SOME REMARKS ON THE THEORY OF TREES

by
Avrrip RENYI

Introduction

Let T', denote the number of trees of order =, i. e. of trees with 7 labelled
vertices Py, Py, . . ., P, It has been proved by A. CayLey [1] that

(1) S e =125 )

Other proofs of (1) have been given by O. Dz1oBEK [2] and G. PéLya [3].
The most elegant and simple proof is that given by PrRUFER [4]. The number
T, can be interpreted as the number of railway-nets connecting n given cities
so that it should be possible to go from any city to any other along the net,
and there are no superfluous connections. (The number of connections, i. e.
the number of edges of a tree of order = is clearly » —1). A. CayLEY has
treated also a more general problem. Let 7, , denote the number of graphs
with n 4+ & — 1 labelled vertices P,, P, ,. . ., P+, which consist of % disjoint

trees as subgraphs and are such that the points P,, P,, ..., P, belong to
different subgraphs. CavLeyY gives the following formula for 7, ,
(2) © Tu=kn+k—1"2.

Clearly 7,, = T,, and thus g,l) is a special case of (2).

The number 7, , can be interpreted as follows : If there are n + k — 1
cities, among which £ cities are lying on the bank of the same river (or sea),
then 7', is the number of such minimal railway nets connecting some of the
cities, that it is possible to go from any city to any other, by travelling by
railway along the net and eventually travelling by ship from one of the cities
lying at the river to an other such city. Thus the railway-nets in question
will consist of & subnets, such that every city lying at the bank of the river
belongs to an other subnet, and if the cities 4 and B belong to the same
subnet, one can go by railway from 4 to B, but if 4 and B belong to different
subnets, one can travel from A4 to B by going first by train to the harbour-
city belonging to the same subnet as 4, then by ship to the harbour-city
belonging to the same net as B and finally by train to B.

CAYLEY gave (2) without proof and in the literature on (1) we did not
find a proof of (2). In § 1 of the present paper we shall give ‘a proof of (2),
which is based on the same idea which has been used, e. g. by DzIOBEK in
proving (1).! Our chief aim is however not this, but the solution of some other

1T. Gacrar kindly called my attention to the fact that (2) can be_proved also
by a modification of the method of PRUFER.
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related questions. In § 1 we shall determine the number G (n) of all graphs
with » labelled vertices consisting of % disjoint trees. We shall prove that

L 1V (k) n—1
3 G(n) = — S S
3 =55 2= [l 7=

Clearly we obtain from (3)

nn—k=i . (k +)! .

Gl(n) - Tn — ’anAZ .

Thus (3) can also be considered as a generalization of (1). We obtain further
by substituting # = 2 and £ = 3 into (3)

(4) Gy(n) = "" t(n—1) (n+ 6)
and
(5) Gy(n) = %n”“f (n—1)(n —2)(n%+ 13 n + 60).

Similarly we can express G(n) for other small values of k. It is easy to prove
by means of (3) that for a fixed value of £ and for n — + o we have

nn—2

(6) Gy(n) ~ k-1 (T—IT; .

The formula (3) solves a problem left open in the paper of J. DENES [5],

who proved that
“'1“2 )aj

(M) —n!

Zajk
j=1

%n,‘ Jjaj=n
and asked whether the expression for G(n) could be brought to a simpler

form. (7) is a consequence of (1) and of the fact, that the partitioning of n
points into @, sets having each one element, a, sets having each 2 elements,

., a; sets of j elements each ..., etc., where

n

%aj =k

=

and

n -
' j)a; =N

j=1

can be dene in
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essentially different ways. (Here two partitions are considered identical if
there exists a one-to-one correspondence of the subsets of the two partitions
so that corresponding subsets contain the same elements.)

