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§ 1. Introduction

The study of gravitational waves in general relativity suffers from an
inherent difficulty which arises from the principle of equivalence and the
corresponding lack of definitiveness of coordinate systems. If other aspects
of the surrounding Universe are disregarded, it is quite possible to produce
gravitational waves (even under perfectly flat conditions) by introducing
suitable spacetime coordinates, and the objectivity of wave phenomena
depends partly on the objectivity with which one can select a reliable coordi-
nate system. The difficulty affects both the dynamical and kinematical
aspects of wave propagation. Since field energy can only be calculated from
the well known pseudotensor, it is impossible to make precise statements
concerning the amount of energy transferred by gravitational radiation unless
the coordinate system is specified; and the same is true for statements on
the propagation of gravitational signals.

For the case of weak fields, EINSTEIN himself proposed a solution in
the early days of relativity. EInsTEIN showed that if there exists a coordinate
system in which deviations from the Minkowskian values are everywhere
small then one can select by means of suitable auxiliary conditions a class
of reasonably good almost Minkowskian coordinate systems in which gravita-
tional signals propagate with the velocity of light. The idea of auxiliary
conditions has been exploited with great success in recent times, particularly
by V. Fock and his school. Fock calls a coordinate system harmonic? if it
satisties

3
L )
(1) )O vy ((—g):g™) =0, g = detyg,,, (*=0,1,2,3);
=

it is usually possible to satisfy these conditions, and the coordinate system
so obtained has some rather attractive properties, particularly where wave
propagation is concerned. One of these properties is that under ordinary
circumstances and suitable boundary conditions at infinity, harmonic coordi-
nates are uniquely determined, apart from the arbitrariness of a Lorentz
transformation. Hence the suggestion, put forward by Fock, that harmonic

1U;{rersity of Adelaide, South Australia.
2 For a concise account see V. Fock, Rev. Mod. Phys. 29 (1957), 325—333.
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coordinates should have the same status in general relativity theory as inertial
frames have in special relativity.

It is not altogether easy to assess the correct significance and position
of the harmonic condition (1) within the framework of general relativity.
Superficially, it resembles the famous Lorentz condition on the vector poten-
tial in electrodynamics which is essentially a mathematical device to obtain
solutions of the field equations in a convenient form. But whereas the Lorentz
condition has no influence on the (physically observable) electromagnetic
field forces, the harmonic condition is to characterize a class of “natural”’
frames of reference in which for instance gravitational energy changes can
conveniently be represented. But when a physicist chooses a space-time
coordinate system to describe gravitational effects (e. g. in the solar system),
he will mainly be guided by visual considerations such as observations of the
position of distant stars or measurements of DoppLER shift in the radiation
from these distant sources. Now there is no a priori reason why this “visual”
frame should satisfy the harmonic condition, and in the present paper we
shall discuss a situation where the two coordinate systems (namely the visual
and the harmonic) are definitely not identical.

In this connection it is interesting to note that the Schwartzschild
frame, which is most commonly used to describe the centrosymmetrical sta-
tical field because of its formal simplicity, does not satisfy the harmonic
condition. Of course the centrosymmetric harmonic frame with the line

element
e
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is physically just as acceptable and leads to the same ohservational effects
as the Schwartzschild line element

2u AT
1 ——fdit ————dr2 — da .
i 24

But beyond this assertion the harmonic system does not offer any particular
advantages.

This example shows at any rate that under suitable circumstances sym-
metry conditions can be quite an effective substitute for auxiliary conditions.
The intrinsic strength of symmetry conditions is that if they are applicable
to all, they are comparatively immune to objections; if a configuration admits
certain geometrical symmetries, it seems to be sound philosophy to use a
coordinate system which exhibits these symmetries.

