REMARKS ON A PAPER OF PAL MEDGYESSY: “A MECHANICAL
FUNCTIONAL SYNTHESIZER«

by
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The mechanical functional synthesizer planned by P. MEpcYESsy? and
operating in our Department has been used to calculate the projection of
electron density in crystals.

Since the electron density in a crystal as well as its projection on a
plane are periodical functions of the coordinates, they can be calculated
by means of Fourier series [2]. By calculating the electron density in three
dimensions one makes use of a three-dimensional series (with three sets of
indices denoted by A, k and ! while in projection the series is reduced to a
two-dimensional one (one of the indices, say A being zero). Let us take for
example the cristallographic axis @ as the direction of projecting and project
the unit cell on the yz plane. Supposed the crystal has a center of inversion,
the projection of the electron density can be described in this case by the
following Fourier series :

1) o'(y2) =-- Z ZF(O kl) cos 2n(ky+ lz) = ZZF(O kl) cos (ko—+1p).

Notations :

A = the area of the projection

k, ! = integers, indices of the series (corresponding to the <Miller

indices” used in crystallography)

F(0kl) = the coefficiens of the series, which are identical with the
“structure factors’ of the crystallographic planes with Miller
indices : (0kl). This quantities can be measured on X-ray
diffraction photographs.

y, z = relative coordinates referred to the length of the corresponding
edge of the unit cell.

0'(yz) = electron density measured in units : number of electrons per
square Angstrom.

a = 2ny

ﬂ = 2nz

1) Department of Physics No. I., E6tvés Lorand University.
2) Pal Medgyessy : “A Mechanical Functional Synthesizer” (Publications of the
Mathematical Institute of the Hungarian Academy of Science. 2 (19567) 33—42.)

149



150 OSORDAS & MENCZEL

This two-dimensional synthesis can be reduced to two successive one-
dimensional ones by means of a simple trigonometric subtitution (For sake
of simplicity we introduce the notation : p(yz) = Ao’ (yz)

(2) oyz) =23 [2 F(0kl)coslp]coska — 3 [3 F(Okl)sinlf]sinka .
BT AT
Introducing for the results of the first summation the notation :

Si(k,2) =Y F(0kl)coslf; Sy(k,2)=2 F(0kl)sinlp
7 7

and writing the constant terms of the series: F (000) and 8, = 8, (0, ?)
separately :

o(yz) = F(000) + Sy + Y [8y(k,2) coska — Sy(k,z)sinka] .
%
Kk#0

(3)

Since we want to work with the mechanical synthesizer we have to
keep in mind that it has patterns of the form

14 sin ko resp. 1 4 cos kx and it can synthesize terms like :

const. (1 4 sin kx) - resp. const. (1 -+ sin k& x)
where the constant factor is always positive. So it is comfortable for us to
transform our equation :

o(yz) =3 [| 8y(k, 2)| + Sy(k,z)cos kx + |8, (k,2)| — 8, (K, 2) sin ka] —
k

(4) k#0 k
—{%‘[\SI (k, 2)| + | 8, (k, 2)| ] — F(000) — 8,.}

k#0

Introducing the notation :

> =218k 2) + 8(k,z) cos ka + | S, (k, 2)] — 8, (k, 2) sin ka ]
k%0
C =218k 2| +1|8;(k, z)|] — F (000) — S,
kp0
we obtain the equation

(5) e (y) =2 —C

from which it is obvious that the projection of the electron density o(yz) is obtained
by subtracting the constant term C from the value X indicated by the mechanical
synthesizer.

The result of a summation appears on the instrument as end-points
of bars, in 37 equidistant points having the values 0 < a < @ ; in our case,
this sum corresponds to the projection of the electron density along a line
2z = constant and 0 < y < Y. (see the paper of P. MEDGYESSY [1].)

At first time, after having read the positions of the end-points of bars
on a scale fixed under the bars, we wrote the date on an yz net. After this
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we put a transparent paper over the net and traced the lines of equal electron
density in order to find the maxima, that is the places of atomic centers.

