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Introduction 

Our aim is to s tudy the probable structure of a random graph Гп N 
which has it given labelled vertices Pv P2, ..., Pn and N edges; we suppose 

71 
t ha t these N edges are chosen a t random among the possible edges, 

so t h a t all = Gn дг possible choices are supposed to he equiprobable. Thus 

if G„ N denotes any one of the CnN graphs formed from n given labelled points 
and having N edges, the probability t h a t the random graph Гп N is identical 
with Gn N is ~ — , If Д is a property which a graph may or may not possess, 

w ?e denote by PnN (A) the probability tha t the random graph P n N possesses 
A 

the proper ty A, i. e. we put P„ v {A) = - n,N where AnN denotes the 

number of those Gn N which have the property A. 
An other equivalent formulation is the following: Let us suppose tha t 

n labelled vertices Plt P2, . .., Pn are given. Let us choose a t random an edge 
71 

possible edges, so t h a t all these edges are equiprobable. After 

n 
— 1 edges, and 

among the 
2 

this let us choose an other edge among the remaining ^ 

continue this process so t h a t if already /с edges are fixed, any of the remaining 

I n \ — к edges have equal probabilities to be chosen as the next one. We shall 
' 2 J 
study the "evolution" of such a random graph if N is increased. In this investi-
gation we endeavour to f ind what is t he "typical" s tructure a t a given stage 
of evolution (i. e. if N is equal, or asymptotically equal, to a given function 
N(n) of n). By a "typical" structure we mean such a s tructure the probability 
of which tends to 1 if n —*• + 0 0 when N = N(n). If A is such a property 
tha t lim Pn jv(n)(-^) = L we shall say tha t „almost al l" graphs Gn N(n) 

П— + 00 
possess this property. 

1 7 

2 A Matemat ika i Kutató Intézet Közleményei V. A/ l—2. 
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The s tudy of the evolut ion of graphs leads to ra ther surpr is ing results. 
F o r a number of f u n d a m e n t a l s t ruc tu ra l proper t ies A there exists a funct ion 
A(n) tending monotonical ly t o + 0 0 for -f 0 0 such t h a t 

(1) H m P „ , N ( n ) M ) = 

0 if 

1 if 

lim ™ = 0 
Л - + CO A ( n ) 

г
 N ( n ) 

l im — — - - +< 
П- + 00 A(n) 

If such a func t ion A(ri) exists лее shall call i t a "threshold function' of t h e 
p r o p e r t y A. 

In many cases besides (1) i t is also t r u e t h a t there exis ts a probabi l i ty 
d is t r ibut ion f u n c t i o n F{x) so t h a t if 0 < x < + ° ° a n d a; is a po in t of conti-
n u i t y of F(x) t h e n 

(2) lim P„,M„)(^)= F(x) if 
N(n) 

lim = X . 
1-.+ CO A{n) 

If (2) holds we shall say t h a t A[n) is a ,,regular threshold function" for t he 
p r o p e r t y A a n d call the func t ion F(x) the threshold distribution function of t he 
p r o p e r t y A. 

For cer ta in propert ies A the re exist two funct ions A^n) and A2(n\ 
A Ы) 

b o t h tending monotonical ly t o + for 7i->- + a n d sa t i s fy ing lim 2 

such tha t 
Л — + » Афп) 

= 0 , 

0 if 
N(n) - Ax{n) _ 

(3) lim P n , N M ( A ) = 
ÎÏ-+- + со 

Clearly (3) implies t h a t 

(4) l im P n M n ) ( A ) = 

lirn 
A2(n) 

if H m т ^ л ы = + o o_ 
A2(n) 

0 if 

1 if 

l im sup < 1 
" - + « Афт) 

, N{n) 
l im inf - > 1 . 

Л - + » 4 1 ( n ) 

If (3) holds we call the pa i r (H 1 (w) , A2{n)) a pa i r of " s h a r p threshold''-functions 
of the p r o p e r t y A. I t follows f r o m (4) t h a t if (Афп), A2{n)) is a pair of s h a r p 
threshold func t ions for t h e p r o p e r t y A then Афг) is an (ordinary) threshold 
funct ion for t h e proper ty A a n d the threshold dis t r ibut ion funct ion f igur ing 
in (2) is t he degenerated d is t r ibut ion func t ion 

Fx{x) = 
for 

for 

X ^ 1 

X > 1 
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and convergence in (2) takes place for every x =j= 1. I n some cases besides 
(3) it is also t rue t h a t there exists a probabili ty distribution func t ion G(y) 
defined for — °°<y< + 0 0 s u ch t h a t if y is a point of continuity of G(y) then 

(5) lim P m M n ) ( H ) = G(y) if lim - ( й ) - ~ = y . 
П — +а П— A 2 (n) 

If (5) holds we shall say t h a t we have a regular sharp threshold and shall call 
G(y) the sharp-threshold distribution function of the property A. 

One of our chief a ims will be to determine t he threshold respectively 
sharp threshold functions, and the corresponding distribution func t ions for 
the most obvious s tructural properties, e. g. the presence in Г N of subgraphs 
of a given type (trees, cycles of given order, complete subgraphs etc.) fu r the r 
for certain global propert ies of the g r a p h (connectedness, total n u m b e r of 
connected components, etc.). 

In a previous paper [7] we have considered a special problem of this 
type; we have shown t h a t denoting by С the proper ty t h a t the graph is con-
nected, the pair Сг(п) = - n log n, C2(n) = n is a pa i r of strong threshold 

2 
functions for the p roper ty C, and the corresponding sharp-threshold distri-
bution funct ion is thus we have proved1 t ha t pu t t i ng 
N(n) = y n log n -f у n-\- o(n) we have 

(6) lim P n M n ) (C) = ( - со < y < + oo). 
Л—- -f- » 

In the present paper we consider the evolution of a random g raph in a 
more systematic manner and t ry to describe the gradual development and 
step-by-step unravelling of the complex s tructure of t h e graph Гп>JV when 
N increases while n is a given large number . 

We succeeded in revealing the emergence of certain structural proper t ies 
of Г п Ы. However a great deal remains to be done in this f ie ld. We shall call in 
§ 10. the a t ten t ion of the reader to certain unsolved problems. I t seems to us 
fur ther t ha t it would be wor th while to consider besides graphs also more 
complex s tructures from the same point of view, i. e. t o investigate t he laws 
governing their evolution in a similar spiri t . This may be interesting no t only 
from a purely mathematical point of view. In fact, the evolution of g r a p h s 
may be considered as a r a the r simplified model of the evolution of ce r ta in 
communication nets (railway, road or electric network systems, etc.) of a coun t ry 
or some other uni t . (Of course, if one aims a t describing such a real s i tuat ion, 
one should replace the hypothesis of equiprobabil i ty of all connections b y 
some more realistic hypothesis.) It seems plausible t h a t b y considering t h e 
random growth of more complicated s t ructures (e. g. s tructures consisting 
of different sorts of "po in t s" and connections of different types) one could 
obtain fairly reasonable models of more complex real g rowth processes (e. g. 