In the present note we shall use this principle to examine the existence
and propagation of pure gravitational waves, in the special case of a rotating
ellipsoidal body. The inherent symmetries of this model enable us to guess
the general form of an adequate line element with reasonable certainty, and
it will be possible to obtain a reliable picture of the generated waves without
imposing the harmonic condition. As expected, we shall find spherical (or
almost spherical) gravitational potential waves spreading out with the velo-
city of light, but the form of the waves and in particular the law of decrease
of their amplitude, will depend quite essentially on whether the visual or the
harmonic frame is used.
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§ 2. The rotating ellipsoid

We consider an ellipsoidal body of gravitational radius x and principal
semi-axes a (1 + &), a (1 + &), a (1 + &), & 5 &,

(2) 81+82+83:0v

which rotates with constant angular velocity @ about the axis of a (1 + &,).
The velocity of light at infinity is taken to be 1. In order to avoid the complexi-
ties of an exact solution, we assume that the eccentricities ¢, are small and
neglect all quantities in which &} or w?u?e, appears. These approximations
are quite adequate for the purpose of flndmg out the essential characteristics
of the generated waves. Occasionnally we shall refer to “small” values of r;
by this we mean that o, is small. Otherwise no restrletlon will be placed
on the angular velocity itself.

With the above mentioned approximation the Newtonian potential
outside the body at rest is

3 3
V= ufr+M* e, Hy.
p=1

(3) b
= 3 Apb Si=gyr,
k=1

where M is the moment of inertia of the ellipsoid about its axis of rotation
and

A,=(4,,4,,4,), p=1,2,3

are mutually perpendicular unit vectors in the directions of the (body-fixed)
principal axes. Suffices such as m, n, p will always appear in the lower position
and run from 1 to 3; the time suffix 0 will usually be written out separately.
The summation convention will only be used in conjunction with e, (or &}
defined below) and then in a rather unconventional manner: the index is

3
required to appear three times in the term. Thus ¢, H, 4, denotes > ¢, H,4,,

ptp“ipm :
pP=
3
and ¢, H3 denotes2 e,H,H . On the other hand ¢,H,, ¢§, are not to be
p=1
summed for m. Note that
3 3
(4) Tl .= ¥ eep
m=1 p=1

because of the orthogonality of the A, and the normalization (2).
If the x,-axis is placed in the direction of the (space and body-fixed)
rotation axis and the time origin is suitably chosen we can set

(5) A, = (cos wt, sinwt, 0), A, = (— sin wt, cos wt, 0),

A;=(0,0,1)
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hence
1 1 :
= E(é"% + &) + E(E% — &) cos 2wt + & &, sin 2 wt
e — 10 s & 1 2 2 9 :
3= 5(51 &8 — ;(51 — &) cos2wt — &, &,sin 2 wf
== £§ D
and
(6) g, HE = e} &2 -+ & cos? O cos 2(p — wi)
where
(7 31232:5(81‘{‘82)’ 3—83"‘1—-7(81*82)
and
(8) L =cosgcos @, & =sinpcos O, & =sinb.
Note furthermore that
3 1
(9a) g, HY = o% Sf’_lwz £, (H3)
1 i
(gb) EPHP Apmzer’,';fm——&w»éep(HpApm)
IR WAL= T UNEE. S VY L
(90) €p pm “tpn — ’2_ (Em + En) mn ~ 4 ()2 p( pn)
where (-) =9/0t. Hence
(10a) %H%“z=—4meupy
and similar expressions for e 3 Gkl A0

To obtain the most general form of a coordlnate system with symmetries
appropriate to the problem, we employ the following device: We set tenta-
tively

900:1'—'217’ gOn:O’ gmn:'"é

mn

where V is given by (3), and calculate the Riccr tensor. In order to be able
to satisfy EINSTEIN's equations, we must clearly allow the metric tensor
to contain all types of terms which appear in the Riccr tensor. This conside-
ration finally leads to the following assumption:

(11a) goo=1—2pr1 —3 Mr3ef —o? Vlep(Hf,)' — WV, ep(Hf,)",

(llb) gﬁn = w? Bl sp(Hp Apn). + w B2 Ep(Hp Apn)“ + CU2 Cl gp(Hg). fn +
+ w Cye,(HY &,
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o G == O -+ B 76, o DTS £ O, - B ™ B ety
4 For¥e s+ a0, & 1 Gortlef 4 ef) 0, +
+ w2 D, sp(Hf,)' Opmn + @ D, ep(Hf,)" Omn +
{11c) o8 e (l8) 56, wle (i) &5, +
+ @ Fe[(Hy Apy) &, + (Hy Ayy) 6] +
toF,e(HyAdpy)' & + (Hpdp) &n] +
+ ot e (Ao d,) + o Ce(d A,) ",

where D, ..., G, are constants and B;, B,, ..., V, are functions of wr. Hence
9B,/or =wBj] etc.

