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§ 1. Introduction 

The study of gravitational waves in general relat ivi ty suffers f rom an 
inherent difficulty which arises from the principle of equivalence and the 
corresponding lack of definitiveness of coordinate systems. If other aspects 
of the surrounding Universe are disregarded, it is quite possible to produce 
gravitational waves (even under perfectly f la t conditions) by introducing 
suitable spacetime coordinates, and the objectivity of wave phenomena 
depends part ly on the object ivi ty with which one can select a reliable coordi-
nate system. The difficulty affects both the dynamical and kinematical 
aspects of wave propagation. Since field energy can only be calculated f rom 
the well known pseudotensor, i t is impossible to make precise s tatements 
concerning the amount of energy transferred by gravitational radiation unless 
the coordinate system is specified; and the same is t rue for statements on 
the propagation of gravitational signals. 

For the case of weak fields, E I N S T E I N himself proposed a solution in 
the early days of relativity. E I N S T E I N showed tha t if there exists a coordinate 
system in which deviations f r o m the Minkowskian values are everywhere 
small then one can select by means of suitable auxiliary conditions a class 
of reasonably good almost Minkowskian coordinate systems in which gravi ta-
tional signals propagate with t h e velocity of light. The idea of auxil iary 
conditions has been exploited wi th great success in recent t imes, particularly 
by V. F O C K and his school. F O C K calls a coordinate system harmonic2 if i t 
satisfies 

3 « 

(1) y ' — ((-g)'l'9t'v) = 0,g = detglxv, (v = 0 ,1 , 2, 3) ; 

it is usually possible to satisfy these conditions, and the coordinate system 
so obtained has some rather a t t ract ive properties, part icularly where wave 
propagation is concerned. One of these properties is t h a t under ordinary 
circumstances and suitable boundary conditions at infinity, harmonic coordi-
nates are uniquely determined, apa r t from the arbitrariness of a Lorentz 
transformation. Hence the suggestion, put forward by F O C K , t h a t harmonic 

1 Universi ty of Adelaide, Sou th Australia. 
2 For a concise account see V. F o c k , Rev. Mod. Phys. 29 (1957), 3 2 5 - 3 3 3 . 
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coordinates should have the same status in general relativity theory as inertial 
frames have in special relativity. 

I t is not altogether easy to assess the correct significance and position 
of the harmonic condition (1) within the framework of general relativity. 
Superficially, it resembles the famous Lorentz condition on the vector poten-
tial in electrodynamics which is essentially a mathematical device to obtain 
solutions of the field equations in a convenient form. But whereas the Lorentz 
condition has no influence on the (physically observable) electromagnetic 
field forces, the harmonic condition is to characterize a class of "na tura l" 
frames of reference in which for instance gravitational energy changes can 
conveniently be represented. But when a physicist chooses a space-time 
coordinate system to describe gravitational effects (e. g. in the solar system), 
he will mainly be guided b y visual considerations such as observations of the 
position of distant stars or measurements of D O P P L E R shif t in the radiation 
from these distant sources. Now there is no a priori reason why this "visual" 
frame should satisfy the harmonic condition, and in the present paper we 
shall discuss a situation where the two coordinate systems (namely the visual 
and the harmonic) are definitely not identical. 

In this connection i t is interesting to note tha t the Schwartzschild 
frame, which is most commonly used to describe the centrosymmetrical sta-
tical field because of its formal simplicity, does not satisfy the harmonic 
condition. Of course the centrosymmetric harmonic f rame with the line 
element 

l _ £ ( l + Ü 
=1 

dt2 — — dr2 
1 Л - - I r I r r 2 r} 

is physically just as acceptable and leads to the same observational effects 
as the Schwartzschild line element 

[l — —I dt2 dr*- - y dxl. 
\ r ) r — 2(1 k=i 

But beyond this assertion the harmonic system does not offer any particular 
advantages. 

This example shows a t any rate t h a t under suitable circumstances sym-
metry conditions can be quite an effective substitute for auxiliary conditions. 
The intrinsic strength of symmetry conditions is t ha t if they are applicable 
to all, they are comparatively immune to objections; if a configuration admits 
certain geometrical symmetries, it seems to be sound philosophy to use a 
coordinate system which exhibits these symmetries. 