1 Part ial result on this problem has been obtained already in 1 9 3 9 by P . E R D Ő S 
and II. W H I T N E Y bu t their resul ts have not been published. 

2* 
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t h e growth of a complex communication ne t consisting of d i f fe rent types of 
connections, and even of organic structures of living matter , etc.). 

§§ 1—3. con ta in the discussion of the presence of cer ta in components 
in a random g r a p h , while §§ 4—9. investigate certain global properties of a 
r andom graph. Most of our investigations deal with the case when N(n) ~ cn 
w i t h с > 0. In f a c t our results give a clear p ic tu re of the evolution of rn i N(n) 

N(n) 
when с = — — (which plays in a certain sense the role of t ime) increases. 

n 
I n § 10. we make some fur ther remarks and ment ion some unsolved problems. 

Our investigation belongs to the combinatorical t heo ry of graphs, 
which has a f a i r ly large l i terature. The f i r s t who enumerated the number 
of possible g raphs with a given structure was A. CAYLEY [1]. Next the impor-
t a n t paper [2] of G . PÓLYA has to he mentioned, the s tar t ing point of which 
were some chemical problems. Among more recent results we mention t he 
papers of G . E . U H L E N B E C K a n d G . W . F O R D [ 5 ] and E . N. G I L B E R T [ 6 ] .  
A fairly complete bibliography will be given in a paper of F . H A R A R Y [8]. 
I n these papers t h e probabilistic point of view was not explicit ly emphasized. 
This lias been done in the p a p e r [9] of one of the authors, b u t the aim of the 
probabilistic t r e a t m e n t was the re different : the existence of certain types 
of graphs has been shown by proving that the i r probability is positive. Random 
trees have been considered in [14]. 

In a recent paper [ 1 0 ] T . L . A U S T I N , R . E . F A G E N , \ V . F . P E N N E Y and 
J . R I O R D A N deal with random graphs f rom a point of view similar to ours. 
The difference between the definition of a random graph in [10] and in the 
present paper consists in t h a t in [10] it is admit ted t h a t t w o points should 
lie connected b y more than one edge ("paral le l" edges). Thus in [10] it is 
supposed t h a t a f t e r a certain number of edges have a l ready been selected, 

(71 

edges between 
2 

t he n given po in t s (including the edges a l ready selected). L e t us denote such 
a random g r a p h by Г* N . T h e difference between the probable propert ies 
of Гп N resp. Г* N are in most (but not in all) cases negligible. The correspond-
ing probabilities are in general (if the n u m b e r N of edges is not too large) 
asymptotically equal. There is a third possible point of view which is in most 
cases almost equivalent wi th these two; we may suppose t h a t for each pair 
of n given po in t s it is determined by a chance process whether the edge 
connecting t h e two points should be selected or not, the probabil i ty for select-
ing any given edge being equa l to the same number p > 0, and the decisions 
concerning t h e different edges being completely independent. In this case of 
course the n u m b e r of edges is a random variable, hav ing the expectation 

(71 

p ; thus if we want to ob ta in by this method a random graph hav ing in 
N 

the mean N edges we have to choose the value of p equal to — . We shall 
2 

denote such a random g raph by Г**ы. In m a n y (though no t all) of the problems 
treated in t h e present p a p e r it does no t cause any essential difference if we 
consider in s t ead of Гп Ы t h e random g r a p h Г**ы. 
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Comparing the method of the present paper with tha t of [10] it should 
he pointed out t ha t our aim is to obtain threshold functions resp. distributions, 
and thus we are interested in asymptot ic formulae for the probabilities con-
sidered. Exact formulae are of interest to us only so far as they help in determi-
ning the asymptotic behaviour of the probabilities considered (which is 
rarely the case in this field, as the exact formulae are in most cases too compli-
cated). On the other hand in [10] the emphasis is on exact formulae resp. 
on generating functions. The only exception is the average number of connected 
components, for the asymptotic evaluation of which a way is indicated in 
§ 5. of [10]; this question is however more fully discussed in the present paper 
and our results go beyond tha t of [10]. Moreover, we consider not only the 
number but also the character of the components. Thus for instance we 

УЬ 
point out the remarkable change occuring at N . If iV ~ nc with с < 1/2 

2 
then with probability tending to 1 for n. —»- -(- °° all points except a bounded 
number of points of Гп Ы belong to components which are trees, while for 

N ^nc with с > — this is no longer the case. Fur ther for a f ixed value of 

n the average number of components of ГпМ decreases asymptotically in a 
7Ь 71 

linear manner with N, when N < - , while for N > the formula giving 

the average number of components is not linear in N. 
I n what follows we shall make use of the sysmbols О and o. As usually 

\ &(ti>) I 
a{n) — о (b(n)) (where b(n) > 0 for re = 1 ,2 , . . . ) means tha t lim - = 0, 

n—+® b(n) 
while a(n) = О (b(n)) means tha t is bounded. The parameters on 

b(n) 

which the bound of may depend will be indicated if it is necessary; 
b(n) 

sometimes we will indicate it by an index. Thus a(n) = Oe (b(n)) means that 

^ K(E) where K(E) is a positive constant depending on e. We write 
b(n) 

а(П) 
a(n) ^b(n) to denote tha t lim -N-L = i . 

n- + « b(n) 
We shall use the following definitions from the theory of graphs. (For 

the general theory see [3] and [4].) 
A finite non-empty set V of labelled points Plt P2 , . . •, Pn and a set 

E of different unordered pairs (P,, P ; ) with P, £ F , P, Ç V, i =f= j is called 
a graph ; we denote it sometimes by G = { F , E} ; the number re is called 
the order (or size) of the graph; the points Pv P2, . .., Pn are called the vertices 
and the pairs (P,-, P ; ) the edges of the graph. Thus we consider non-or iented 
finite graphs without parallel edges and without slings. The set E may be empty, 
thus a collection of points (especially a single point) is also a graph. 

A graph G2 = {F2, E2) is called a subgraph of a graph G1 = {F1( Ег\ 
if the set of vertices F 2 of G2 is a subset of the set of vertices V1 of and the 
set E2 of edges of G2 is a subset of the set Ex of edges of Gv 
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A sequence of к edges of a g raph such tha t every two consecutive edges 
and only these have a vertex in common is called a path of order k. 

A cyclic sequence of к edges of a graph such tha t every two 
consecutive edges and only these have a common vertex is called a cycle of 
order k. 

A graph G is called connected if any two of its points belong to a path 
which is a subgraph of G. 

A graph is called a tree of order (or size) к if it has к vertices, is connected 
and if none of its subgraphs is a cycle. A tree of order к has evidently к — 1 
edges. 