Strictly speaking one ought to add a term of the form 2Mr—22, to the
expression for g,, where 2, = —¢,w, 2, = ¢, 0, 2; =0 to take into account
the motion of the rotating matter relatively to the coordinate frame® but it
can be omitted as it has no relevance to our problem. We may imagine the
field created by pulsation rather than actual rotation in which case the term
does not appear at all. Also terms containing (u/r)* have been omitted as
they have no effect on further calculations.

The amount of arbitrariness of the coordinate system is expressed by
the transformation

(12a) t=t+ 2T e,(H2) + o Tye,(HY)",

(12b) Xy =Ty + 02 M ep(Hp Apm)' + oM, eptll, dyg) " +
+ @ N, g, (HY) &, + o Ny&,(HP) " &

where 7'}, ..., N, are functions of wr, of the same general order of smallness
as the coefficients of the metric tensor in (11). In the new coordinates

(13a) Joo = Goo — 8w Ty, (H})' + 22T e, (HY)",

[

) S ; !
Jon = g0n+w3|Tl —;)‘;T1+4A2) Ep(H%) &yt

D
(13h) ot (- 27, N eyl 8, +

(12 )

9

wr

by (10), where g4, 9o, are the same expressions in the new coordinates as they
were in the old ones; a similar formula can be obtained for g,,,. In the calcula-

~ 3J. Lense and H. Thirring, Phys. Z. 19 (1918), 156—163.
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tion of (13) we have made no distinction between differentiation with respect
to ¢ and #; this is permissible in the present approximation.

By a suitable determination of M,, N, T, ¢ =1, 2, we can evidently
achieve that g,, be time-independent and g,, = 0. However, the time-coordi-
nate corresponding to the first assumption is not likely to be useful to an
actual observer, and we prefer not to specify the coordinate system at this
stage but try to satisfy the Einstein equations

R,=0
with the general line element (11).

The computation of the Riccr tensor is straightforward but rather
tedious, and details will be suppressed. One gets a system of 14 equations
for the unknown functions B, ..., V;, which turn out to be compatible and
which can be reduced to the following system:

.’)
(14) P+ =P} — iP,-+4P,-=O
x x2
(15) H =—xP, —2P,+zK;
(16) ¥ =§w<P; 1 H)— (P, + H)
(17) V=242 K, +é~¢P; 121 — ) P

(¢ =1, 2), where
(18) ' T=owr

and the quantities P, H;, K; L, are given by

(19) T IR N S RIEL - LN
2 2 2 <@
(20) i f+ i—};Bi’T—; i3
Ot
(21) K; =6+ ;Bi >
ey 6_____
(22) L=E+20;—_C,
with
— e P il - sl 1
(23) B,=B, B,=——_B, (=0 C=—_0.
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Equation (14) shows that 2% P; and 2% P, are Bessel functions of,

22 of order j:% ; therefore

1 3 5 3 y
———:1—:1;—3]81n(2x+/3,~)+é;;—zcos(Zx—{—‘Bi)], 7 =1,2,

(24) O a,.[
x

where a;, f; are integration constants. P; is the only combination of the field
quantities which can be determined from the equations independently of the
arbitrarniness of the coordinate system. The others depend on three pairs
of arbitrary functions, namely B;, C; and G;, corresponding to the free choice
of M;, N; and T, in (12). We can dispense with the first two by setting

it gives g,, =0, that is a stationary coordinate system.* Thus we are left
with a pair of free functions G; and G,; the only restriction on these functions
is that they should vanish sufficiently rapidly at infinity.