In the present note we shall use this principle to examine the existence 
and propagation of pure gravitational waves, in the special case of a rotating 
ellipsoidal body. The inherent symmetries of this model enable us to guess 
the general form of an adequate line element with reasonable certainty, and 
it will be possible to obtain a reliable picture of the generated waves without 
imposing the harmonic condition. As expected, we shall find spherical (or 
almost spherical) gravitational potential waves spreading out with the velo-
city of light, but the form of the waves and in particular the law of decrease 
of their amplitude, will depend quite essentially on whether the visual or the 
harmonic frame is used. 
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§ 2. The rotating ellipsoid 

We consider a n ellipsoidal body of gravitational radius /л a n d principal 
semi-axes a (1 + е Д a (1 + e2), a (1 + e3), ex =f= e2, 

( 2 ) e x + e a + e 3 = 0 , 

which rotates with constant angular velocity со a b o u t the axis of a (1 + e3). 
The velocity of light a t infinity is t a k e n to be 1. In order to avoid t h e complexi-
ties of an exact solution, we assume tha t the eccentricities ep a re small and 
neglect all quantities in which e2 or co2

(u2ep appears . These approximations 
are quite adequate for the purpose of finding out t h e essential characteristics 
of the generated waves. Occasionnally we shall refer to "small" values of r; 
by this we mean t h a t cor is small. Otherwise no restriction will be placed 
on the angular velocity itself. 

W i t h the above mentioned approximation t h e Newtonian potential 
outside the body a t res t is 

V = p l r + - M 7 * 2 £ p h P -2 
(3) 

3 

Hp = 2 A P k h , h = xklr> 
k = I 

where M is the moment of inertia of the ellipsoid a b o u t its axis of rotation 
and 

Ap = (Api, Ap2, Ap3), p= 1 , 2 , 3 

are mutual ly perpendicular unit vectors in the directions of the (body-fixed) 
principal axes. Suffices such as m,n,p will always a p p e a r in the lower position 
and run f rom 1 to 3; t h e t ime suffix 0 will usually be wri t ten out separately. 
The summation convention will only be used in conjunct ion with ep (or s* 
defined below) and t h e n in a rather unconventional manner: t he index is 

3 
required to appear three t imes in the t e rm . Thus spHpApm denotes epHpApm 

p = I 
3 

and Ep 11\ denotes V epHpHp. On the o ther hand £mHm, E*n^m are n o t to he 
p^I 

summed for m. Note t h a t 
3 3 

(4) ^ Apm Apm = 2 ep = 0 
m = 1 p = l 

because of the orthogonali ty of the Ap and the normalization (2). 
If t he a;3-axis is placed in the direction of the (space and body-fixed) 

rotation axis and the t ime origin is sui tably chosen we can set 

(5) Aj = (cos oA, sin cot, 0), A 2 = (— sincui, cos (at, 0), 

A 3 = (0,0 ,1) 
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hence 

Щ=~ d î + Ц) + - d î - il) COS 2 coi + Í i f 2 sin 2 cot 

d ? + il) - Y d ! - il) cos 2 coi - i 1 i 2 sin 2 coi 

and 

(6) ep Щ = e* f 2 + e cos2 0 cos 2(<p — coi) 

where 

(7) £* = e* = — (e1 + e2), ef = e3, e = i - (e1 - e2) 
2 — 

and 

(8) i x = cos cos 0 , £2 = sin cos 0 , i 3 = sin 0 . 

Note fur thermore t h a t 

(9a) ЕрН1 = Е * ^ р ~ \ е р ( Щ У 
4 со2 

(9b) e Hp Apm = £ * f m - - 1 - ep(HpApm)" 
4 со2 

(9c) e A Apn = ?-(£*+ eg) ômn - - 1 e p (d 4 p n ) ' ' 

2 4 со2 

where ( • ) = 8/9Í. Hence 

(10a) ep(H%)' " ' = — 4 со2 sp(Hp)' 
a n d similar expressions for ep(Hp Apm)"', ep(Apm Apn)"'. 

