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Abstract—Introduction: The application of extreme value
statistics provides a novel way to characterize the risk of high
blood glucose levels. Its statistical methodology works well for
dependent data, but the impact of non-stationarity is unclear.

Material and Methods: 14.7 million blood glucose measure-
ments from 225 patients were analyzed with stationary and non-
stationary extreme value models. In case of the latter, the location
parameter was allowed to vary with time using spline expansion
to allow for a flexible, data-driven functional form.

Results: Estimated scale and shape parameters were almost
identical (correlation > 0.99) and estimated location was also
similar (correlation = 0.9). One-year return level and estimated
time spent in a year above the clinically relevant threshold of
600 mg/dl was also very similar, and estimated time spent above
400 mg/dl was similar with the exception of a single patient, who
had much higher value with the stationary model.

Discussion and Conclusion: Non-stationary extreme values
models can be applied to analyze blood glucose measurements
with the aim of measuring the risk of hyperglycaemia. Obtained
results are similar to those with stationary models, but whether
it is possible (and if so, to what extent) that the estimated long-
term trend in location picks up some effect of true extremity
requires further investigation.

Index Terms—extreme value, non-stationary, spline, blood
glucose.

I. INTRODUCTION

Extreme value statistic (EVS) investigates the properties

of the extremities (minima or maxima) of a set of random

variables, thus finds important applications in engineering,

finance and climatology, among others [1]–[3]. Applications in

biomedicine are however much less numerous, despite the fact

the such extremities play an important role in physiological

and pathophysiological process, the reason being primarily the
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unavailability of sufficient quantity of measurement (i.e., the

lack of long-term and/or high frequency measurements).

One exception is diabetology, where the introduction of

continuous glucose monitoring (CGM) made the collection of

adequate time series data possible: CGM sensors can record

blood glucose (BG) levels with adequate precision for a long

period, typically with 5 minute sampling time [4]. Szigeti et

al investigated how EVS can be applied to such data, and how

results compare to those obtained with traditional methods that

describe glycaemic variability [5].

Classic results from EVS employed in the Szigeti et al

paper, including the central result of this field, the Fisher-

Tippet-Gnedenko theorem [6] assume independent and identi-

cally distributed (iid) random variables, whose maximum (or

minimum) are considered. Real-life time series data, including

relevant biomedical data are often not iid however.

Two aspects have to be considered. The first is stationarity: a

time series is stationary in the strong sense of the word if every

finite dimension marginal distribution is shift invariant, i.e.,

for any n > 0 and for any i1, i2, . . . , in, the joint distribution

of Xi1
, Xi2

, . . . , Xin
is the same as the joint distribution of

Xi1+h, Xi2+h, . . . , Xin+h (assuming that the indices are all

valid) [7]. Stationarity is important, because – along with

ergodicity – it allows the estimation of parameters from time

series data, in spite of having a single realization. Strong

stationarity however is rarely used is practice: typically a weak

form is employed, where n = 2 and instead of the complete

equality of the distributions only the equality of the first two

moments is required. It is easy to check that it boils down to

three conditions: time-invariant mean, time-invariant variance

and autocorrelation function only depending on the lag [7].

The second aspect is that even if the data are stationary, there

might be temporal dependence, i.e., non-zero autocorrelation,

which is entirely possible for a stationary time series, see the

definition above, but also violates the iid assumption. How and

to what extent these two violations violate the Fisher-Tippet-

Gnedenko theorem and the EVS approach based on it is a

complex question [1].



The paper of Szigeti et al discussed this latter aspect, i.e,

how to handle time series that are dependent. In brief, the

block maxima (BM) method that is applied in that paper is

largely resistant to dependence: local dependence is not a

concern – in contrast to the peak-over-threshold approach –

and global dependence is also subject to only weak restrictions

(to so-called Leadbetter D(un) condition [8]) so that original

results can be still applied. This is due to the fact that if this

condition is satisfied, the distribution of the extremum will

still follow the same family of distribution as in the Fisher-

Tippet-Gnedenko theorem. The parameters will be different

compared to what could be obtained if the series were iid, but

as the parameters are estimated from the sample anyway, it

poses no problem [1].