In order that V, vanish at infinity, we must have by (17) and (24)

K== a,.[lsin(m b —1—200s 2z + /3,-)]—
X ;

x
~E—y’¥-sin(2x+,3,-) +9—"
3 22

2
(26) 4 x

where @; — 0 for # — oo and y, is a constant. For clarity we have separated
out the part with y, from @;; the latter can then be regarded as an “aperiodic”
part whose appearance is due to an inappropriate choice of coordinates.
By setting @, = 0 and substituting (25), (26) into (15)—(22), we get

: L5 e 3
(27) V,_ai[gx e b n(2z+p,) ——4—00s Zx-}—ﬂ)]——z-;sm(Zx—i—ﬁi)
D,v:on,.[L sin (22 + f;) +—?coq 2x—{—/31]
2 8.76
(28)
Tit= Vs ;;13 sin 2z + B;) — i%g cos (2x + ﬂi)]v

29) Li=Q2o—y) l [“ =a + e

2%

sin (22 + f,) —;—L cos (2x + f,) J

H{,:._a'_ l+i
4 23

x

itk (5 & ) +Lcos(2x+ﬁ,~>]+
2 x2

(30)

3
Pl s eatp)— s eat g

4 We shall find later that the harmonic condition leads to a non-zero determination
of Bi. The obvious advantage of stationary coordinates is that it allows a clear separation
llfl‘tcb“spaoe” and “time”. The potential function V; itself is not affected by the choice
O i
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The most interesting feature of the solution is the appearance of the
constant y; in the expression for V.. It means that the observed fluctuation
of the gravitational potential depends significantly on the selected value of
y; and its determination must be regarded as a physical problem rather than
a matter of mathematical convenience.

Fortunately it is possible to fix the coordinate system on physical grounds,
in spite of the principle of equivalence, because of the near-centrosymmetry
and one-body character of the problem which allows us to localize the source
of oscillations at the origin. Clearly a good coordinate system is one which
does not take part in the radial oscillations of the gravitational acceleration.
Now any oscillation of this kind can be detected visually, by observing varia-
tions of DoppLER shift in a stream of light which comes from a distant source
in radial direction. Therefore we must seek a coordinate frame in which such a
DorprLER shift effect is absent, and this will certainly be the case if we can
choose the system so that the radial velocity of light at every spatially fixed
point is constant in time. In terms of the metric tensor (11) we have the
condition that

(31) Vo D2 B 4 08 8 =D

for all z. It is not altogether obvious that equation (31) can be satisfied at
all. But if we substitute the expressions (26)—(30) into (31) we get

(32) Ba, —y,)[lwqm(2w+ﬁ, o >x+ﬁ>
.T

and we see that (32) holds provided that y; is determined from
(33) ¥ =3 a (t=1,2).

There is another circumstance which favours this selection of y;: as
seen from (27), it is the only value of p; which leads to a 1/22 law of decrease
of the gravitational potential (hence also of the periodic acceleration) for large
. We have therefore good reason to believe that (33) is the physically most
acceptable value of y,.

It is interesting to compare (33) with the value obtained for y; in a
harmonic coordinate system. It can be shown that the harmonic condition

3 3 3

i j4 1
34 L= il =) (y=—=10:1.2,3)
el e
p= ; n=0 4i=0
leads to the equations
(35)  —ai(K]—P))+82(K|—P)) + 2%K, — P) — P, =0,

(36) 2B+ 2x B +422B,—2B,+4C, =0,

(37) 22074+ 220;+422C;, —12C,=0.
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From the last equation it follows that 2" C; is a Bessel function of

order i-;— in 2z; but as C; cannot be of order —* for small z, it must be of

the form
@ =, el sin 2 x + ——li—{— cos2zx|.
Bk .o 2 423
2
From (36) we find that =" B, = — g % O, plus a Bessel function of order

:t% which is admissible as it behaves well both for small and large . Thus

there is a considerable indeterminacy in the harmonic coordinate system
due to the degenerate character of the problem of uniform rotation. The
indeterminacy will be removed in section 3 where non-uniform rotation is
considered. We shall find that the correct determination of B; and C, is such
that

Tt
(38) B;——B;,+P;=0, C;=0.

x
Hence B; = 0 and the harmonic system is not stationary. With the above
determination, equations (19), (20) and (22) take the simple form

(19%) A P,:D,—%F,.,
(20*) Hi:Fi_Pi’
(22%) Lit. .