To obtain the most general form of a coordinate system w i t h symmetries 
appropr ia te to t he problem, we employ the following device: We set t en ta -
t ive ly 

i7oo = 1 2 F , g0n = 0, gmn = - ômn 

where V is given by ( 3 ) , and calculate the R I C C I tensor. In order to be able 
to satisfy E I N S T E I N ' S equations, we must clearly allow t h e metric tensor 
t o contain all t ypes of terms which appear in t h e R I C C I tensor . This conside-
ra t ion finally leads to the following assumption: 

( l i a ) g00 = 1 - 2 / c r - 1 - 3 Mr-» e* f* - со2 Г ^ Я 2 ) ' - соV2 ер(ЩУ, 

( l i b ) g0n =• со2 Biep(Hp АрпУ + со B2ep(Hp АрпУ + оАС1Ер(Щ)Уп + 

+ соС2ер(ЩУ Çn, 
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- flW = <W + 2 И r-1 fm in + D0 r-3 a* f 2 ômn + E, r~ 3£* Ц £m £n + 

+ F0 r-3(a* + £*) |m f„ + G0r-*(e* + e*) ômn + 

+ со2 Dx ер(ЩУ ômn + со D2 ер(Щ)~ ômn + 

(lie) + со2 Ex ер(ЩУ £m£n + co E2 ер(ЩУ £m £n + 

+ ci2 Fx ep[ (Hp Apmy £n + (Hp Apn)' £m\ + 

+ со F 2 sp[(Hp Apmy • £n + (Hp Apn)" £m] + 

-f- со2 Gx sp( Apm 

Apn)' + w G-iep( Apm Apn) , 
where D0, ..., G0 a re constants a n d Bv B2, . . . , V2 are funct ions of cor. Hence 
dBj/dr =wB[ etc. 

Strictly speaking one ought to add a t e r m of the form 2Mr~ 2 Q m to t h e 
expression for g0n where Ox = —«г60- ^z = e i a)> ®з = ^ to t a k e into account 
the motion of the rota t ing m a t t e r relatively t o t h e coordinate frame 3 b u t i t 
can be omitted as i t has no relevance to our problem. We m a y imagine t h e 
field created by pulsat ion ra ther t h a n actual ro t a t ion in which case the t e r m 
does not appear a t all. Also t e r m s containing (ju/r)2 have been omit ted as 
they have no effect on fur ther calculations. 

The amoun t of arbi t rar iness of the coord ina te system is expressed b y 
the t ransformat ion 

" + 

(12a) t = t + w2 Tx гр{ЩУ + со T2 ер(ЩУ , 

(12b) xm = xm + co2Mxsp(Hp ApJ + coM2ep(Hp Apm) 

+ со2 Nx ер(НрУ £m + co N2 ер(ЩУ ' £m 

where Tx, . . ., iV2 a re functions of cor, of the s a m e general o rder of smallness 
as the coefficients of the metric tensor in (11). I n the new coordinates 

(13a) !7OO = (/oo - 8 W3 T2 ер(ЩУ + 2 W2 Tx ер(ЩУ ' , 

9on = 9on + c o 3 T ' x 
cor 

Tx + 4A'j ер(Щ)' £n + 

(13b) n 
со r 

T 2 - Nx \ер(ЩУ£п + 

+ с о 3 - Tx + 4 M2 
CO r 

eJH. A pn! 

+ С0» — T2-co*Mx 
CO r 

Ep(HpApny 

by (10), where g00, g0n a re the same expressions in t h e new coordinates as they 
were in the old ones; a similar fo rmula can be ob ta ined for gmn. I n t h e ealcula-

3 J . Lense and H. Thirring, Pliys. Z. 19 (1918), 156 — 163. 
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tion of (13) we have made no distinction between differentiation wi th respect 
to t and t; th i s is permissible in the p resen t approximation. 