A graph is called a complete graph of order ' ^ if it has к vertices and 

edges. Thus in a complete g raph of order к any two points are connected 
2 j 

by an edge. 
A subgraph G' of a graph G will he called an isolated subgraph if all 

edges of G one or bo th endpoints of which belong to G', belong to G'. A con-
nected isolated subgraph G' of a graph G is called a component of G. The 
number of points belonging to a component G' of a graph G will be called the 
size of G'. 

Two graphs shall be called isomorphic, if there exists a one-to-one mapp-
ing of the vertices carrying over these graphs into another. 

The graph G shall be called complementary graph of G if G consists 
of t he same vertices Pv P2, . . ., Pn as G and of those and only those edges 
(Pjt Pj) which do not occur in G. 

The number of edges s tar t ing from the point P of a graph G will he called 
t h e degree of P in G. 

A graph G is called a saturated even graph of type (a. b) if it consists of 
a + b points and its points can be split in two subsets Vl and V2 consisting 
of a resp. b points, such t h a t G contains any edge (P, Q) with P £ V1 ami 
Q £ V2 and no other edge. 

A graph is called planar, if it can he drawn on the plane so that no two 
of its edges intersect. 

We introduce further the following definitions: If a graph G has n 
2N 

vertices and N edges, we call the number - the "degree' ot the graph. 
n 

2N 
(As a matter of fac t — is the average degree of the vertices of G.) If a graph 

n 
G has the proper ty that G has no subgraph having a larger degree than G 
itself, we call G a balanced g raph. 

We denote by P ( . . . ) t he probability of the event in the brackets, by 
M (I) resp. D 2 ( | ) the mean value resp. variance of the random variable | . 
I n cases when i t is not clear f rom the context in which probability space t he 
probabilities or respectively t he mean values and variances are to be under-
stood, this will be explicitly indicated. Especially M,lJV resp. will denote 
t he mean value resp. variance calculated with respect to the probabilities 
Pn.N-
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(7) 

We shall of ten use the following elementary asymptotic formula: 
к' к' 

П 

к ! 
valid for к = о(п'Ь) 

Our thanks are due to T. G A L L A I for his valuable remarks. 

§ 1. Thresholds for subgraphs of given type 

If N is very small compared with n, namely if N = о (|/ra) then it is 
very probable t h a t Г п М is a collection of isolated points and isolated edges, 
i. e. t h a t no two edges of Г п М have a point in common. As a ma t t e r of fact 
the probability tha t a t least two edges of ГпМ shall have a point in common 
is by (7) clearly 

1 — 

n 

2 N 
( 2 I V ) ! 

2 n W ! 

1 
n 

2 

V M l 

= 0 
N2 

n 

If however N ~ c JIn where с > 0 is a constant not depending on n, then the 
appearance of trees of order 3 will have a probability which tends t o a posi-
tive limit for n —>• + but the appearance of a connected component consist-
ing of more than 3 points will be still very improbable. If N is increased while n 
is fixed, the situation will change only if N reaches the order of magnitude 
of n2 '3. Then trees of order 4 (but not of higher order) will appear with a pro-
bability not tending to 0. In general, the threshold function for the presence 

of trees of order к is n k ( k = 3, 4, . . . ). 
following 

This result is contained in the 

Theorem 1. Let к ^ 2 and l\k — 1 < I < be positive integers. Let 

denote an arbitrary not empty class of connected balanced graphs consisting 
of к points and I edges. The threshold function for the property that the random 
graph considered should contain at least one subgraph isomorphic with some ele-

2 - A 
ment of is n 1. 

The following special cases are worth mentioning 

Corollary 1. The threshold function for the property that the random graph 
k-2 

contains a subgraph which is a tree of order к is nk-1 (I: = 3, 4, . . . ) . 

Corollary 2. The threshold function for the property that a graph contains 
a connected subgraph consisting of к > 3 points and к edges (i. e. containing 
exactly one cycle) is n, for each value of k. 

Corollary 3, The threshold function for the property that a graph contains 
a cycle of order к is n, for each value of к ^ 3. 
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Corollary 4. The threshold function for the property that a graph contains 
2(1 - J - ) 

a complete subgraph of order h > 3 is n \ k~1' . 
Corollary 5. The threshold function for the property that a graph contains 

a saturated even subgraph of type (a, b) (i. e. a subgraph consisting of a -f b 
2 a+b 

points Pv ..., Pa, Qu ... Qb and of the ab edges (P,, Qj) is n ab . 
To deduce these Corollaries one has only to verify t ha t all 5 types of 

g raphs figuring in Corollaries 1—5. are balanced, which is easily seen. 
Proof of Theorem 1. Let В к,I 1 denote t he number of graphs belong-

ing to the class which can be formed from к given labelled points . Clearly 
if Pn,N («i®,.,,) denotes the probabil i ty tha t the random graph Гп<  
a t least one subgraph isomorphic with some element of the class 

N contains 
then 

(1.1) В 

- I 

N - I 
k,l { n 

2 
\ N 

= О 
Nl 

„2 l-k 

As a matter of f a c t if we select к points (which can be done in different 

ways) and form f r o m them a g r a p h isomorphic with some element of the class 
& k A (which can be done in Bkl different ways) then the number of graphs 
GniN which conta in the selected graph as a subgraph is equal t o the number 

In) 
of ways the remaining N — Z edges can be selected from the — Z other 

possible edges. (Of course those graphs, which contain more subgraphs iso-
morphic with some element of A8k, are counted more than once.) 

2 - - ' 
Now clearly if N — o(n 1 ) then by 

P nM&k,l) = 0(1) 

which proves t h e f i rs t part of t he assertion of Theorem 1. To prove the second 
p a r t of the theorem let dSty denote the set of all subgraphs of the complete 
g raph consisting of n points, isomorphic wi th some element of £§k To a n y 

let us associate a random variable e(S) such tha t e(S)= 1 or e(S) = 0 
according to whether S is a subgraph of Гn N or not. Then clearly (we write 
in what follows for the sake of brevity M instead of M„ N) 

(1.2) м( V 
U - i 
stää («) 

к,l 
2 M(e(8))= ' \ B k J ^ ' 

k,l 

/ n 
— z \ — z \ 

2 
\N - l ) Bkl (:2 N ) ' 

k ! n2l~k 
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On the other hand if S1 and S2 are two elements of ^ ^ and if S1 and 
S2 do not contain a common edge then 

-21 

N - 2 Z / 

If iSj and S2 contain exactly s common points and r common edges (l5Sr<i/ — 1) 
we have 

( n 1 \ 

2 I I 
N l 

M (s(S1)e(S2)) 

- 21 + r\ 

N - 2l + r j IN2l~r  
= 0\ 

U 4 ' - 2 ' n 

2 
\ N J 

On the other hand the intersection of S1 and S2 being a subgraph of S1 (and S2) 
T 1/ rk 

by our supposition t h a t each S is balanced, we obtain — ^ — i. e. s >—-
s к I 

and thus the number of such pairs of subgraphs S1 and S2 does not exceed 

Bh 2 
n 

У й 

n — к 

к - j 

2 к - Г А 
= 0\n ' 