In § 2 we consider an other problem, namely the determination of the
number 7'(n, 7) of trees with n vertices which have exactly r end points. (A
point belonging to a tree is called an end-point of the tree if only one edge
of the tree contains the given point.) We shall prove that

n!
(8) T(n,n=—&n2
93
where @, denote the Stirling-numbers of the second kind defined by the identity

(9) Py }‘ Nexe—1)...(x—m-+1) .

m= l
By means of (8) we prove that if », denotes the number of end-points of a
randomly chosen tree with n vertices, then the mean value of », is asymptoti-
cally nfe for n — + oo, further that the distribution of the random variable

n
Y, — —
3 Wi b
) BRI OL
?\/(e —2)n

is tending for » — - o to the normal distribution with mean 0 and variance 1.
The author expresses his thanks to VeEra T. S6s and T. Garnar for
their valuable remarks.

§ 1. On the number of graphs consisting of trees

Our proof of (2) will be based on the identity

; 1 { k—1
W - A= 3 et et jet— bt T (0 — B)
i 71' 72' i ) 7/('
2ji=n

=1

where for ¥ = 1 the empty product means 1.
The identity (1.1) contams as a special case for £ = 2 the well-known
identity

(1.2) : nz_z[ Jy!l )n11_2nn 2(71_1)

which has been proved e. g. in [2] and [5].
To prove (1.1) we shall need the identity

k-1
. Icn"—"ﬂ(n —h)

(1.3) (2” fj;l!xj )k L S ;Tl

=
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where for £ = 1 the empty product is to be replaced by 1. We shall prove
(1.3) by induction on k. We shall start from the fact that

2y §/1 2/

(14) y= 27—|

7=

is the Biirmann—Lagrange series for the inverse function y = y(x) of the
function

(1.5) v=1ye=¥
(see e. g. [6]). Now we obtain from (1.5)

k—1
(1.6) ky* 1y =ky- 2y’ — -

and integrating both sides of (1.6) from 0 to & we get

X
(1.7) Y= —’-c~—1 Yt — kb J y—k—:(t)~ dt .

0

Now (1.3) is trivial for £ = 1 and if it holds for k¥ — 1 instead of %, then by
(1.7) it follows that it holds for % too. Thus (1.3) is proved for any %. (1.3) could
be proved also directly' by using a well-known generalized form of the Biir-
mann—Lagrange-series (see [6]).
Now evidently
SN A ® [ el
(1 2 n! _(2 j! )

n=1 J==3

and thus (1.3) and (1.8) imply (1.1).

Formula (1) follows easily by induction from (1.2), as was shown in [2].
For the sake of completeness we reproduce the proof.

Let us select for any ¢ = 1, 2, ..., » — 1 an arbitrary subset having
7 elements, of the set of vertices Py, ..., P, ; take an arbitrary tree connect-
ing these points, and an arbitrary tree connecting the remaining n — ¢ points.
If an arbitrary point of the first tree is connected with an arbitrary point of
the second tree (which can be done in #(n — ) different ways) we obtain a
tree of order . Evidently if these operations are effected in every possible

way, every tree with vertices P, ..., P, is obtained 2(n — 1) timek. Thus
we have
n-1
nY . ;
(1.9) 2(n—1)T,= ( .)z(n——z)T,-Tn_i ;

Thus if 7'; = 7-2 holds for ¢ =1, 2, ..., n — 1, it holds by virtue of (1.2)
for ¢ = » too. As clearly 7'; = 1 = 11=2, (1) follows by induction for all n.
As regards (2) it can be deduced from (1) by means of (1.1) as follows :
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We have evidently

n—1)!
(1.10) Thi=. 2 ?.T(j,—)-jjThﬂ Titr s Ty
1- 2- .- o . k.
Zk'ji=n—1
i=1
and thus
k (n+%—1)!
< £ A AR A e W S T O
i Jle+g 1) o il RS !
Sy X h=ntk-1

and therefore by (1.1)
(n+k——1)(n+k—2)...n-Tn,kzk(n+k—1)"—1ﬁ(n+k—1—h)
h=1

which, after dividing both sides by (n +k—1)(n + &k —2)...n, gives
evidently (2).

