ON SINGULAR RADII OF POWER SERIES
by
Pauvr, ERDOS and Avrrép RENYI

Let ®, denote the class of analytic functions

(1a) 1) = Day2n
n=0

which are regular and unbounded in |z] < 1. According {o D. GAIEr and
W. MeYER—KONIG [1] we call the radius £, defined by # = rei*, 0 <r < 1
singular for f(z), if f(z) is unbounded in any sector [z| < 1, ¢ — ¢ < arg 2 <
< @ + & with e > 0. A radius which is not singular for f(z) is called regular
for f(z). In [1] it has been shown that if f(z) belongs to the class @, and the
power series of f(z) has HADAMARD-gaps, i. e.

(1b) T
k=0
with
T,
(2a) —’n:f—lzq>~»1 (=01, . }

then every radius is singular for f(z). Clearly for every f(z) € &, there is at
least one singular radius. It is easy to see that if we suppose only that the
power series (1b) has FaBRY-gaps, i. e. if instead of (2a) we suppose only

1 e
(2b) lim = Y 1=0,
x—t oo & np<x

then it is possible that there is only one singular radius for f(z). A simple
example is furnished by

o kil
1 .
(30) hiey = 2725 ) o
k=1 K= 720
where Ny, =2 N, + k¥ (=1, 2, ...). Clearly f,(2) is regular in |2 < 1

and if x is real, we have

lim fi(x)= 4+ oo

x—1-0
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thus f,(2) belongs to the class @, and R, is a singular radius for f,(2).
the other hand we have by (3a)
| | nz
(3b) h(z) < — for Lzl
3l—z ‘

thus every radius B, with 0 < ¢ < 27 is regular for f,(2)

It is also clear from this example that to ensure that every radius should
be singular for f(z) it is not sufficient to prescribe the rate in which the ratio

1 P |
x nE<x
tends to 0 for x — + oo. As a matter of fact, for f,(2) defined by (3a) we have

3
1 \'lg,i

X rpex N,

where s is defined by the inequality Ny < @ < N+, and thus we can choose
the sequence N, so that

- 2 1< &)
T np<x
holds, where &(x) (x =1, 2, ...) is a sequence of positive numbers, tending

to 0 arbitrary rapidly.

P. ErpGs [2] has shown — answering a question of GAIER and MEYER—
Ko6ni¢ — that to ensure that every radius should be singular for f(z), it is
not even sufficient to suppose that the exponents 7, of the lacunary power
series (1b) of f(z) € ®, satisfy the condition °

(2¢) lim (g1 — my) = + oo .
koo '

The question arises, for which sequences n, does there exist a function
f(z) belonging to the class ®, and having the power series expansion (1b),
which has only one singular rad1us7 C learlw it is impossible to give a criterion,
which depends only on the rate of (frowth of the sequence 7y, because the
number-theoretical properties of the se quence 7, come in. As a matter of
fact let the sequence n, satisfy the following condition :

D) for every m (m =1, 2, ...) there exists an integer k,, such that for
k =k, m, is divisible by 2™,

In this case if B is a singular radius for f(z) then R,, where ¢’ — ¢ 4
+ 271/2™ is also singular for any pair of positive integers [ and m ; as a

matter of fact, if z; (j =1, 2, ...) is a sequence of complex numbers with
arg 2 < @ + e and

lim |f(2))] = + oo,

et
then putting 9" = @ + 2al/2™ and 2; =2; e‘(p (2772 1/2™) we have ¢’ — ¢ <
arg z]’ < ¢’ + ¢ and as the series for f(zj) differs from that for f(z))
only in a finite number of terms, we have (1150

lim |f(z;)] = 4 o°.