Thus we obtain 

(1.3) 

2 / 

2 M(e(S)) + 
nl Bl, 

n 

2 
N - 2 1 

Now clearly 

2 к) ! / n p 

2 j 
I N 

+ 0 
Nl 

n 2 l-k 

2 / 2 - —, 
П 

к 
n o 

N 

211 

n\ 

n 

2 j 

N - 21 

- 1 

k\4n — 2 k)\ n 

71 j 

Л N —I, 
n 
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If we suppose t h a t 

Лт 
, = CO + o o , 

2 -

it follows tha t we have 

( 1 . 4 ) 
seA<»} 

k,l 

It follows by the inequal i ty of Chebysheff tha t 

1 
n,N j 2 e(S) - 2 M ( e ( S ) ) > У M(e(S)) 

1 
= 0 

CO 

and t h u s 

(1.5) n,N 2 у 1 2 m(f(S)) 
se jB (n) 2 se-® ("j 

As clearly by (1.2) if со -*• -f- °° t h e n V M(e(<S))—>- + 0 0 it follows not only 

1 
= 0 

1 

CO 

o o 

s e j s ' ,(n) 
k,t 

t h a t t he probability t h a t Г N contains at least one subgraph isomorphic 
with an element of S8kJ tends to 1, but also t h a t with probabili ty tending 
to 1 the number of subgraphs of f „ N isomorphic to some element of 
will t end to + 0 0 wi th the same order of magni tude as со1. 

Thus Theorem 1 is proved. 
I t is interesting to compare t he thresholds for the appearance of a sub-

graph of a certain t y p e in the above sense with probability near to 1, with 
the number of edges which is needed in order t h a t the graph should have 
necessarily a subgraph of the given type. Such "compulsory" thresholds 
have been considered by P . T Ú R Á N [ 1 1 ] (see also [ 1 2 ] ) and later by P . E R D Ő S 
and A. H. S T O N E [ 1 7 ] ) . For instance for a tree of order к clearly the compulsory 

2)1 

threshold is + E for t h e presence of a t least one cycle the com-

pulsory threshold is n while according to a theorem of P . T Ú R Á N [ 1 1 ] for 

complete subgraphs of order к the compulsory threshold is — ( n 2 — r2) + 
n + where r = n — (k 1) 

к 1 
In the paper [ 1 3 ] of T . K Ő V Á R I , 

V. T . Sós and P. T Ú R Á N it has been shown t h a t the compulsory threshold 
for t he presence of a saturated even subgraph of t y p e («, a) is of order of magni-

2 - — 

t u d e not greater t h a n n " . I n all cases the "compulsory" thresholds in 
T U R Á N ' S sense are of greater order of magnitude as our "probable" thresholds. 
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§ 2. Trees 

Now let us t u r n to the determination of threshold distribution functions 
for trees of a given order. We shall prove somewhat more, namely tha t if 

k-2 
N ~ Q пк л where n > 0, then the number of trees of order к contained 
in r n N has in the limit for n - > -j- °° a Poisson distribution with mean value 

( 2 p ) Ä _ 1 l e k ~ 2 

X = — . This implies t h a t the threshold distribution funct ion for 
k\ 

trees of order к is 1 — e~x. 
In proving this we shall count only isolated trees of order к in ГпЫ, i. e. 

trees of order к which are isolated subgraphs of Г п Ы . According to Theorem 1. 
this makes no essential difference, because if there would be a t ree of order 
к which is a subgraph but not an isolated subgraph of Гп N, then Гп N would 
have a connected subgraph consisting of к -f- 1 points and the probability 
of this is tending to 0 if N = о ( n k ) which condition is fulfilled in our 

k-2 
case as we suppose N . 

Thus we prove 
N(n) 

Theorem 2a. If lim ' k 2 = q> 0 andrk denotes the number of isolated 
Л - > + а , —— 

nk-1 
trees of order к in Гпщп) then 

(2-1) Hm PrhN(n)(Tk = j) = ?Je " Я 
or j — 0, 1, ..., where 

. ( 2 Q ) k ~ n k 

( 2 . 2 ) 
k\ 

For the proof we need the following 
Lemma I. Let enV en2>..., enln be sets of random variables on some pro-

bability space; suppose that eni(l ^ i g ln) takes on only the values I and 0. If 

Xr 

(2.3) lim 2 M(£„,'_£m-2... enir) = — 
Л-.+ » l^ú<i,<...<ir£l„ r\ 

uniformly in r for r — 1, 2, . . . , where X > 0 and the summation is extended 
over all combinations (ilt г2, ..., ir) of order r of the integers 1 ,2 , . . . , ln, then 

(2.4) lim P 
In 
У ЕП< = j 

í = 1 

/ n 

XJe ic-l 

Я (7 = 0 , 1 , . . . ) 

i. e. the distribution of the sum eni tends for n + oo to the Poisson-distri-
i = i 

button with mean value X. 
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Proof of Lemma 1. Let us pul 

(2-5) P n ( j ) = p 

Clearly 

( 2 . 6 ) 

t h u s i t follows f r o m (2.3) tha t 

(2.7) 

У £> ч = 1 

X M ( £ E . s )= У 
_ 1 1 V c n l l n i ! • • nlr' ^ 

\<il<i,<...<ir<l„ j,-r 

Pnii) 

lim y Pn(j) 1 ' 
n -*• + ® J=r 

r ! 
(r = 1 , 2 , . . . ) 

uni formly in r. 
I t follows t h a t for any г wi th | z | < 1 

( 2 . 8 ) 

But 

(2.9) 

l im V 
П - + » r = , ] = ' Á r ! 

: 1 2 p „ t i ) ( ! . | b r = 2Pn(i) (1 + - 1 • 
i n ; j=o 

y 
r = l U = r 

T h u s choosing z — X — 1 with 0 < a; ^ 1 it follows t h a t 

+ 0° 

(2.10) lim ^ P„(?) х-1' = ел<*~'> for 0 < x ^ 1 • 
n—+ °° j = 0 

I t follows eas i ly tha t (2.10) holds for x = 0 too. As a m a t t e r of fac t 
-f ОЭ 

p u t t i n g G„(a;) = V Pn(j) aft we have for 0 < x ^ 1 
j=o 

I P „ ( 0 ) G n ( x ) - e ^ - 0 1 + | Gn(x) - P n (0) | + | e»<x-o - е~д | . 