Finally (35) gives with (24)
il

| x 2 2%

(39) K =0, ’

sin (2x + ;) + }; cos (22 + ﬁi)r
x

plus a term 252 J; where .J; is a Bessel-function of order g in 2z: It will be

found that in the correct frame this last part vanishes and_K,- is given by (39).
Comparing with (26) we find that @, =0 and

(40) ‘ =2

i

An attractive feature of the harmonic frame is that it leads to a parti-
cularly simple form of the solution, viz.,

l

(41) Vi:-Di:%P" E‘-—_—ZFI-:O,

as seen easily from (19%), (20%), (22%), (27)—(30) and (40). On the other hand
it gives y; = 20, instead of (33), and in view of the previous discussion it is
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not very likely that an actual observer will accept the harmonic frame as a
suitable coordinate system.
To represent outgoing waves only and to suit the given initial condi-

tions for small », we set 8, =0, §, = o, =20, =2M; it gives
2

“

Joo=1—2ur—1 — 3¢, Mr—3 (1 — Z—(:oszﬁ

(42a)
—3¢& M cos?0[r3cos 2 (w(r —t) + @) + 2w r~2sin 2 (o(r —1) + ¢)]

in the “visual” frame (33) and

Joo=1—2pur1—3¢e Mr3 ll - —3—00320] -
(42b) g 7
+ 3eMcos20 I [% 0yl — r-3] cos 2w (r —t) +¢) — 20 r=2sin2(o(r — t)—{—(p)j
in the harmonic frame (40). Both represent a potential wave spreading radi-
ally outwards with phase velocity 1, i. e. with the velocity of light.

In the wave zone (large r) the dominant periodic term of the potential
in the two coordinate systems is

(43a) Uy=3eMr—2cos?0sin 2 (o(r —t) + ¢)
and
(43b) Up=--2¢eM w?r~1cos?0 cos 2(w(r —t) 4 ¢)

respectively. Apart from a difference in phase lag as compared with the poten-
tial near the body, the amplitudes of the two potentials have quite different
orders of magnitude,® and we have a striking illustration of the fact, implicitly
contained in the principle of equivalence, that one cannot make objective
statements on gravitational forces without considering the physical (non-
mechanical) features of the environment at large. A local gravitational cri-
terion such as the harmonic condition can hardly influence in a decisive
manner the selection of the physically most acceptable coordinate system.

§ 3. Non-uniform rotation

We shall drop now the assumption of constant w and consider a non-
uniform (accelerated) rotation of the ellipsoidal body. The purpose of the
discussion of this more general situation is to find out about the propagation
of gravitational signals (as distinct from the phase propagation of pure waves),
independently of auxiliary conditions; in point of fact we can regard the
variable angular velocity as an information to be transmitted to the observer
through gravitational waves.

We assume that the Newtonian potential outside and not very far from
the rotating body is given by (3) and (5) where ® is now a function of £. To find

5 Both decrease much slower than the Newtonian amplitude which is of order »-3.
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out the general form of a good line element corresponding to this assumption
we shall make use of the results obtained in the previous section.

We first note that the solution (25)—(30) for the line element (11)
with constant o can be written in the form

(44a) Joo=1—2pr"1— 2,0, 3¢,(H)W.
44b) Gon =230, " 3e,(H, A,p)P + Zy 0, "3 HHD &,
on MM P P2 P

— Ymn = 6’"" & 2 F‘r_l fm §n + EA d}. g SP('HIZJ)(A) 6mn +
S e (HYHNDE, & +

B B e, L, A8, + (H, A,)0 8, +
+ Zy g ri e, (A Ay)H
where the coefficients b,, ..., v, are constants (=0 for 4 > 2) and 4, is
given by
A, = (cos(wt —wr),sin(wt —wr),0)
(45) A, = (—sin(wt — o 7), cos(wt — wr),0)

Az = (0,0,1)

instead of (5). Thus 4,,, H, are regarded as functions of t —7 (and of z,)
and the symbols ( )@ stand for derivatives with respect to t — .