However, Szigeti et al does not discuss the second concern:

the possible non-stationarity of the time series. This is due to

the fact that the appropriate analysis in this case is much less

straightforward, there is no clear theorem as for the dependent

– but still stationary – case, and the whole approach is much

more heuristic [1], [9], [10]. Yet, in the last decades, several

application focused specifically on non-stationary extreme

value (NEVA) analysis [11]–[13]. The traditional solution is to

make the – shape (ξ), scale (σ) and location (µ) – parameters

of the resulting extreme value distribution to be functions of

certain covariates (instead of being constants) [14], [15]. The

inclusion of appropriately chosen covariates, so that the result

is stationary after covariates are accounted for is the usual

approach to handle non-stationarity. (This bears resemblance

to the detrending of time series: instead of fitting a trend and

subtracting it from a time series, one could simply add the

trend to the list of covariates that are later used for modeling

to achieve the same goal [16].)

Here, covariate is time, and ”appropriately chosen” means

the proper specification of the functional form for time. For

instance, many applications [17], [18] prefer the simple linear

dependence in location µ = µ0+µ1t, with the scale and shape

being time-invariant. One could also imagine more complex

functional form, such as higher-order polynomial [13], change-

point model, or even a sinusoidal (harmonic) one [19]. While

even more complicated structures could be considered [20], a

statistically tempting – rather flexible, data-driven, without the

assumption of any parametric functional form, yet using few

degrees of freedom – solution is the application of splines, i.e,

the expansion of the time with splines [21].

To re-analyze the data of Szigeti et al, only such approach

makes sense, as it is obviously not meaningful to assume linear

relationship. Splines have already been used for this aim [22],

[23].

One elegant way to incorporate the spline expansion as the

functional form for the time-varying parameter is to integrate

this into the framework of the vector generalized additive

models (VGAM), as described by Yee and Stephenson [24].

The present paper investigates the possibilities of applying

such approach to a large BG measurement database used by

Szigeti et al to better understand extremes of BG levels that

is a fundamental aim in the study of diabetes.

II. MATERIAL AND METHODS

A. Patient data

Data from the REPLACE-BG study were used [25] as

provided by the T1D Exchange [26] network was used in the

present investigation. This database consists of 14.7 million

CGMS measurements of 225 patients (with a median duration

of 33 weeks) with Type I diabetes and using insulin pump. The

sampling frequency was 5 minutes using Dexcom G4 Platinum

CGM device (Dexcom, San Diego, CA).

B. Checking dependence and stationarity

Stationarity was checked with augmented Dickey-Fuller

(ADF) test [27], Kwiatkowski–Phillips–Schmidt–Shin (KPSS)

test [28] and Phillips–Perron (PP) test [29]. Note that these

are all unit root tests, hence they test stationarity only if

explosivity is ruled out.

C. Non-stationary extreme value analysis with splines

Data were modelled with a VGAM model using either no

covariate (i.e, intercept-only model, corresponding to station-

ary analysis) or the spline-expanded time. In the latter case,

only location was allowed to be varying, scale and shape was

fixed in both cases. The link function was the identity for the

location, logarithm for the scale and offset logarithm with an

offset of 0.5 for the shape.

Intercept-only and spline models were statistically com-

pared with deviance test.

The values of µ, σ, and ξ were extracted from both models.

In case of the spline model, the intercept was extracted, which

– as splines are zero-centered – can be considered to be an

”average” location parameter.

Clinically relevant metrics for the risk of hyperglycaemia, as

suggested by Szigeti et al, namely one-year return level (BG

level that is likely exceeded once in a year), and estimated

hours spent in a year above the clinically important thresholds

of 400 and 600 mg/dl were also calculated.