Jat
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As the set of values of ¢ for which R, is singular for f(z) is clearly closed
(see [1]), it follows that every radius £, is singular for f(z). Now
the divisibility condition D) implies (2¢), but (except for this) is compa-
tible with every possible order of growth of n,; by other words if w, is
an increasing sequence of positive integers, tending arbitrarily slowly
to + oo, then there exists a sequence n, of integers having the property D)
and satisfying the condition 7y, —n, < w,. Thus our question has to be
modified to some extent. We ask for which sequences 7, does there exist
a sequence 7, such that 0 < n; —n, < o, where w, is a sequence tending
arbitrarily slowly to + oo, and a function

(1c) i k;;ckz"k

belonging to the class ®,, which has &, as its only singular radius? We shall
prove, by using standard methods of probability theory, that if n, satisties
the condition

1
(2d) lim inf (n,—n)k T =1
(k—j)— +e

then there exists always such a function.
Thus we prove the following

Theorem 1. Let n, be an increasing sequence of natural numbers, satis-
fying the condition (2d). Then for any sequence w, of natural numbers for which
lim o, = + oo,

k—+4 o

there exists a sequence n', of mnatural numbers such that 0 < nj, — n, < w,
and an analytic function f(z), which is regqular in the wnit circle has the
power series) (lc), @8 wunbounded in |z| < 1, but s bounded in the domain
|2| < 1, |arg 2| > & for any & > O.

Our proof of the above Theorem is not constructive ; we prove only
by using probabilistic methods, the existence of a suitable function f(z),
but can not give it explicitely.

The condition (2d) plays a role in other problems of a similar kind
too; e. g. P. ERpOs has proved [3] that if (2d) is satisfied, there exists a
power series (1b) which converges uniformly but not absolutely for |z| = 1.

Proof of theorem 1. We shall need the following

Lemma.?) Let m; < my < ... < my; be natural numbers, vy, vy, ..., V4
independent random variables, each of which takes on the values 0,1, ..., s — 1
with the same probability 1/s. Let z be a complex number such that |z] < 1 and
28|1 — z| = 1. Let us consider the random variable

d
(4a) Z= > zmitvi |
=

1) /(z) can be chosen so that its power series has nonnegative ccefficients.
2) A similar lemma has been used in a previous paper [4] of the authors of the
present paper.
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Then we have®
d
(5) PJ[Z| = —.i-} <de
| 5|1 — 2|
Proof of the Lemma. Let us put z =re® and denote by C resp. 8
the real resp. imaginary part of Z, i.e. we put

d

(4b) C = X rmtvi. cos (m;+v)p
and J:;l
(4¢) 8§ = > rm+vi. sin (m;j+7) e
As -

Z| < J2max(/C], |8))
we have evidently

(6) {lZ 2774d }gP{ngﬂ/Ed} plis |__§V__2dl

sl — 2| 8|1 — 2 \

Now let us calculate the mean value of e!€ where we shall choose the value
of the real number ¢ later. We have

M{e*} = ﬁ M {e" e v’COS(WJrW)«P} =
s—1 \
L1303 mrcosion, ]|

j=1 \N=o 8 h=0
As
‘ i s—1 1 s—1 9
5 Tmi+hCOS(m<+h @ < = zmj+h <
’ S h=0 e 8n=20 1— 2|
and
1 s—1 I
= DTN m cosN(m, 4 By @ | < 1 (S 3
I8 k=0 \
we have for 0 < |{f| < 1/2
(7) M {e} < [1 12 i +t2
8|1 —
Evidently
plios 2128 |- pfoa 214 pfo 2114
U el —2f PITR] I e

%) Here and in what follows P {... } denotes the prcbability of the event in the
brackets and M {E} the mean value of the random variable &.
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further if ¢ < 0, then

2 272t
(8a) PICg “V2d ] M{elC}e ST—]
| s|l— z]]
and
2)2td
(8b) P{C’ < — 21V2d1] <M{e e s
s 2l
By choosing in (7) ‘
1
48[1T;[

we obtain, taking into account that 8)/2 — 9 > 2 and that |1 — 22 < 4

2)2d) _, - 1

f;C 3252
(92) P ‘*s|1—z\l

In the same way it can be shown that

;ngd 1 < 9¢ 328°
s|l—2ff =

(9b) Plis| =

Clearly (6), (9a) and (9b) imply (5). Thus our Lemma is proved.
Let us choose now a subsequence ny, of the sequence 7, such that
Bl s S0y S sqn'y

(10a) im (kypyq — ksp) = + o0
pot
and
1
(10b) lim (g, ,, — Ni,) o0 1 Fow = 1
pote

By (2d) this is possible. As a matter of fact, if 0 < ¢ <% and
1
(nk—n)"—l < 1+ & then either § > [ke] or § < [ke]; in the latter case
we have

il i LR il
(2 — 11k < | (m — m T[T < (14 e < 14 36
Thus we may suppose that there exists a sequence of pairs (%, ) such that
1

k— 4 oo, j—> + o, (k- §)—> 4+ oo and (m, — n;)*J — 1. This implies
the existence of a sequence k, having the required properties.