In order to speed up our work we have initiated a new method for
fixing the results of the second summation. Instead of reading, we draw the
sum on a leaf of drawing-paper : First, we trace a straight line on the paper
then we put the paper between the bars and the scale so that the straight
line coincided with the value

C = 3 [|8,(k, 2)| + [Sy(k,2) ] — F(000) — 8,,
k

k#0

then we mark the end of each bar and cut the figure we have got in this way.
Such a figure corresponds to the projection of the electron density along
a line z = const. and 0 <y < V,. As we have calculated the first sums
S8;(k, z) and 8, (k, z) in equidistant points of the z axis, we shall have now
as many figures as z values.

We constructed a square frame for the figures and mounted them into
the inner slits of the frame. The figures were arranged according to their
z values, while the O lines of each figure were held in equal height. So we
obtained a very clear three dimensional representation of the function o(yz)
(Fig. 1.). Two horizontal directions correspond here to the y resp. z axis and
the vertical direction to g(yz). The maxima are immediately observable and
their coordinates and height could be read on a scale made of plexiglass.

Figure 1.
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The main advantage of the new method beside its graphic character
is, that it reduces the working time. With the old method the calculations
took up scarcely less time than with the BEEvErs—Lipsox strips. Now we
work three times faster and we do not need drawing an electron density map.

11

As mentioned in section I. the instrument has patterns of the shape
1 + sin £ - and 1 + cos ko. The values on the patterns are calculated in steps
of 5 degrees and also the sum is obtained in these points. In the course of
crystal structure work, in case of a large unit cell, there occur indices of
30—40 and even larger ones. It is easy to show that the preparing of the
patterns is needed only up to ¥ = 18 and patterns with £ > 18 can be sub-
stituled by patterns with k¥ < 18, supposed we want to obtain the results in
the mentioned equidistant points of 5 degrees.

It is suitable to introduce the following notation : We denote ‘“pattern
sin k;”” and “pattern cos %, the patternsof the shape 1+ sin k; and 1+ cos k;
further “pattern —sin k;”” and “pattern —cos k;,”’ the patterns of the shape
1 — sin k; resp. 1 — cos. k;. As “even steps’” are denoted the steps a = 2n5°
of the patterns and as “odd steps’’ those of ¢ = (2n + 1) 5°. We shall use
the name “even bars’ and “odd bars’ for the bars shifted by the even resp.
odd steps of the patterns.

Keeping in view that we calculate in steps of 5 degrees and that the
values of the trigonometric functions of arguments larger than 90 degrees
can be substituted by values belonging to arguments less than 90 degrees,
we can fit together following relations :

a) sin [(2n 4+ 1) (36 — k) 5°] = sin [(2n 4+ 1) k£ 5°]

b) sin [2n (36 — k) 5°] = —sin (2n k£ 5°)
¢) cos [(2n 4+ 1) (36 — k) 5°] = — cos [(2n + 1)k 5°]
d) cos [2n (36 — k) 5°] — o8 (2nk 5°).

Making use of the previous and similar relations the following Table I.
can be prepared. This table shows the sign relationship between £ > 18 and
the substituting patverns £ < 18.

Table I
1 . ] Cu [ m |
a ‘ k 36—k | k—36 72 —%
%(271—}—1) . 5° C e b -
| Sin ‘I SIS DRSS IAS———
| ‘\ 2n - 5° -+ = + —
ERSREE—— : SRy S B SA—
| | @nt1) - 8° + N 3.
| Cos s ‘l =
4 g * ® 0 W : i
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The column I. is to be used if 18 < k£ < 36; column II.if 36 < k£ < 54
and column III. if 54 < k< 72. (The case k > 72, has no practical
significance.)

We can elucidate the use of the Table on an example : It is to be added
8, (21, z). sin 21 ¢. From the table it is clear that instead of the pattern sin
21 we must apply pattern sin 15 for the odd steps, and pattern —sin 15 for
the even steps. In practice this can be achieved by putting pattern sin 15
into the instrument and shift forward so that only the odd bars moved and
the even ones remained in their original positions. After this we put in pattern
—sin 15 and now we must be able to set in motion only the even bars and
leave the others unmoved.

Our instrument is built so that the bars can move only together. We
must transform the instrument so that the even bars and the odd bars could
move either seperately or together. By a slight modification this can be done
but the description of the technical details exceed the scope of this commu-
nication.