D. Programs used

Calculation were carried out under the R statistical environ-

ment version 4.1.2 [30] using package VGAM version 1.1-

5 [31].

III. RESULTS

The final (hourly maxima) dataset consisted of 225 patients,

with a total of 1,256,235 observations.

The distribution of test statistics over these patients using

all three types of stationarity tests are shown on Figure 1.

Every ADF and every PP test was significant, and 64% of

the KPSS tests were significant at 0.05 significance level.

Comparison of the results with the stationary and the

non-stationary models obtained for the three parameters and

the three clinically relevant hyperglycaemia risk indicators is

shown on Figure 2.

The correlation between the results from the two models is

> 0.90 (linear correlation) and > 0.89 (Spearman-ρ).
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Fig. 1. Distribution of the test statistics of augmented Dickey-Fuller (ADF) test, Kwiatkowski–Phillips–Schmidt–Shin (KPSS) test and Phillips–Perron (PP)
test.
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Fig. 2. Scatterplot of the parameters and clinically relevant hyperglycaemia risk indicators between the intercept-only model (horizontal axis) and the
non-stationary model using varying location with spline expansion of time (vertical axis).



The single patient were there is a visually obvious discrep-

ancy (in estimated time spent above 400 mg/dl) is patient

#186. The estimated scale parameters are very close (99.59

for the intercept-only model and 98.23 for the spline-model)

and the shape parameters are virtually identical (-0.4995 and

-0.4997). The difference lies in the location parameter which

was estimated to be 254.82 in the intercept-only model and

239.21 in the spline-expanded non-stationary model.

Deviance test found significant difference at 0.05 signifi-

cance level for all, but one case.

IV. DISCUSSION AND CONCLUSION

The present investigation proves that the reliable estimation

of non-stationary models for BG measurements, as an exten-

sion to the framework provided by Szigeti et al [5] is possible.

It also suggests however, that the differences are likely

small between the two approaches. In particular, differences

in return level were between -55.5 and +27.6 mg/dl (relative

differences: -12.0% to +6.8%), they were between -337.1 (but

only -78.5 with a single outlier removed) and +47.6 hours for

the estimated time spent above 400 mg/dl and between -1.5

and +0.38 hours for the estimated time spent above 600 mg/dl.

The estimated scale and shape parameters were almost

identical (correlation ≥ 0.99). These were, however stationary

in both models. The handling of the location parameter was

different, but estimated parameters (a sort of time-average

for the non-stationary model) was nevertheless similar (a

correlation of 0.9).

It should be noted that statistical testing of stationarity is

close to meaningless at this sample sizes: tests are so powerful

that almost always leads to the rejection of the null hypothesis.

(Most clear from the completely opposite answers given by the

ADF and the PP test.) This also pertains to the interpretation

of the results of the deviance test.

It is also important to note that one can not choose between

stationary and non-stationary models based on a test performed

on the same sample. This would give rise to the same problems

as with pre-testing (akin to deciding whether to use test

assuming normality based on a normality test).

The present study employed the elegant, unified framework

of VGAMs. It should be noted however, that are approaches

are also possible, such as the Bayesian estimation of such

models [32].

We note that there are other possible approaches to the

whole problem of managing non-stationarity, including ”man-

ual detrending” (as with fitting and subtracting the trend in

our time series detrending analogy) [33]–[35].

The most important limitation of the present approach, that

is worthy of further investigation is whether it is possible

(and if so, to what extent) that the long-term trend in location

picks up some effect of true extremity. Based on how wiggly

the estimated trend is, the two might be confounded. (As an

extreme example, consider a ”smoother” which exactly follows

the data – removing this would entirely remove the information

on extremities too.) This likely depends on how well the

applied smoothing is able to pick up the true underlying trend

(and therefore non-stationarity) from the data.
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