Clearly we may rarify the sequence k, as much as we want ; thus it
can be supposed that besides (10a) and (10b) the following three eondltxons

are also satisfied :
1

el 1
(10c) (Braysy — Ny, owrr—Kep < 1 4 ;é

(10d) Pt < Wy,
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and

(10e) kopiy — kgp > 64 p™®

Now let us put

(11a) dy = kyp 1 — kyp

and

(11b) Mpj = Mgyt ] — Moky, (1=1,2,,.,.,4,)
further put

(11¢) ",

(11d) sp =pt
and
(11e) N, = (mpa, + 8,) 8, 6% Pp=12 )
Let us put
i
(12a) Zpn=1¢€ N» (h=0,1,..., N,—1)
further
~ f % for 0, N, = h< (1 —tS,,)N‘,7

(12b) =3, =

| 2cos 276, — z,, for 0 <h<d,N, and (1—0,)N,<h<N,
(clearly in the second case 2}, is obtained by reflecting z,, on the line
Re(z) = cos 2md,).

Evidently

(13) |2gh — 1| = 1 —cos2nd, = 863 for p =4, h=12,...,N,
Let us denote by £, the contour consisting of the arc 274, < ¢ < 27 (1 — d))
of the unit circle z = ¢ and of the arc |p| < 274, of the circle z =

= 2 cos 2md, — €9 ; clearly the points 23, (h =1, 2, ..., N,) divide the
line £, into arcs of the length 22/N,. By our lemma we have, denoting by »,;
(j=1,2, ... d,) independent random variables, each of which takes on
the values 0, 1, ..., s, — 1 with the probability 1/s, ,
| dp | 7

[ N | 2%\ ~ 3
14 - Ps max | 2X, meitvp | > ———5% < 4N,e 32%
e ll_{h‘ N, JZ{ Bs 1 88,,!5;,I /4
Now putting

dl’

(15) Qp() = et

Jj=1
we have

(16) |@5(2)| < dp (mpg, + 5,) for |z| <1
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and thus for any two points z, 2” of the closed unit circle
(17) |@,(2) — @p(7)| < dp(myy, + 8,) |2 — 2| .
Thus we obtain

d,-2mn
+77 62

(18) max[Qp(z < max 'Zz* Mpj+Vpj

1/’<Np| J=

and therefore by (14)

(19a) ijax 1@,(2)| = _E] <4N,e 32s,,
l Sy 6,,[

and thus with respect to (10a)—(11e) that for p = 64

(19b) P{max 1@,(2)| = Ld”] <8pre=P .
€Ly P
Thus it follows that »
20 S elmxio0) 2 )
max =
( ) el lzeLp E o p2

converges, and therefore, with probability 1, only a finite number of the
inequalities
max|Q ()| =2 T
zeL, E
is satisfied.
This implies that the values of »,; can be chosen in such a way that

. 7
(21) max |Q,(2)] < %
2eLyp P>
for all p = p,.
Let us put now
<
(22) #e) = 2; o Q,(2)

where the polynomials @,(z) are chosen in such a way that (21) is satisfied
for all p = p,. Clearly f(z) is regular in | | < 1, and also unbounded, as all
its coefficients are nonnogatue and @,(1) = d,. On the other hand, for any
@ =0 mod 27 and any & > 0 with b < (p— e < @ + & < 27 we have for
all values of p, for which 2a/p < ¢ — & and 27 (1 — 1/p) > @ + ¢, for
p—e=arg 2= ¢+ ¢ |2/ <1 (by the maximum principle)

7f
@p(2)] =

for p = p,. But this implies, thatf is bounded in the sector 2| < 1,9 — e <
< arg 2 < ¢ + ¢, or, by other words, R, is the only singular radius of f(?)
Taking into account that

Vi < 8p = Pt < oy,

pl = °p
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evidently f(z) satisfies all requirements of Theorem 1., which is therewith
proved.