Now we pass to the proof of (3).

We start instead of (7), from the simpler formula

1 n! 2 3 o
(1.12 Gf n) — — R RN R A 11 et B e Jp—2
2) x(n) il kE AT RREY 1502 Tk
X ji=n

(1.12) follows from (1) and the remark that all graphs formed with the vertices
Py, ..., P, and consisting of k trees can be obtained by forming all possible
partitions into & subsets of the points P, . . ., P, (two partitions being taken
as.identical if any two points belonging to the same subset in the first parti-
tion belong also to the same subset of the second partition) and by forming
for each subset, independently of each other, all possible trees connecting
the points of the subset with each other.
It follows from (1.12) [or from (7)] that.

(1‘.13) g AN L

ot ol k!

where ¥ is defined by the power series

o i 9 ]
(1.14) yoowado
£

Now we have clearly

(1.15) ? e f@dt
(4]
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where y is the power series defined by (1.4) ; thus in view of (1.7) (for k = 2)
we. obtain

2
(1.16) Yzy——y;.

It follows that

2 oy Gi(n)2" 1 “."1k 1y
i R Sl e e e

n=1 J=0

4
yitl,

As by (1.8) we have

: ~ A +~:E"
(1.18 ktj — e I
) y g -

it follows, taking (1.1) into account, that

1 sk
(1.19) Gy (m) o ]—20 [7

Thus (3) is proved.
Let us calculate the coefficient of the two highest power of 7 on the
right of (1.19). Putting '

=i A (& 4+ 7) mn—k-i T (n — h)
( 2) ; 1 '

h=1

k+j
Gym) = 3 G =
=1
we obtain by some calculation
QY. =0 and G =

Thus we have for any fixed & _

(1.20) lim L

(1.21) G,y (n)=3
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Let us put

(1.22) H(n)= _\':‘ Gy(n) -
k=1

Clearly H(n) is the number of graphs of order » which are the unions of trees,
i. e. of all graphs which do not contain circles (closed pathes). From (1.17)
we obtain easily, putting H(0) =1,

O H(n)x" u~%
(1.23) 2 T =e 7
n=0 5
As :
MR <
2= MH/(2)y
=0 »
where
s %
H)="Le2 L (o ?)
= i dat

is the r-th Hermite polynomial, we obtain

— H(n) 2" _’ ~ e
(1.24) D o D Ey
n=0 2 1=0
and thus, taking again (1.1) into account, we obtain
n r—1
(1.25) Hn)= S H(—1)ran—" J] (n—h) .
r=1 h=1

As regards the asymptotic behaviour of H(n) it follows from (1.20)
easily that ;

(1.26) L T

n—o+ e p—2

§‘ 2. On the number of end-points of a random tree

Let us consider a tree whose vertices are the points P,, ..., P,. The
point P; is called an end-point of the tree, if there is only one edge of the tree
connecting P; with some other point P;. The number of end-points of a tree of

order » may have the value 2, 3, ..., »— 1. Let T'(n, k) denote the number
of trees with the (labelled) vertices P, ..., P, which have exactly £ end-
points (¢ = 2, 3, ..., n— 1). We shall prove first the formula (8).

Our proof utilizes the method by which PrRUFER [4] proved formula (1).
PriFER’s method consists in that he establishes a one-to-one correspondence
between all trees with vertices Py, ..., P, and all (n — 2)-tuples of integers
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(81, 89, + - ., Sn_g) where each s; can take the values 1, 2, .. ., n. This corres-
pondence is obtained as follows : let us remove from the tree the endpoint
P, with the least index, and let s, denote the index of the (unique) point
which is connected by an edge with P;. Repeating the same operation with
the remaining tree of order » — 1 we obtain s,, s;, etc. until only a single
edge remains. PRUFER has shown that the sequence (sq, s, . . ., 8, ,) determi-
nes the tree uniquely. Now clearly to the trees with exactly £ endpoints there
correspond sequences (8;, Sy, - . ., 8,—9) in which exactly n — % of the num-
bers 1, 2, . . ., » occur at least once. As the failing numbers can be chosen in

l:)different ways, and the number of (n — 2)-tuples formed from n —#%
symbols which contain each of these » — % symbols at least once is equal to
(n—k)! @K (see e. g. [7]), it follows that

n!
(2.1) T(n’k):iT S0 -

: According to the well-known recursion formula €k =k ©f_; + Sk}
(see e. g. [T], p- 169) it follows from (2.1) that