By a suitable determinat ion of Mt, Nh T„ г = 1, 2, we can evident ly 
achieve t h a t g00 be t ime-independent a n d g0n — 0. However, the time-coordi-
nate corresponding to t h e first assumption is not l ikely to be useful t o an 
actual observer, and we prefer not to specify the coordinate system a t this 
stage bu t t r y to satisfy t h e Einstein equat ions 

with the general line element (11). 
The computation of the R I C C I tensor is s t raightforward b u t rather 

tedious, a n d details will be suppressed. One gets a system of 14 equations 
for the unknown funct ions Bt, . . . , Vh which turn o u t to be compatible and 
which can be reduced t o the following system: 

(14) p ; ' + i p ; _ A p . + 4 P . = 0 
X X2 

(15) Ht = — xP'i — 2P, -f- £K'i 

( 1 6 ) Lt = ±x(P\ + Щ) - ( P , + Ht) 
A 

(17) F, = 2X2 A", + 1 -XF; + 2(1 —X 2 )P 

2 

(г = 1, 2), where 

(18) X = cor 
and t h e quantities Pit H:, Klt L, a r e given by 

( 1 9 ) р . = д . _ 1 р . _ ! д < + _ 1 р : + ! 0 : , 
2 2 2x X 

( 2 0 ) я ; = р / + д _ Л д + | с : , 

( 2 1 ) + 
Л/ 

( 2 2 ) Lt = Et + 2 0 } - - | Ö ; 

with 
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Equat ion (14) shows tha t ж1/2 Р г and x"2 P 2 a re Bessel funct ions of, 

2x of order + — ; therefore 
2 

(24) P , = Г 1 - - 3 L U 4 x 3 sin (2 ж + ßß + — - cos (2 X + ß,) 
2 x 2 

» = 1 , 2 , 

where ait ßt are integrat ion constants. P , is the only combination of t h e field 
quant i t ies which can be determined f r o m the equations independent ly of the 
arbi t rarniness of the coordinate system. The others depend on t h r e e pairs 
of a rb i t r a ry functions, namely Bt, C, and G„ corresponding to the f r ee choice 
of Mi, Nt and P, in (12). We can dispense with the f i r s t two by se t t i ng 

(25) B, = Ct = 0 ; 

it gives g0n = 0, t h a t is a s tat ionary coordinate system.4 Thus we are left 
with a pair of free functions G1 and G2; t he only restriction on these funct ions 
is t h a t they should vanish sufficiently rapidly a t inf in i ty . 

I n order t ha t Vt vanish a t in f in i ty , we must have by (17) a n d (24) 

К ! = 

1 
! = = ai 

1 
_x 

- sin (2 X + ßß -\ cos (2 X + ßß 
X 2 

(26) i Yt 
4 X 3 

sin (2 X + ßß + Q, 

where Q, —> 0 for x —v 0 0 and y, is a constant . For c lar i ty we have separa ted 
out t he p a r t with yt f rom ; the la t ter can then be regarded as an "aper iodic" 
par t whose appearance is due to an inappropria te choice of coordinates. 
By se t t ing Qi = 0 and subst i tut ing (25), (26) into (15)—(22), we get 

(27) V, = а,-

D 

3 3^ 

2 x 8 x3  

1 

sin (2 x + ßß cos (2 x + ßß 
4 x2 

I I 
2 X 

sin (2x + ßß 

a , 

(28) 

(29) 

(30) 

+ Yt 

Li = (2 a,. -

Я , = -

+ Yt 

2 x 8 x 3 , 

3 

sin (2 x + ßß d cos (2 x + ßß 
4 x 2 

8 x3  

Yd 

sin (2x + ßß 

± + l í 
2 x 8 x3 

4 x2 
cos (2 x + ßß 

sin (2 x + ßß — cos (2 x + ßß 
4 x2 

a , 
1 

x 
3 

4 x3 
sin (2 x + ßß H cos (2 x + ßß 

2 x2 

4 x3 
sin (2x + ßß 

2 x2 
cos (2 x + ßß 

4 We shall f ind later tha t the harmonic condition leads to a non-zero determination 
of Bj. The obvious advantage of stationary coordinates is that i t allows a clear separat ion 
into " space" and " t ime" . The potential funct ion F/ itself is no t affected by the choice 
of Bi. 
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The most interest ing feature of the solution is the appearance of the 
c o n s t a n t Y, in the expression for F, . I t means t h a t the observed fluctuation 
of t h e gravitational potential depends significantly on the selected value of 
y, a n d its determinat ion must be regarded as a physical problem rather t h a n 
a m a t t e r of mathemat ical convenience. 

