ‘¢itf(®,9,9) dH (@) — 1] dy} ;

—

Proof: (15) follows from the existence of the random variable 7(x).
However, we may prove it directly by the known theorem of P. L&vy and H.
CRrAMER concerning the convergence of a sequence of characteristic functions.

Remark 5. Let us denote the s-th semi-invariant of #(x) by As{n(x)}
(8=1,2,...). By (15) we get :

”%’—}) v j U (@, y, @)y dH<a>]dy

Ry

16)  Aslnfa)} =
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if this exists at all. By (16) we obtained a new generalization of the formulae
of N. CampBELL well-known in physics. Especially we have

M {n(@)} = A, {n(x)} and D?{n(®)} = Ay {n(%)}.

Remark 6. Let us suppose that f(a, y, @) depends only on the difference
r = & —y . In this case let us put f(x, y, a) = g(r, a). Then the distribution
function of #(a) is independent of & and its characteristic function is

17) M{eiti@) — exp{p Il fmeﬂgma) dH(a) — 1] dr} :
Ry

—

In such cases we shall call the process {n(ax)} a homogeneous one.
If further, g(r,a) depends only on » = |r |, then let us put g(r, a) =
= h(r, a). In this case the characteristic function of () is

(18) | M{ei"®} — exp { p?f J?r’"‘l[ fe””("“) dH (@) — 1] dr} g
2

A

0 —
We shall say in this case that the process #(x) is a homogeneous and isotropic
one.

Theorem 6. If {n(x)} is a homogeneous process and M{(n(x))?} < <o,
then the correlation function R(r) = R{n(x), n(a® +r)} exists and is indepen-
dent of x. We have

o . J". [j o(y,0) gy -+ 7, @) dH(o) | dy
9 r) = —

L

f[ J (9(y, @))* dH (a)] dy

Ry —o

Proof: Let r be fixed and n*(x) = 7(a) + n(x+ ). Then {n*(x)}is also a
homogeneous process and M {(n*(x))?} < oo. {n*(x)} differs from the process
{n(e)} merely by taking the signal g*(y,a) = ¢(y,a) + g(y +r, a) instead
of g(y, @). Then by (16) we have ;

o) = [ | [ () @) dy
R =00

©

D2((@) + (@ + 1)} = | [ | . a) + 9ty + r,@)2dH (a)] dy .

R, —
On the other hand, evidently

D{n(®) + n(x + 1)} = 2 D{n(@)} [1 + B(r)] .
Comparing the latter two formulae we get R(r).
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Remark 7. If {5(x)} is a homogeneous and isotropic process, then the
correlation function R(r) depends only on » = |r| and in this case let us
put B (r) = R (r) for which we have

(20) R (T) =

] o

fu[ J Wy, @) W(Jr*+y>—2ry cos p,a) dH (a)] |cos <p}""2d¢p} dy
0 -]

R
Fm——l 6’-?/ 1!
s

Ij’;) Jom[ [ G oy am]ay

The spectral function of the process {n(x)}. As the correlation function
of a stationary stochastic process can be expressed by the known formula
of A. J. KHINTCHINE, similarly the correlation function of {(x)} may be
expressed as follows :

(21) R(r) = |t dF (2)
R,

where A== (A Ay, hm), T="0, 7 «vesTm)yl 8= vy ‘A Afa F .2 i
+ Amrm and F(2) = F(A;, s, ..., An) is a distribution function of m
dimensions.

 Theorem 7. If
(22) P(a,a>=[—-] Je oty i
27
Ry,

the Fourier transform of g(w, a) exists and |I'(4,a)|* s Stieltjes-integrable
with respect to H(a) then F(2) has a density function f(A) and we have

o

(23) 1) =

Proof: f(4) may be determined from (21) by Fourier inversion :

1)

Ry,
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Remark 8. If #(ax) is a homogeneous and isotropic process, then

-2

(24) Bjoad (ﬁ T aF

2 m—2

(Ar) 2
where F(4) is a distribution function of a non-negative random variable and

Jm—2 (2) is the Bessel function of order (m — 2)/2. If
o

I'da)=| —2,—— k(r,a)dr

0

exists and |I'(4, @) |? is integrable with respect to H(a), then the density
function f(A) = F’(4) exists and we have

(25) HA) ==—=—

(Received : 1. IV. 1957.)
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TOBBDIMENZIOS POISSON-FOLYAMAT ALTAL SZARMAZTATOTT
MASODLAGOS FOLYAMATOKROL

TAKACS LAJOS
Kivonat

Egy véges dimenziéji euklideszi tér Borel-féle S részhalmazain legyen
értelmezve egy {&(S)} homogén Poisson folyamat, amelyre

’

P{4(S) =k} = P4 @]ﬁ

ahol u(S) az § halmaz Lebesgue mértéke és p pozitiv allandé.
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A Poisson folyamat eseményei el6forduldsi pontjainak sokasigit
jelolje {y,}. Tegyiik fel, hogy a Poisson folyamat minden egyes eseménye
létrehoz egy jelet. Jeldlje az y, ponthoz tartozé jel nagysigat a pontban
f(x, yy, ay), ahol a, egy véletlen paraméter. Feltessziik, hogy az {o,} para-
méterek egyforma eloszlasu fliggetlen valdszinliségi véltozok. A szerzd az

0y n(e; 8) = 3 @y o)

Yye S

sztochasztikus folyamat vizsgalataval foglalkozik. Meghatérozza az n(a; S)
valtozé eloszlasat és az {n(x; S)} folyamat korrelicids fiiggvényét és spekt-
ralis eloszlédsat, midén S az egész tér.

0 MPOLECCAX IMOPOXJEHHbBIX MHOITOMEPHBIM ITPOLIECCAM
POISSON-A

L. TAKACS
Pe3siome

IMycte  {&(S)} onaHopoaubiii mnpouecc Poisson-a, onpepeseHHbIA Ha
Borel-eBckux nopmMHOKecTBaX 8- HEKOTOPOT0 KOHEYHOMEPHOTO 3BKJIUI0BOTIO
NPOCTPAHCTBA, U IMyCThb .

P{&8)=Fk}= e—pu(S)Lp_”kL'*S_'ﬁf

rae u(S) Lebesgue-oBckasi Mepa MHOYKecTBa S M 9 TOJI0KUTENIbHOE UUCIIO.
Iyctb {y,} 03HAYAaeT MHOXKECTBO TOUEK HAX0WCOeHus COOBITHI Tpolecca
Poisson.
[Tpearosno)xum, 4To BCsiKoe coObITHe Mpolecca Poisson-a co3/1a €T curxall.
Ilyctb  f(2, Yy, oy) O3HAYAET B TOUKE & BEJIMUMHY CHMTHajla, IpHUHAjjIe-
Kallero TOYKe Yy, Iie @, clydaiinblit napamerp. Byaem npeanonarathb, yTo napa-
MeTpbl {@,} He3aBUCHMBbIE, OJMHAKOBO pacrpejeséHHble CJyyailHble BeJIUUYMHBI.
ABTOp 3aHMMAeTCsl MCCJIeJIOBaHMEM CTOXACTHYeCKOTo Ipoliecca

n(@;8) = |3 f@,y, ) .
Y, €S

Onpejnesnensl pacnpejiesieHue ciaydyaiftHoi BesnunHbl 7(2;S), KoppesanoHHas
W cHexTpajbHasi ¢yHKUMM npouecca {n(wx;S)}, xorga S sBISETCS TMOJIBHBIM
NIPOCTPAHCTBOM.
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