S|

(2.2) Tn,k)=kT(n—1k) 4+ (n—kTn—1,k—1).

Conversely (2.1) can be deduced from (2.2). The recursion formula (2.2) can
be proved by a direct combinatorial argument, as has been remarked by
VErA T. S6s.

Let us calculate now the mean value and variance of the number of
endpoints of a random tree of order n ; here and in what follows if we speak
about a random tree of order n we mean by this that we select at random a
tree of order n» with given vertices Py, ..., P, so that all »"~2 possible trees
are equiprobable. With this definition the number », of endpoints of a random
tree is a random variable. Let us denote by M{»,} resp. D2{»,} the mean value
resp. the variance of »,. Now according to the definition of Stirling’s numbers
of the second kind [see (9)] from (2.1) we have

X
n—1 {
(2.3) 2 PRt

k=2

n ‘:
n—k

The formula (2.3) can be considered as the (factorial) generating function of
the sequence T'(n, k). Substituting now @ = n — 1 into (2.3) we obtain

n—1 y
o>l Te) o~ (i 1)1 74
=2
and thus
1\n-2
(2.4) M{,)—n [1 % W,]
n
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Therefore we have

(2.5) iy A o L
n—+ n e

This can be expressed by saying that a random tree of order » has in the
average approximately n/e endpoints.

To calculate the variance of », let us substitute x = n» — 2 into (2.2).
We obtain

]

(2.6) S k(k — 1) T'(n, k) = n(n — 1) (n — 2)n—2
k=2
and thus
(2.7) > ERT(0, k) = n(n — 1) (n — 272 - n(n — 1)n-2
*=2

It follows that

2|n-2 1|2 1|2n—4
(2.8) D%{v,} = n(n —1) (1—— +n 1————} — n2 1—*) 2
n n n
This implies
2 ket
(2.9) fiwg DUa 62
noto  n e?

Thus the variance of », is asymptotically equal to n(e — 2)/e2.
Now we shall prove that v, is in the limit normally distributed ; more
exactly we shall prove

n
; l s o ' e
l; = | 1=
where P{. ..} denotes the probability of the event in the brackets.

To prove (2.10), by a well-known theorem of probability theory, it suf-
fices to show that the characteristic function of

Vg

i
3 e
: | pitel s he
- In(e—2)
tends to the characteristic function of the normal distribution, that is for
every real ¢ we have

it(ek—n) £
£ . n—1 T n,k e e ) Rk oS
(2.11) lim S Tk ey _ 7
n—+o k=2 nn—z

6 A Matematikai Kutaté Intézet Kozleményei TV./1.
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Now (2.11) can be obtained as follows: Let us substitute into (2.2)
@ = n — 4t)/n. We obtain

(2:12) n; M)

It

/

Ztr‘ a (1— _}n—z
im2 "2 jlk Vn :
Ik — ﬁ\ < nf
e
where 1/2 < 8 < 1, we have
itYn l

n—j

n—k—1

(2.13) log JT

j=0

1==<

= — tVn—{—

e (,_n) |, Ple—1)
V( e|+ —=Laoll).