We have to treat particularly the function: cos 36 «. It has values 41 at
a=2n-5° and —1 at ¢ = (2n 4 1) - 5°. According to our notation in
section I. its coefficient is §8,(36, 2) and the value of the function S, (36, 2)
cos 36 is at the even steps equal to S, (36, z) and at the odd steps : —&8,; (36, 2).
According to Table I. we need the pattern cos 0 for its addition to the series.
This pattern has been eliminated by including his coefficient §, into the
constant term C (equation 5. in section I.), therefore it would be necessary
to prepare pattern cos 36 as the unique one from among the patterns £ > 18.
Still there is a simple way to avoid this, by including also this term into the
constant term of the addition. In practice this can be performed in the
following way : After having added all the terms included in X' (equation [5 ],
section I.) we put our leaf of paper under the bars so that the ¢ (y2) = 0 line
coincided with the value C* =C — 8, (36, z) of the scale and mark the end-
points of the even bars. After this, we shift the O line to the value O =
=0C + 8, (36,2) and now we mark the positions of the odd bars.

It has to be mentioned that the Beevers—Lipson strips applied in
crystal structure analysis are constructed on the basis of similar ideas. Here,
the values of the trigonometric functions are printed on both sides of a strip
of paper, in intervals of 3 degrees. The values belonging to the even multiples
of 3 degrees are on one side and those belonging to the odd multiples on the
other side.

(Received December 22, 1958.)
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MEGJEGYZESEK MEDGYESSY PAL: ,,EGY MECHANIKAI
FUGGVENYSZINTETIZATOR” CIMU CIKKEHEZ

CSORDAS L. és MENCZEL Gyv.
Kivonat

Medgyessy Pal [1] cikkében leirt szintetizitorral szamoltunk. A sza-
molasi id6t kb. harmadara esokkentettitk azaltal, hogy az eredményeket nem
olvastuk le, hanem a palcak ald karton papirost téve megjeloltiik a palcak
végpontjait és az igy kapott dbrat kivagtuk. Az dbrakat egymés mellé rakva
az elektronstir(iség vetilleti eloszlisinak szemléletes, haromdimenziés képe
alakult ki.

Kimutatjuk, hogy a sablonok » = 18-ig valé elkészitésével az Osszegezési
lehetdséget barmilyen magas frekvencidig ki lehet terjeszteni. Ez altal a sab-
lonok koltséges elkészitését megtakarithatjuk.

3AMEYAHUS K CTATBE P. MEDGYESSY: ,,0qJUH MEXAHUWUYECKUMH
®YHKUUOHAJIbHbIA CUHTETU3ATOP”

L. CSORDAS u Gy. MENCZEL
Pe3ome

MBI cuMTanu ¢ NOMOUBI CHUHTETM3ATOpa, ONUCAHHOIO B cTaThe P. MED-
GYESSY [1]. MBI COKpaTHJIM BpeMmsi cuéTa IPUMEPHO B TPU pasa ClieJyoLiuM
00pa3oM : MBI He UMTaJId Pe3YJILTaThl, a, MOJI0XKKUB T0Jl NAaJIOUKU KapTOH, OTMe-
THJIM KOHLBI MaJIOYeK W BbIpe3asiu N0JydyeHHBI uepTéx. I[TomecTuB psiiom mo-
JIyYeHHble YepTeX<u, Mbl MOJIYUMJIM HAIJISIAHYIO, TPEXMEPHYI0 KAapTUHY IpOeK-
LMOHHOTO pacrpefeseHusi MJIOTHOCTH 3JIEKTLOHOB.

Mbl TOK&3blBaeM, 4YTO M3rOTOBISAS 1WabnoHel 0 A = 18 B03MOXKHOCTB
CYMMHPOBAHHUSI MO)KeT ObITh pacnpocTpaHeHa /0 KaK YTOJHO BBICOKOH YaCTGTHI.
Taxum 00pa3om Mbl MOYKeM CBIKOHOMMUTDL JOPOrOCTOsillee M3TOTOBJIeHHe Iad-
JIOHOB.
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