Fortunately it is possible to f i x the coordinate system on physical grounds, 
in sp i te of the pr inciple of equivalence, because of the near-centrosymmetry 
a n d one-body charac te r of the problem which allows us to localize the source 
of oscillations a t t h e origin. Clearly a good coordinate system is one which 
does no t take p a r t in the radial oscillations of t h e gravitat ional acceleration. 
Now any oscillation of this kind can be detected visually, by observing varia-
t ions of D O P P L E R sh i f t in a s tream of light which comes from a dis tant source 
in radia l direction. Therefore we m u s t seek a coordinate frame in which such a 
D O P P L E R shift e f fec t is absent, a n d this will cer tainly be the case if we can 
choose the system so that the radial velocity of light at every spatially f ixed 
p o i n t is constant in time. In t e r m s of the met r ic tensor (11) we have t he 
condit ion that 

(31) F, + A + я , + 2 F . + = 0 

for all X. It is n o t altogether obvious that equat ion (31) can be satisfied a t 
all . But if we subs t i tu te the expressions (26)—(30) into (31) we get 

(32) (3 a , - y,) - Ц sin (2x + ft) - - - - cos (2 X + ft) 
4 Xs 2 Xi 

= 0 

a n d we see t h a t (32) holds provided that y, is determined f rom 

(33) y, = 3 a , (i = 1 , 2 ) . 

There is ano ther circumstance which favours this selection of y,: as 
seen from (27), i t is the only va lue of y, which leads to a 1/x2 law of decrease 
of the gravi ta t ional potential (hence also of t h e periodic acceleration) for large 
т . We have therefore good reason to believe t h a t (33) is the physically most 
acceptable va lue of y,. 

It is in teres t ing to compare (33) wi th the value obta ined for y, in a 
harmonic coordinate system. I t can be shown that the harmonic condition 

(34) J э* - Г ( Д ! ^ = ° = 2 ' 3 ) 

|U=0 " • > . / /=0 /. = 0 ' < " ' 

leads to the equat ions 

(35) -x2(K" - PD + 3 x(K\ - P\) + 2 х2(К, - P,) - P, = 0 , 

(36) X 2 B'l + 2x B\ + 4z 2 B, — 2 Bt + 4 С, = 0 , 

(37) x2C"t + 2 z C ; . - F 4 : r 2 C ( . — 1 2 C , = 0 
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F r o m the last equa t ion it follows t h a t xv*Ct is a Bessel f unc t i on of 
7 

order + — in 2x; bu t as C, cannot be of order x~4 for small x, it must be of 
2 

the form 

C, = 0,-
15 

8 . r 4 

sin 2 x -f-
+ 1 

4 a'3 x 
cos 2 x 

From (36) we find t h a t xVl Bt = — — xx/ï С, plus a Bessel function of order 
5 

3 
± — which is admissible as it behaves well both for small and large x. Thus 

there is a considerable indeterminacy in the harmonic coordinate system 
due to the degenerate character of t he problem of uni form rotation. The 
indeterminacy will be removed in section 3 where non-uniform rotat ion is 
considered. We shall f i nd t h a t the correct determination of Bi and C, is such 
t ha t 

(38) B't --l-Bt + P, = 0 , Cj = 0. 
x 

Hence ВI ф 0 and the harmonic system is not s ta t ionary. With the above 
determinat ion, equations (19), (20) and (22) take the simple form 

(19*) 1 p, = D, - - F j , 
2 2 

(20*) Я, = F-t - P,, 

(22*) L, = E,. 

Final ly (35) gives wi th (24) 

1 1 
(39) K, = a, 

2 x3 
sin (2 x + A) + - -cos (2 x + ßi) 

plus a t e rm x~5l2 J , where -/, is a Bessel-function of order — in 2x: I t will be 

found t h a t in the correct f r ame this last p a r t vanishes and K t is given by (39). 
Comparing with (26) we f i n d tha t Q, = 0 and 

(40) Yt = 2 ai • 

An a t t rac t ive feature of the harmonic f rame is t ha t i t leads to a pa r t i -
cularly simple form of the solution, viz., 

(41) P,, Et = F, = 0, 

as seen easily from (19*), (20*), (22*), (27)—(30) and (40). On the other h a n d 
it gives y( = 2a , instead of (33), and in view of the previous discussion it is 
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n o t very likely t h a t an actual observer will accept the harmonic frame as a 
suitable coordinate system. 