It can be shown that the condition n; — n, = O(w,) with o,
tending arbitrarily slowly to + oo can not be replaced in Theorem 1. by
nj, — n, = O (1). We prove namely the following result :

Theorem 2. Let n, be an increasing sequence of natural numbers, such
that n, s divisible by 2™ for all k = k,, (m =1, 2, ...). Let

(23) f2) = 2 cpzmtt
o

be reqular and unbounded in the wnit circle, where the sequence b, of integers
is bounded. Then every radius R, is singular with respect to f(z)

Proof of Theorem 2.9 It suffices to show that f(z) can not be bounded
in a sector |z2| < 1, a < arg z < . This will be shown by proving that if
f(z) would be bounded in such a sector, it would be bounded in the whole
unit, circle. As a matter of fact, let us suppose that f(z) is given by (23) and
that |/ < B (k=1, 2, ...) and put

(24) f1(2) :bf:c" 2™ (7l < B)
Then we may write
B
(23b) @)= 2 2fi(2)
j=- B

!
; 2ni s ) 1

Let us consider the valuesz,=e 2", where m is a fixed natural number,

such that

i pm . 4B+ 1)
pf—a
and / takes on the values 0, 1, ..., 2" — 1. Putting
(26) Fiyp(r,9) = ( 2 C 1 e"‘k") (ret?)’ (—B<j<+ B
bk_?
we have for 0 £ r <1, 0 d <2 andl=0,1, ..., 2" — 1
2B
(23c) f(re®2) = 2z~ 2 Fyr,®) 2t + 4

where A denotes a term which is bounded in the unit circle, the bound de-
pending only on m .
As a matter of fact we have

(27) ) < Sloj= 4

k<km

4 It will be seen from the proof that the condition ,,n; is divisible by 2" for alk
Ek>kn(m=1,2, ...)” could be replaced by the following more general condition :
,,there exists a sequence A, m =1, .) of maturel numbers, such that A, —> 4 oo
and ny is divisible by A4, for k > km (m = 1,9 a7



ON SINGULAR RADII OF POWER SERIES 167

Now by (25) there are at least 2B + 1 terms of the sequence z, (I =

=0,1, ..., 2™ - 1) lying on the arc a — Jd <arg 2 < f— 9, |2 = 1.
Let us denote these numbers by 2L, L+ 1, - - +» 21428, let us fix the value
of ¥ and put
28 .
(28a) Qs(r, ) = .\, Fj(’“; »t .
j=o

We have by the interpolation formula of Lagrange

(28b) 0ur )= S0y zre) — 20
=0 - Q' (z,+5) € — 21,4))
where
2B
(29) ma:£g@—aﬂ»

As by supposition there exists a constant K such that [f(z)| < K for
12l <1, a < arg 2 < f we have by (23c), (27) and (28a)

(30) |@s(ry2,+)) S K+ A4 =0;1;..,.., 2B) .
Thus it follows, that for |{| = 1 we have

(31) By ] s L2 LR oy

R 2B :
SN ——
[

It follows from (23c) for I = 0 that
(K + 4) (2B +1)

7 \2B
sin —
2m

(32) If(rei®)] < +4 for 0=r<1 and 0=9<2xm.

As the bound on the right hand side of (32) does not depend on 7 or ¥, it
follows that f(2) is bounded in the whole unit circle, which contradicts our
hypothesis. Thus Theorem 2. is proved.

It remains an open question, whether condition (2d) is best possible.
In other words, the following problem is still unsolved :

Let

1(z) = jok 2
=

be regular and unbounded in |z| < 1. Suppose that

1
lim inf (n, — n)kJ =g > 1
(k=j)—+

Is it true that all radii B, (0 < ¢ < 2n) are singular for f(z)?

(Received July 1, 1958.)
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HATVANYSOROK SZINGULARIS SUGARAIROL
ERDOS P. és RENYI A.

Kivonat

Legyen f(z) az egységk orben regularis és nem korlatos fiiggvény. A z = rei?
(0 < r < 1) sugarat, melyet a rovidség kedvéért E,-vel jelolink, D. GAIEr
és W. MEyerR—Koni¢ nyoman (lasd [1], [2]) szinguldrisnak nevezziik, ha
f(z) nem korlatos a [2| < 1, ¢ — & < arg 2 < ¢ + ¢ korcikkben, akédrmilyen
kis pozitiv szam is e. A nem-szinguldris sugarakat regularis sugarnak nevezziik.
A jelen dolgozatban a kovetkezd tételeket bizonyitjuk be :

1. tétel. Legyen n, természetes szamok egqy névekvs sorozata, amelyre
1

(1) lim inf (n, —n)k7=1.