By the inequality of Chebyshetf
T(n.k 1
(2.14) > (n. k) o [ )

] 73] nnA2 {p28-1
Gl

and according to Stirling’s formula for complex arguinent the factor

I -

=k+1 j

remains bounded; thus it fo]lo\vs that

t*(e—1) n—1 ite(, n
) lses _’&t_‘ eit¥n =2 2 q_(?l k) eVn (k ell.
n nn—2 _‘

2150  lim ’

n—s+4« ‘,

=0

Now we have

ot -

(2.16) lim e"v’ﬁ' =e2,
\ n—- n
Thus it follows that
SIm k) - T
: . ) V alip
(2.17) nlirfm Z’ S :

Substituting ' instead of ¢, (2.11) and therefore (2.10) follows.

(Received 30 October, 1958.)

Added in proof 5 May, 1959.

In a recent paper [8] L. E. CLARKE gave a new proof of CAYLEY’s
formula (1). CLARKE proves first that if C,, denotes the number of trees
with n labelled vertices Py, P,, ..., P, such that exactly k edges end at
the vertex P,, then we have

(2.18) 0,,,,(:‘:_?) s T A SR e e



h
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CLARKE proves (2.18) by giving a recursion formula for C,,, and deduces
(1) from (2.18) by remarking that

n—1
(2.19) LR G A
k=1

It should be mentioned that (2.18) is a simple consequence of CAYLEY’s
formula (2). As a matter of fact, the k£ vertices which are connected with

. [n ¢
P,can be chosen in ways among the vertices Py, P,,...,P,_; and

after this choice has been made, there remain still 7',_, , possible choices
to form the tree in question. Thus we have

"1

(2-20) Cn,k o r ’ Tn—k,k
‘and therefore by (2) '

S [y 2v
(2.21) = il bln =132 — . 2) (7 = Pyl

: k—1
in accordance with (2.18).
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MEGJEGYZESEK A , FAK” ELMELETEHEZ
RENYI A.
Kivonat
,,Fa” alatt CavLey [1] nyomdn kornélkili ésszefiiggd grafot értiink.
CavLEY bebizonyitotta, hogy az n (szdmozott) szogponttal biré kiilonbozs
fak széma ‘
(1) Trz = nn—2 >
mig azon n + k — 1 (szamozott) stlyponttal biré grafok szima, amelyek &
idegen fabol dllnak oly médon, hogy % kijelolt pont kiillonbozé fakhoz tartozik,
(2) Tn,k Ve k(n R l)n‘z 7

6*
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Az (1) képletre CayrLeEyn kiviil O. DzioBEK [2], P6rLyAa GYORGY [3] és masok
adtak mas bizonyitdsokat. (1) legegyszeribb és legeleginsabb bizonyitdsa
PrUFERtS] szdrmazik [4]. Az 1. §-ban rdimutat a szerzd, hogy a (2) osszefiiggés
(amely CayrLeynél bizonyitds nélkiil szerepel) egyszerien bebizonyithato
Dz10BEK mddszerével.

Jelolje Gy (n) azon n (szdmozott) szogponta kiilonbozd grafok szdmét,
amelyek k idegen fabdl dllnak, (elejtve a CaYLEY altal tett megszoritast, hogy
k adott pont kiilonboz6 fakhoz tartozzék). Az 1 §-ban bebizonyitja a szerzo,

hogy
il ](—l)] LA
k+9—1 2

(3) Gi(n)

A (3) képlet segitségével G, (n) értékére, ha k rogzitve van és n — + oo
aszimptotikus képlet adhaté meg.

A 2. §. azzal a kérdéssel foglalkozik, hogy hény olyan » szigponta fa
van, amelynek pontosan r végpontja van. Ezt a sziémot 7'(n, r)-rel jellve
PrOFER moédszerével kimutathatd, hogy

1 k
k! &

[f] (k4 4)

(8) Tn,r)=—6Cn73
ahol & mésodfaju Stirling-szamokat jeloli, vagyis a ©% szdmok az
Az
(9) N=FCRaz—1)...(t=-m+1)
m=1

osszefiiggés altal vannak definidlva.