To represent outgoing waves only a n d to suit the given initial condi-
71 

t ions for small r, we set ßt = 0 , ß2 = " -, oq = 2<ц = 2 M ; i t gives 

!7oo = 1 — 2 / г r 
- l 3 e3 Mr~3 11 

(42a) 
cos2 б 

— 3 £ M cos2 в [r~3 cos 2 (co(r - t) -f <p) + 2 ы r~2 sin 2 (co(r — t) + 9?)] 

in the "visual" frame (33) a n d 

3 

(42b) 

+ 3 e M cos2 в 

! ? o o = 1 - 2t*r~ 

4 
3 

3 £3 Mr~3 
1 - cos2 0 + 

3 j cos 2{w(r — t)-\-<p) - 2 ft) r '• sin 2 (oj(r — t)-\-<p) 

in the harmonic frame (40). Bo th represent a potential wave spreading radi-
ally outwards with phase velocity 1, i. e. wi th the velocity of light. 

In the wave zone (large r) the dominan t periodic t e r m of the potent ia l 
in the two coordinate sys tems is 

(43a) 

and 

(43b) 

I/0 = 3 e Mr-3 cos2 д sin 2 (w(r —t) + <p) 

Uh = — 2 e M со2 r-1 cos2 в cos 2 (со(r — t) + q>) 

respectively. A p a r t from a difference in phase lag as compared with the po ten-
t ia l near the body, the ampl i tudes of the two potentials have quite d i f ferent 
orders of magni tude, 5 and we have a s tr iking illustration of the fact, implicit ly 
contained in the principle of equivalence, t ha t one canno t make object ive 
statements on gravi tat ional forces wi thout considering the physical (non-
mechanical) features of t h e environment a t large. A local gravitat ional cri-
terion such as the harmonic condition can hardly influence in a decisive 
manner the selection of t h e physically most acceptable coordinate system. 

§ 3. Non-uniform rotation 

We shall drop now t h e assumption of constant a> a n d consider a non-
uniform (accelerated) ro ta t ion of the ellipsoidal body. The purpose of tli6 
discussion of this more general situation is to find out a b o u t the propagat ion 
of gravi tat ional signals (as dist inct from the phase propagat ion of pure waves), 
independently of auxiliary conditions; in point of f ac t we can regard t h e 
variable angula r velocity as an information to be t r ansmi t t ed to the observer 
through gravi ta t ional waves. 

We assume tha t the Newtonian potent ia l outside a n d not very far f rom 
the rotat ing body is given b y (3) and (5) where m is now a function of t. To f i n d 

5 Both decrease much slower than the Newtonian ampli tude which is of order r 3. 
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out the general form of a good line element corresponding to this assumption 
we shall make use of t he results obta ined in the previous section. 

We f i rs t note t h a t the solution (25)—(30) for the line e lement (11) 
with constant со can be wri t ten in the form 

(44a) g,,, = 1 - 2/г r~i - v, r> 

(44b) g,n = Zk 6, r>-3 ep(Hp Apn)W + 27, с, т>-*(Щ)Ы f „ , 

- SW = àmn + 2 fi r - 1 im f „ + 27, dx r>~3 ер(Щ)т ômn + 

+ к r'~z ep {(Hp Apm)W £n + (Hp Apn)W U + 

+ E % g y - 3 e p ( A p m A J W 

(44c) 

where the coefficients bx, . . ., vk are constants ( = 0 for A > 2) and Apk is 
given by 

A, = (cos(cu t — cor), sin(cu t — cu r), 0) 

(45) A2 = ( — sin (cud — eu r), cos(cui — cu r), 0) 

A 3 = (0, 0,1) 

instead of (5). Thus Apk, Hp are regarded as functions of t — r (and of xk) 
and the symbols ( )h) s tand for derivatives with respect to t — r. 