As however 

I Gn (x) - P n (0 ) I ^ x У Pn(j) ^ x 
j - 1 

a n d similarly 

it follows tha t 

Thfts we have 

j e 4 x - \ ) _ e - ; . j ^ x 

I P„(0) - е~л ] ^ I Gn(x) - e ; ( x~0 \ + 2x. 

lim sup I P„(0) — 1 2 x ; 
n-»+ œ 

as however a: > 0 m a y be chosen arbi t rar i ly small it follows t h a t 

l im P„(0) = e д 
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i. e. tha t (2.10) holds for x = 0 too. It follows by a well-known a rgument 
t ha t 

(2 .11) lim Pn(j) = 
7 Г ( / = 0 , 1 , . . . ) -

As a mat ter of fact, as (2.10) is valid for x = 0 , (2.11) holds for j = 0 . If 
(2.11) is a l ready proved for j < s—-1 then it follows f rom (2.10) t ha t 

(2 .12) 
+ » + » л—я 

l i m y P n ( j ) xJ~s = У xi~s for 0 < x < 1. 
J = S V-

By the same argument as used in connection with (2.10) we obtain t h a t 
(2.12) holds for x = 0 too. Subst i tu t ing x = 0 into (2.12) we obta in tha t (2.11) 
holds for j = s too. Thus (2.11) is proved by induction and the assertion of 
Lemma 1 follows. 

Proof of Theorem 2a. Le t T d e n o t e t he set of all trees of order к which 
are subgraphs of the complete graph hav ing the vertices Pv P2, ..., Pn. 
If S£T[n) let the random variable e(S) be equal to 1 if 8 is an isolated subgraph 
of Гп,ы; otherwise e(S) shall be equal to 0. We shall show t h a t the conditions 
of Lemma 1 are satisfied for the sum 2j e(&) provided t h a t N= N(v) ~ 

k-2 
s e T ( n ) 

~ дпк~1 and A is defined by (2.2). As a m a t t e r of fact we have for a n y 
S С T<k"> 

/ í n — * l 

(2.13) M (e(S)) 
\ N - к + I 2 N\k~] -

e 
2 Nk 

1 + 0 
(N 

n2 

More generally if Sv S2, . . ., Sr (Sj£ T f î ) have pairwise no po in t in common 
then clearly we have for each f ixed к ^ 1 and r > 1 provided t ha t «->-}- со, 

(2.14) M ( e ( S 1 ) e ( S 2 ) . . . e ( S r ) ) r>N 

I пг 
( f c - l ) r _ V P A 

e " I 1 + 0 
r*N 

n 2 

where the bound of the О t e rm depends only on k. If however the Sj ( j = 
= 1, 2, . . . , r) are not pairwise disjoint, we have 

(2.15) M(e(S1)e(S2)...e(Sr)) = 0. 
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Taking in to account t h a t according t o A classical fo rmula of C A Y E E Y [ 1 ] 

the number of different t r ees which can be formed f r o m k labelled po in t s is 
equal to кк~2, i t follows t h a t 

( 2 . 1 6 ) M(E(5X) e(S2) ...s(Sr)) = 
kk-2 rnkr 2N rk-X 2Nrk p " 1 + 0 
к I rl n2 

1 + 0 
n2 1] 

where the summat ion on t h e left hand side is extended over all r - tup les of 
trees belonging to the set Tty and the b o u n d of the O- te rm depends on ly on к. 
Note t h a t (2.16) is val id independent ly of how N is t end ing to + This 
will be needed in the proof of Theorem 3. 

Thus we have, un i formly in r 

(2.17) lim 2 М(£(^) е(8г) . . . s(Sr)) = 
N(n) 

n » - 1 

r\ 
for r= 1,2, . . . 

where X is defined by (2.2). 
Thus our Lemma 1 can be appl ied ; as гк = V £($) Theorem 2 is 

proved. ser ("l 
We a d d some r emarks on the fo rmula , resulting f rom (2.16) for r = 1 

( 2 . 1 8 ) M ( T f t ) = 

2 N 
kk~2 

2 N k! 
1 + О Й 

! я 4 

J.k-2 lk-1 e-kl 

Let us invest igate the funct ions mk (t) = - - - - (k= 1, 2, . . . ). Accord-

2N\ 
ing to (2.18) nmk\-— is asymptot ical ly equal to the average number of t rees of 

\ n J 
order к in ГпМ. For a f i x e d value of k, considered as a func t ion of t, t h e value 

£ j p J 
of m,.(t) increases for t < and decreases for t > ; thus fo r a f ixed 

A W к к 
value of n the average number of t rees of order к reaches its m a x i m u m for 

n N 1 - 1 
к 

; the va lue of this m a x i m u m is 

Mt ~ n 

11 — - 4 e - i " - ' ) ^ - 2 

" k\ 

For large values of к we have evident ly 
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I t is easy to see t h a t for any t > 0 we have 

mk(t) ^ mk+1(t) (k = 1 , 2 , . . . ) . 

The functions y = mk(t) are shown on Fig. 1. 
I t is na tu ra l to ask what will happen with the number r k of isolated 

N(n) 
trees of order к contained in F n N if ' -k_2 As the Poisson distr ibution 

vJFA 
ni e->.\ 

I is approaching the normal distr ibution if A ->- + one can guess 
I Я j 
t h a t тк will be approximately normally distr ibuted. This is in fact true, a n d 
is expressed by 
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Theorem 2b. Ii 

(2.19) 

but at the same time 

N(n) 

N(n) 
k—2 " 

nk~x 

oo 

( 2 . 2 0 ) lim 
2k 

n log n 
к - 1 

2 к 
n loglog n 

n 

then denoting by tk the number of disjoint trees of order к contained as subgraphs 
in rn,NM (к = \, 2, .. .), we have for — °° < x < + °° 

( 2 . 2 1 ) 

where 

( 2 . 2 2 ) 

and 

(2.23) 

lim P n,N(n) 
. У м п Ж п ) 

MmN = n 
F - 2 

k\ ' 
12 N к-1 2k N 

Ф(х) 

x , 
• I f . - i du . 

Proof of Theorem 2h. Note f i r s t t h a t the two conditions (2.19) and 
(2.20) a re equivalent t o the single condition lim MnN(n)= + and as 

M (rk) ~ M n дг this means tha t the assert ion of Theorem 2b can be expressed 
by saying t h a t the n u m b e r of isolated trees of order к is asymptotically nor-
mally distr ibuted always if n and N t e n d to so, t h a t the average number 
of such trees is also t end ing to Le t us consider 

MW) = M(( 2 e(S)Y). 
seT(n) 

Now we have evidently, using (2.16) 

(r2N ' 
M ( t J ) = 1 + 0 у 

i=1 
У r ! 

h2\ . . . hj\ ) j\ 
M>n,N 

fti = r , / t i S l 
i • 1 

where M n N is defined b y (2.22). Now as well known (see [16], p. 176) 

(2.24) 
r\ 

Л / -
2\=r, hi^l 

i=*i 

\ ! V . . . hjl 
= a0) 
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where аfb are t he Stirling numbers of the second kind (see e. g. [16], p. 168) 
defined by 

(2.25) 

Thus we obtain 

( 2 . 2 6 ) 

xr a<-px{x — 1) . . . (X — j + 1). 

r2N 

J = I 

M ( r b ) = ( l + 0 
n* 

Now as well known (see e. g. [16], p. 202) 

(2.27) " - - -

Thus it follows t h a t 

e>V-О - 1 = V Уо^У— 
j=i ; f j r\ 

у Я Н l í V oVW 

( 2 . 2 8 ) V 0 W i J = 

1=1 

We obtain theref rom 

d r 

— e ^ - D 
dxr 

+ « ;fc 

(2.29) M 

Now evidently 

M n,N 

Р С л 

+» xk  

г г о й ' 

1 + " м к 

T 7 T 7 7 if l/2 
n,Nk=0 k\ 

1 + 0 r * A 7 ) 

n 2 

(& — A)r is the r - th central moment of the Poisson 

distribution wi th mean value A. I t can be however easily verified t ha t the 
moments of the Poisson distribution a p p r o p r i a t e ^ normalized tend to the 
corresponding moments of the normal distribution, i. e. we have for r = 1, 2,... 