() =5rf-1ee
Legyen w, eqy letszélegesen lassan végtelenhez tarté szamsorozat. Alkkor létezik
olyan

(2) fl) = 2 e 2™

alaki hatvanysorral biré, az eqységkirben reguldris és mem korlatos f(z) figg-
vény, amelynek csak egyetlen szinguldris sugara van, és amelynek ny kitevdi
eleget tesznek a

(3) 0

feltételnek.
Az 1. tétel a dolgozatban valdszinlségszamitasi modszerrel van be-

bizonyitva.

A

4
Ny — N < 0,

2. tétel. Legyen A,, (m=1, 2, ...) egy lermészetes szdmokbdl dllé
letsz6leges movekvo sorozat és m, egy olyan természetes szdamokbol dllo sorozat,
amely azzal a tulajdonsdggal bir, hogy az m, sorozat tagjai véges sok kivétellel
oszthaték A,,-mel (m = 1, 2, ...). Legyen b, tetszoleges egész szamokbdl allo
korldatos sorozat. Tegyiik fel, hogy

o
fl2) = ezt
n=1

az eqységkdrben requldris és nmem korldtos figgvény. Akkor f(z)-re vonatkozdlag
az eqységkor minden sugara szinguldris.
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0 CUHI'YJISAPHBIX PAIMYCAX CTENEHHBIX PSI10B
P. ERDOS » A. RENYI

Pe3wome

[Tycrs gynkuust f(z) peryjsipHa M HeorpaHMuYeHHA B eIMHUUHOM KpyTe.
Paguyc z =re” (0 < r < 1), o603HauaeMblil J1si KpaTkocTd vepes R, cleayst
D. Gaier-y u W. Mever—Konig-y (em. [1], [2]), HasbiBaeTcst CHHIYJISp-
HbIM, ecJM f(2) HeorpaHMUeHHa B KPYTOBOM CeKTope 2| < 1,p — & < argz <
< @ + & npy J0O0M MOJI0XKUTEJILHOM e. HecuHryisipHble pajuychbl Ha3bIBalOTCS
peryasipupimu. B Hacrosiueit paboTe J0KasblBAOTCST CJIEAYIOIME TEOPEMbI :

Teopema 1. [Tycmb ny ecmb 603pacmarlyas nocae008amesbHOCMes HAMypab-
HbIX 4ucen, 044 Komopoi

1
(1) lim inf (n, —n)7=1.
(k—j)—e=
ITycmos ; ecmb Kak ye00HO MeONeHHO CMPeMAYA[cs K 0ecKOHeUHOCMU qUcA06a s
nocaeoosamensHocms. Toeoa cywecmeyem maxas peeyAIpPHas U Heo2padlieHHAA
6 e0UHUYHOM KpYyee (yHryua [(2), pazaacaemas 6 cmeneHHol pao euoa

(2) fz) = > e 2mi

Komopas umeem Autlb eOUHCMBEHHBIL CUHRYAIPHBLL paouyc u 041 Komopod
6bINONHEHHO YCA08LIe

(3) 0<n—n, <o, .

Teopema 1 jokasbiBaeTcst B paboTe TEOPETHKO-BEPOATHOCTHBIM METOL0M.
Teopema 2. [Tycms A, (m = 1, 2, ...)mobas so3pacmaowas nocae0osa-
MeAbHOCMb HAMYPAAbHbIX UlUCeA, A Ny NOCACO06MEAbHOCTb HAMYPAALHbIX 4licen,
3a uckaydeHuem KoHeuHoeo uucaa -Oeasuguxea Ha A, (m =1,2,...). ITycmo by
A00ast 02paHui4eHHAsT NOCA006aMeAbHOCb Yeablx uucen. TTpednoaoscum, qmo

PyHkyus
oy = 3 czmn

< O %
k=1

pe_yAApHa U HeopaHuYeHHA 6 eOuHuuHoM Kpyee. Toeoa omuocumeabHo f(z) 6ca-
Kuil paouyc eOuHU4HO20 Kpyea CUHYAAPCH.
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