In this form the line element is suitable for immediate generalization 
to the ease when со is variable. As we expec t a re tarded dependence on t, 
we assume t h a t cu is a funct ion of t — ßr where ß~x is the velocity of propaga-
tion to be determined. Substi tut ion in the Einstein equat ions gives a n u m b e r 
of recursive relations for the coefficients b}, ..., vk, which however t u r n out 
to be incompatible with the boundary conditions bx — 0, . . , , » , = 0 for 
A 7> 2, except when ß = 1. In tha t case t h e equations can he satisfied with 
the following system of coefficients (all others are zero) 

(46a) e0 = 5 (v0 — d0), f0 = — 4 v0 + 2 d0 + 3 bk — 2 cx , 

2 4 
9o = 2 vo — ~ do - 2 b1 + — Cy , 

о о 

2 1 2 
v1 = v0, d1 = -v0+--d0-—c1 + 2c;t, 

О О О 

7 8 4 
(46b) e, = — (v0 — d0) + — (с, — 3 c2), gx = — v0 — 2 6 2 , 

8 2 4 
к = - — vo + -d0 + \ - — et + 2b2 + 2c2 , 

О О О 
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(46c) v2 = ~ d0 - 2 cv d2 = * v0, e2 = - (v0 - d0) + 2 (cx - 3 c 2 ) , 
»5 о о ó о 

2 2 
/ 2 = — - v o + 62> fifa = q> 

where 

(47) «о = 3 M 

a n d d0, bv c,, b2, c2 are a rb i t ra ry constants. T h e fact tha t such a solution exis ts 
a t all can be t a k e n as suff icient ly strong indicat ion t h a t we have found an 
appropriate coordinate system. Since the solution definitely requires ß — \ , 
we conclude t h a t variations of со are t r ansmi t t ed to the observer with t h e 
velocity of l ight . 

We can sa t is fy condition (31) by se t t ing d0 — b1=c1=b2=c2 = 0; 
i t gives 

(48a) g00 = 1 — 2 / 1 r " 1 - 3 Mr~3 ep Щ - 3 Mr~* ep(H2)', 

(48b) </on = 0 , 

a n d the expression (44c) for gmn with 

d1 = 2 i f , d2 = i f , 

(49) e0 = 15 M, e, = 7 i f , e2 = i f , 

/о = - 1 2 i f , Д = - 8 i f , /2 = — 2 i f , 

9-0= 6 i f , gq = 4 i f , g2 = 2 M. 

Again we f i n d a n ,—2 law of decrease of t h e time-variable pa r t of the grav i -
tational po ten t ia l , and in f ac t (48a) goes in to (42a) when со is constant . 

In comparison, the harmonic condit ion (34) yields t h e values d0 —- v0, 

fej =b2= — v0, cx = c2 = 0 in (46), hence 

(50a) 900 = 1 - 2 /1 r - 1 - 3 i f , - 3 ep Я 2 - 3 i / r ~ 2 ср(Я2) ' - i f / - 1 е р (Я 2 )" , 

(50b) g0m = 2 Mr-2 Ep(Hp ApmY + 2 i f , - 1
 £ р (Я р A p m ) " , 

- 9 W = ômn + 2 i " Sm l „ + 

(50c) + [3 Mr-3 ep Я 2 + 3 i f c - 2 £P (H2)' + M r - 1 £ р(Я 2)"] á m n + 

+ 2 Мг-*ер(Арт Арп)" . 

If со is cons tan t , the solution goes into t h e system (41) and leads to t he deter-
mination (38) of Я, and Cj. 

(Received November 1, 1959.) 
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О РАСПРОСТРАНЕНИИ ГРАВИТАЦИОННЫХ ВОЛН 

G. S Z E K E R E S 

Резюме 

Автор в настоящей работе исследует распространение гравитационных 
волн, порожденных вращающимся с постоянной угловой скоростью телом 
эллипсоидной формы в четырехмерном римановом пространстве общей теории 
относительности. Исследования он производит в системе координат, опреде-
ленной свойствами симметрии проблемы, и в гармонических координатах, 
введенных Фоком. Полученные в результате волны приближенно являются 
сферическими, распространяющимися со скоростью света. Однако в д в у х 
системах координат вид волн и скорость уменьшения амплитуды оказываются 
различными. Наконец, автор производит исследование и в случае вращаю-
щегося с переменной угловой скоростью тела эллипсоидной формы. 
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