(2.30) lim — 
l — + œ Г-

A2 

'+» 7k p~>. 

Ä k\ К 2 7Г J 

I n view of (2.29) this implies the assertion of Theorem 2b. 
1 £ j 

In the case N (n) = — n log n + n loglog n + yn + o(n) when 
2 2 Jc 

t h e average number of isolated trees of order к in T n N ( n ) is again finite, the 
following theorem is valid. 

Theorem 2c. Let rk denote the number of isolated trees of order к in Гп N  
(k = 1, 2, ...). Then if 

(2.31) N(n) = — n log n + n loglog n + yn + o(n) 
2 k 2 к 

where — < у < + we have 

(2.32) 

where 

(2.33) A = 

l i m P Mn) (rk = j) 

e - 2 ky 

AJ e * 
(7 = 0,1, . . . ) 

k-k\ 

3 A Matemat ika i K u t a t ó In téze t Közleményei V. A,'! — '-. 
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Proof of Theorem 2c. I t is easily seen tha t under the conditions of Theo-
rem 2c 

lim M„> M n ) ( r k ) = A. 
П — + oo 

Similarly from (2.16) i t follows t h a t for r = 1, 2, . . . 

lim 2 M n,NMWe(S2)...e(8r))=--

and t h e proof of Theorem 2c is completed by the use of our Lemma 1 exact ly 
as in t h e proof of Theorem 2a. 

Note tha t Theorem 2c generalizes the results of the paper [7], where 
only t h e case к = 1 is considered. 

§ 3. Cycles 

L e t us consider now the threshold function of cycles of a given order. 
The s i tuat ion is described by the following 

Theorem 3a. Suppose that 

(3.1) N(n)~cn where c> 0 . 

Let yk denote the number of cycles of order к contained in Гп N (k— 3, 4, . . . ). 
Then we have 

(3.2) lim P„,M n ) (yk = j) = (/ = 0 , 1 > 

where 

(3.3) A = < - 2 A \ 
2 к 

Thus the threshold distribution corresponding to the threshold function A(n) — n 
- - (2 c)» 

for the property that the graph contains a cycle of order к is 1 — e 2k 

I t is interesting to compare Theorem 3a with the following two theorems: 

Theorem 3b. Suppose again that (3.1) holds. Let y* denote the number of 
isolated cycles of order к contained in Гп N (k = 3, 4, . . . ). Then we have 

(3-4) lim p ( n ) ( r * = 7 ) = ^ l ! (? = 0 , 1 , . . . ) 
П — + » J\ 

where 
„ ( 2 c e ~ 2 c ) k 

(3.5) у = . 
2 к 

Remark. Note t h a t according to Theorem 3b for isolated cycles there 
does no t exist a threshold in the ord inary sense, as 1 — reaches its maxi-

L j J n 1 
mum 1 — e 2kek for с = — i. e. for N(n) and then again decreases ; 

2 2, I 
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thus the probabili ty t ha t Гп<ы contains an isolated cycle of order к never 
approaches 1. 

Theorem 3c. Let bk denote the number of components of Гп N consisting 
of к 4 3 points and к edges. If (3.1) holds then we have 

(3.6) 

where 

(3.7) 

lim p,„Mn> idk = j) 
N~* + OS 

coJ 

( 7 = 0 , 1 , . . . ) 

(2 c e —2c\k 

2k 
k2 kk~3  

2! ( & - 3 ) ! 

Proof of Theorems За., 3b. and 3c. As f rom к given points one can form 

(k — 1) ! cycles of order к we have evidently for fixed к and for N= 0(ri) 

(3.8) 

while 

(3.9) 

— к 

M (yk) 
1 in 

2 Ijfc 
(к - 1)! 

n 

2 
N—& 

:i) 
N 

M (Л) = - (k — 1 ) ! — 

n I 
2 к 

п — 

2 1 2 N -
С 

N к! 
с 

п 
п \ 2 к 
2 

\ N 1 

2N 
n 

As regards Theorem 3e it is known (see [10] and [15]) t h a t the number 
of connected graphs Gk k (i. e. the number of connected graphs consisting 
of к labelled vertices and к edges) is exact ly 

(3.10) 

Now we have clearly 

1 , к 2 к * - 3  

2 1 2 ( i — 3)! 

(3.11) М Ш 0 , 

n — к 

2 
N — к 

n\\ 
к 
N J 

2 N - - k 

n 

2 к 

к2 

+ к к ~ 3 

( к - 3)! 

3* 
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For large values of к we have (see [15]) 

(3.12) 0,, -

and thus 

(3.13) 

2N l-
e 

n 

4 к 

2 N. 

For N ~ — we obtain by some elementary computation using (7) tha t 
2 

for large values of к (such that к = о (и3'4). 

(3.14) M ( d A 

Using (3.8), (3.9) and (3.11) the proofs of Theorems 3a, 31) and 3c follow 
the same lines as t h a t of Theorem 2a, using Lemma 1. The details may be 
left to the reader. 

Similar results can be proved for other types of subgraphs, e. g. complete 
subgraphs of a given order. As however these results and their proofs have 
the same pattern as those given above we do not dwell on the subject any 
longer and pass to investigate global properties of the random graph rn N . 

§ 4. The total number of points belonging to trees 

We begin by proving 

Theorem 4a. If N = o(n) the graph Гп>N is, with probability tending to 
1 for n —> the union of disjoint trees. 

Proof of Theorem 4a. A graph consists of disjoint trees if and only if 
there are no cycles in the graph. The number of graphs Gn N which contain 
at least one cycle can be enumerated as was shown in § 1 for each value к 
of the length of this cycle. In this way, denoting by T the property tha t the 
graph is a union of disjoint trees, and by T the opposite of this property, 
i. e. t h a t the graph contains at least one cycle, we have 

(4.1) P„.N ( T ) Й 2 
k=3 

( к - 1)! 