In this form the line element is suitable for immediate generalization
to the case when w is variable. As we expect a retarded dependence on ¢,
we assume that o is a function of £ — fr where =1 is the velocity of propaga-
tion to be determined. Substitution in the Einstein equations gives a number
of recursive relations for the coefficients b,, ..., v,, which however turn out
to be incompatible with the boundary conditions b, =0, ..., v, =0 for
A > 2, except when f = 1. In that case the equations can be satisfied with
the following system of coefficients (all others are zero)

ee=>5(—dy), fo=—4v+2dy+3b —2¢,

(46a)
2 4
=2v, ——dy —2b —Cys
Jo 0 g %0 1+3 1
2 1 2
v, =0, 4, =—0, —ds——¢c,+2¢s,
1 ) 1T o+3 0T g 2
T 8 4
(46b) elzg(vo—do)+§(cl—3cz), glz—s—vo—2b2,

8 2 4
f1=—Evo+*§do+bl—§cl+2b2+262,
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2 1
(46¢) V= ——dy— ¢, dy= 3 vy €y = (Vg —dg) + (¢, — 3¢,
2
o e (/2:3'7“0
where
(47) v,=3M

and d,, by, ¢, by, ¢, are arbitrary constants. The fact that such a solution exists
at all can be taken as sufficiently strong indication that we have found an
appropriate coordinate system. Since the solution definitely requires g =1,
we conclude that variations of w are transmitted to the observer with the
velocity of light.

We can satisfy condition (31) by setting dy =b, =¢, =b, =¢, = 0;
it gives

(48a) Joo=1—2pr=2 — 3 Mr%g, H} — 83 Mr—2¢,(H}),
(48h) Jon =10,

and the expression (44¢) for g,,, with

=28, dy=M,
(49) co—=A48.M, e, =TM; e, =M,
fb=—12M, (=—8M, f,=—2M,
Jo=106M, gl =4 M, g, =20,
Again we find an 72 law of decrease of the time-variable part of the gravi-
tational potential, and in fact (48a) goes into (42a) when  is constant.
In comparison, the harmonic condition (34) yields the values d, =v,,
by =bs :»gr Doy 6 = 0y = 0 in. (46), hence

«

(508) geo=1—2prt—3Mr2e, H —3 MrP¢(H}) — Mrg(H})",
(50b) G —2 Mr—2e (H 4, + 2 Mrre (H, 4d,,)"

—9Imn = 6mn 1 zaur—l‘smsn i
(50¢) (3 Mr=3 e, H} -+ 3 Mr2z, (H2) + Mr—"e,(H2)"] 8, +
+ 2 Mr2e (A, 400"

If w is constant, the solution goes into the system (41) and leads to the deter-
mination (38) of B; and C,.

(Received November 1, 1959.)
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0 PACITPOCTPAHEHUHU TPABUTALIMOHHBIX BOJIH
G. SZEKERES

Pe3siome

ABTop B Hacrosueil pabore uccieayer pacnpocTpaHeHue I'paBUTALHMOHHBIX
BOJIH, NOPOK/EHHBIX BpAILAIOLMMCST ¢ NOCTOSTHHON YIJ0BOH CKOPOCTBIO TEJIOM
3JUIUIICOMHOM (OPMBI B YeThIpEXMEPHOM PUMAHOBOM IpOCTPaHCTBe 00111eii Teopun
OTHOCUTENILHOCTH. VccieoBaHusl OH NPOU3BOIUT B CHCTEMEe KOOPJMHAT, ONpeje-
JIEHHOH CBOMCTBaMM CUMMETPUHM TPOOJEMBI, M B IapMOHMYECKHUX KOOpAMHATAX,
BBeJIeHHBIX POoKOM. [TonyuyeHHbIe B pesysipTaTe BOJIHBI NPUOJIMIKEHHO SBJISIOTCS
chepryecKUMH, pacnpoCTPAHSIOLIUMUCS €O CKOPOCThI0 cBeTa. OpHAaKoO B ABYX
CHCTEMax KOOP/AMHAT BUJL BOJIH M CKOPOCTH YMEHbILEHHUS aMITJIATY JIbl 0Ka3bIBAXOTCSI
pasiuunbiMUd. HakoHel, aBTOp NPOM3BOAUT MCCJIel0BaHMEe W B Cllyyde Bpaullalo-
LIEerocst ¢ IepemeHHOH yriloBOoH CKOPOCTBLIO Tesla 3JUIMICOUAHOM (OopMBbI.
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