A (8) explicit képlet segitségével a szerzS kimutatja, hogy egy taldlomra
véalasztott n (szdmozott) szogpontu fa végpontjainak szima RQatérértékben
normalis eloszldst n/e virhaté értékkel és |/(e — 2)n/e szérdssal, ha n — + oo.

f i

3AMEUAHUS K TEOPUU » IEPEBbEB«
~ A. RENYI

Pe3iome

Crnepyst CAYLEY [1] cBsidanHbll rpad, He cojep)Kaliuil OKpY)KHOCTe
HasbiBaeTcsi «iepeBomy. CAYLEY Jl0Kasaj, UTO YMCJO /IepPeBbeB, HMEIIUX 7
(HYyMepHPOBAHHBIX) YIJIOBBIX TOYEK, PaBHO

(1) F—iplise

B TO Bpemsi, KaK uucio rpagoB ¢ n + k—1 (HymepupOBaHHBIMH) TOUKAMU
COCTOSAIMX U3 Kk JiepeBbeB TaK, YTO k YKa3aHHBIX TOUEK NPUHA/UIEXKAT Pa3IUUHBIM
TiepeBbsIM, PABHO

(2) Thx=Fkn+k—1)""2 .

st popmynsi (1) kpome CAYLEY Jipyrue oKasaTesbCTBa anu Taroke 0. Dzio-
BEK [2] u G. P6rya [3]. Camoe npocToe M dJieraHTHOe M0Ka3aTenascTBO (1)

PRSRECE )
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npuHaUIeKUT PRUFER-y [4]. B 1. §-e aBTOp NmoKasbiBaeT, uTo COOTHOLIEHME (2)
(xotopoe y CAYLEY npusejieHo 0e3 JOKa3aTeJbCTBa) TAKyKe MOXKET ObIThH J0Ka-
3aHO, MeT00M DZIOBEK-a.

OGosHauum uepes G(n) UUCI0 TeX PasIMUHBIX I'padoB ¢ 7 (HyMepupoBaH-
HBIMU) YTJIOBBIMM TOUKaMH, KOTOpBIe COCTOSIT u3 k JiepeBbeB (OTKa3aBILUCh
or ycioBusg CAYLEY, COrjacHO KOTOPOMY k JaHHBIX TOYeK NpHUHAJJIeKAT
pasNnYHBIM JiepeBbsiM). B 1. §-e aBTOp M0KasbiBaeT, yTo

\

1wy k n—1 1y
) o k) i
(3) Gulm) = j;"j)( + 1) (k+j—1‘[ :

C nomoupio Gpopmyisl (3) uia sHauenuss G(n) npu QUKCHpoBaHHOM k u
n—> co MO)KeT ObIThb JlaHa acuMOTOTHYecKass (GopmyIa.

§ 2. 3aHMMaeTcsl CIEAYIOLMM BONPOCOM : CKOJIBKO CYIIECTBYET TaKuX
JIePeBbLEB C 7 YIJIOBBIMU TOYKAMU, KOTOPbIe UMEIOT TOUHO 7 KOHEUHbIX ToueK. 0603-
Hauasi 910 uncyio uepe3d 7'(n, r), MeTo oM PRUFER-a MOYKHO JI0Ka3aTh, UTO

nn—k-j

(8) Tn,r = — @g:;
%

rae ©F o6o3Havalor uncna Stirling-a BTOporo poja, T. e. onpejelsiioTesi COOTHO-
LIeHueM

N
9) V= DSlax—1)...x—m+1) .
0 m=Jp

C nomorplo sABHOIT (popmysibl (8) aBTOP J0Ka3bIBAET, YTO UMCIO KOHEUHBIX
TOUeK cJlyuaiiHo BBIOPAHHOTrO JiepeBa ¢ 7 (HyMepUPOBaHHBIMU) YIJIOBBIMU TOY-
Kamy B Ipejiesie UMeeT HOPMaJjlbHOe paclpejiesieHue ¢ MaTeMaTHYeCKUM O)KM/a-
. (e—2)n
i >———ecnn n—> oo,

HUEM ’ﬂ/e u jgucnepcue 8
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