( n 7 \ 
— к 

2 

I N - к j = 0 IN 

It follows that if N = o(n) we have lim P„ N(T) = 1 which proves Theorem 4a. 
П - + ® 

If N is of the same order of magnitude as n i. e. N ^cn with с > 0, 
then the assertion of Theorem 4a is no longer t rue. Nevertheless if с < 1/2, 
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still a lmost all points (in fact n — 0(1) points) of TnN belong t o isolated 
trees. There is however a surprisingly a b r u p t change in the s t ruc ture of Г„ N 

with N ~ cn when с surpasses the value 1 . If с > 1/2 in the average only a 

posi t ive fract ion of all po in ts of Гп<ы belong to isolated trees, a n d the value 
of th i s fract ion tends to 0 for с - > + 0 0 . 

Thus we shall p rove 

Theorem 4b. Let Vn N denote the number of those points of Гп N which 
belong to an isolated tree contained in Гп jv- Let us suppose that 

(4.2) lim — ^ = с > 0 . 

Then we have 

for с g 1/2 
(4.3) lim M ( F " ' N ( n ) ) = » x(c) . 1 

1 — for с > 

2 c 2 

where x = x(c) is the only root satisfying 0 < x < V of the equation 

(4.4) xe-x = 2 c e ~ 2 c , 

which can also be obtained as the sum of a series as follows: 
» b f c - l 

(4.5) x { c ) = J ? (2 с e~2c)k . 
k = 1 k\ 

Proof of Theorem 4b. We shall need the well known fac t t h a t t h e inverse 
func t ion of the funct ion 
( 4 . 6 ) y = x e - x ( O ^ i c ^ l ) 

has t h e power series expansion, convergent for 0 rg у yL — 
e 

+ 00 bk-\„k 
(4.7) 

fcr, k\ 

Let xk denote the number of isolated t rees of order к contained in Гп N. Then 
clearly 

(4.8) VniN= У krk 
fc=l 

and thus 

(4.9) M ( F N > N ) = 2 I M ( T T ) . 
k=1 

By (2.18), if (4.2) holds, we have 

1 1 kk~2 

( 4 . 1 0 ) l i m — M ( r f t ) = — - - — ( 2 с е - 2 с ) л . 
n - * + œ n 2 c i ! 
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T h u s we obtain f rom (4.10) t h a t for c ^ 1/2 

(4 11) l im inf — ^ — y v „ —— for any s > 1 . 
n— + » n З о й 

As (4.11) holds for any s ^ 1 we obtain 

(4.12) l im inf > 1 i . 
п - » + » n 2 c k = i A:! 

B u t according to (4.7) for с 1/2 we have 

™ k k - l ( 2 c e ~ 2 c ) k  

^ — / с . 
Ü T , k\ 

T h u s it follows f rom (4.12) t h a t for с й 1/2 

(4.13) Um inf 

As however Vn N(n) á n and t h u s lim sup ^ n.N(n)) < p it follows t h a t 
n 

if (4.2) holds a n d c ^ 1/2 we have 

(4.14) l im f ^ L a m â = ! . 

Now let us consider the case с > —. I t follows from (2.18) t ha t if (4.2) 
2 

holds with с > 1/2 we obta in 

(4.15) M(F n > M n ) ) = — — 
2N k\ 

2N(nK fc 

+ 0(1) 

where the bound of the term 0(1) depends only on c. As however for N(n) 
~ nc with с > 1/2 

i t follows t ha t 

(4.16) 

where x = x f ^ 7 1 -

2 
k=n+l 

kk~42N(n) - 2 N(n) 

n 
= 0 1 

n 

M ( F m M n ) ) = 
n' 

2 I V ( w ) 

A W j 
n 

+ 0(1) 

n 
is the on ly solution with о < x < 1 of the equation 

2 N ( n ) 2 N ( n ) 

x e ~ x = e " . Thus i t follows t h a t if (4.2) holds wi th с > 1/2 
n 

we have 

(4.17) l im 
M(F n , M n ) ) = x ( c ) 

n 2 c 

where x(c) is def ined by (4.5). 
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The graph of the function x(c) is shown on Fig. l a ; its meaning is shown 
by Fig. l b . The funct ion 

for с ^ 1/2 

fo r с > 1/2 
^ í j 

is shown on Fig. 2a. 

Figure 2a. 

Figure 2b. 
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Thus the proof of Theorem 4b is complete. L e t us remark t ha t in the 
same way as we ob ta ined (4.16) we get tha t if (4.2) holds with c< 1/2 we have 

(4.18) M ( F n J V ( n ) ) = » - 0 ( l ) 

where the bound of t he 0(1) t e rm depends only on c. (However (4.18) is no t 

t rue for с = — as will be shown below.) 

I t follows b y t he well known inequality of Markov 

(4.19) P ( f > M ( f ) 

val id for any nonnegat ive random variable £ a n d any a > M(£), tha t t h e 
following theorem holds: 

Theorem 4c. Let VnN denote the number of those points of Гп N which 
belong to isolated trees contained in ГпЫ. Then if con tends arbitrarily slowly 
to + 0 0 for n —*• - f o o and if (4.2) holds with с < 1/2 we have 

(4.20) lim P(Fn > N(n) П — U)n) — 1 . 

The case с > 1/2 is somewhat more involved. We prove 
Theorem 4d. Let Vn<N denote the number of those points of ГпЫ which 

belong to an isolated tree contained in Tn N. Let us suppose that (4.2) holds with 
с > 1/2. It follows that if con tends arbitrarily slowly to we have 

(4.21) 

where x = x 

lim P \V 
n* 

n,N(n) 
№ ) i 

> Vn 
. » ) I 

N(n) 
n 

2 N(n) 

is the only solution with 0 < ж < 1 of the equation 

2 N(n) 

xe' 
2 N(n) 

œ fck 
Proof. We have clearly, as the series У — (2 ce~2c)k is convergent, 

S hl 

D- (VniN(n))= 0(n). Thus (4.21) follows by the inequal i ty of Chebyshev. 

Remark. I t follows from (4.21) that we h a v e for any с > 1/2 and a n y 
e > о 

(4.22) lim P 
Л-.-1-oo 

7n,N(n) X(C) I 
П 2 с 

< e = 1 

where x(c) is def ined by (4.5). 
As regards t h e case с = 1/2 we formulate the theorem which will be 

needed latter. 
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Theorem 4e. Let VnN(r) denote the number of those points of Fn N which 
belong to isolated trees of order 2: r and xn N(r) the number of isolated trees of 

71 
order ^ r contained in Fn N. If N(n) ~ we have for any à > о 

(4.23) 

and 

(4.24) 

lim P 
П-*- + со 

VnMn)(r) * 

lim P 
n — + ® 

T n , N ( n > ( r ) 

у - — e ~ k 

ár k\ 

bk-2 
' p—k 

< I 

< 0 = 1 . 
n k\ 

The proof follows the same lines as those of the preceding theorems. 

§ 5. The total number of points belonging to cycles 

Let us determine f i rs t the average number of all cycles in Гп N. W e 
prove t h a t th is number remains bounded if N(n) ~ cn and с < х/2 but no t 
i f 0 = V r 

Theorem 5a. Let Hn N denote the number of all cycles contained in Fn N. 

Then we have if N{n) ~ cn holds with с < — 
2 

(5.1) lim M ( H n M n j ) - i - log - 1 — - с - с2  

« - > + » 2 • 1 — 2 с 

while we have for с = 
1 

(5.2) M ( t f n i M n ) ) ~ T l o g » . 
4 

Proof. Clearly if yk is the number of all cycles of order к contained in 
~ we have л n,N 

n 
H„,n = УУк-

k=1 

Now (5.1) follows easily, taking into account t h a t (see (3.8)) 

-к1 

(5.3) m W = 

n 

2 
N - k . 

2 N 
n 

/ n 
2 

N 

2 k + 0 ( 

k 2 

n 
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If с = V 2
 h a y e by (3.8) 

1 _ 
(5.4) M ( y , ) ~ — e 2 " . 

2 к 

As у — e 2" ~ — log re, i t follows t h a t (5.2) holds. Thus Theorem 5a 
k-3 2 & 4 

is proved. 
Let us remark t h a t i t follows from (5.2) tha t (4.18) is not true for с = 1/2. 
Similarly as before we can prove corresponding results concerning 

the random variable Hn N itself. 
We have for ins tance in the case с = */2 for a n y e > о 

(5.5) l im P 
П — -f со 

HnMn) _ 1  

logn 4 
< e = 1 . 

This can be proved by t he same method as used above: est imating the variance 
and using t h e inequality of Chebyshev. 

An o ther related resul t , throwing more light on t h e appearance of cycles 
in ГпЫ runs as follows. 

Theorem 5b. Let К denote the property that a graph contains at least one 
cycle. Then we have if N(n) holds with с < 1/2 

(5.6) lim P n M n ) ( K ) = 1 - У1 ^ 2 с . 
П— + a> 

Thus for с = — it is ,,almost sure" that Гп N(n) contains at least one cycle, while 
2 

for с < - the limit for n—> + ooof the probability of this is less than 1. 
2 

Proof. Le t us suppose first с < —. ß y an obvious sieve ( taking into 

account t h a t according to Theorem 1 the probabili ty t h a t there will be in 
with N(n) ^ nc (c < 1I2) two circles hav ing a point in common is negligibly 
small) we obtain 

- lim M(Н„,л-(„))  
(5.7) lim Pn,NCn)(K) = e »-+ » = - 2 с . 

Л - . + 00 

Thus (5.6) follows for с < 1/2. As for с —>- г/2 the func t ion on the right of (5.6) 
tends to 1, i t follows t h a t (5.6) holds for с = x / 2 too. The funct ion у = 
= 1 — j/1 — 2c ec+c' is shown on Fig. 3. 

We prove now t h e following 

Theorem 5c. Let H* N denote the total number of points of Гп Ы which 
belong to some cycle. Then we have for N = N(n) ~ cn with 0 < с < х/2 

(5.8) lim M ( H * , N M ) = . 
л—+» 1 — 2 с 
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Figure 3. 

Proof of Theorem 5c. As according to Theorem 1 the probability t h a t 
two cycles should have a point in common is negligibly small, we have by (5.3) 

М Ы - 2 к У « 
(2 c)3 4 c3 

2 ( 1 — 2 c) 1 — 2 c 

The size of t ha t pa r t of Г N which does not consist of t rees is still more 
clearly shown by the following 

Theorem 5d. Let ftnN denote the number of those points of Г N which 
belong to components containing exactly one cycle. Then we have for N = N(n) ~ 
~ cn in case с ф 1/2 

(5.9) lim V ( 2 c e - * ) * 
п - + ® 2 

while for с = 1/2 we have 

>+4+4+ 1 ! 2 ! 
+ 

k k - s 

(k - 3 ) 1 

r i l ) 
(5.10) 

12 
n 2 / 3 

where Г(х) denotes the gamma-function Г(x)= j tx~i e~' dt for x > 0. 
о 
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Proof of Theorem 5<1. (5.9) follows immediately f rom (3.11); for c= 1/2 
we have b y (3.14) 

M 
n k 3 ^ 

а к=з 1 -

9 2 3 

Remark. Note tha t for с - / 2 

1 У ( 2 c e ~ 2 c ) k 

2 fe=3 
i + ïï+... 

F - 3 

(& — 3) ! 4(1 - 2 c)2 

Thus the average number of points belonging to components containing 

" exactly one cycle tends t o -f 0 0 as —-— — - for с —»-1/2 . 

We now prove 
4(1 — 2 c)2 

Theorem 5e. For N(n) with 0 < с < 4/2 all components of rn N(n) 
are with probability tending to 1 for n —>- either trees or components contain-
ing exactly one cycle. 

Proof. Le t y>n N denote the number of points of Г п Ы belonging to com-
ponents which contain more edges t h a n vertices and the number of vertices 
of which is less than |! log n. We have clearly for N(n) ~cn with с < x/2 

(VnMndű V k\n -4—^ = J-
r~i к / n\\ 
k=4 x \ 

П — к 

2 

M 
n 
2 

N 
Thus 

1 
log 2 • P (VnMn)> 1) = 0 | 

On the o ther hand by Theorem 4c the probability t h a t a component con-
sisting of more than ]/ log n points should not he a t ree tends to 0. Thus the 
assertion of Theorem 5e follows. 

§ 6. The number of components 

Let us tu rn now to the investigation of the average number of compo-
nents of Гп N. I t will be seen that the above discussion contains a fairly com-
plete solution of this question. We prove the following 
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Theorem 6. If C„,N denotes the number of components of Г N then we have 

if N(n) ~cn holds with 0 < с < --
2 

(6 .1) M ( ? m M n ) ) = n - W ( n ) + 0 ( l ) 

where the bound of the O-term depends only on c. If N(n) ~ — we have 

(6 .2 ) ЩСпМп)) = п-Щп) + 0(1оёп). 

If N(n) ~ cn holds with с > —we have 
2 

(6.3) lim М ( С п , л г ( п ) ) 1 

n 
= . — я ? ( с ) -

2 с 

х 2 ( с ) 

where х = х(с) is the only solution satisfying 0 < ж < 1 of the equation xe~x = 
= 2ce~2c, i. e. 

(6.4) x ( c ) 
» l.k-1 
y - (2ce~2c)k. 

Й ft! 

Proof of Theorem 6. Le t us consider f i r s t the case с < —. Clearly if we 

a d d a new edge to a graph, t h e n either this edge connects two points belong-
ing to different components, in which case the number of components is 
decreased hy 1, or it connects two points belonging to t he same component 
in which case t he number of components does not change bu t a t least one 
new cycle is created. Thus2 

(6.5) 8N,N 

where HnN is t he total n u m b e r of cycles in Гn N . Thus by Theorem 5a it 
follôws t ha t (6.1) holds. 

Similarly (6.2) follows also from Theorem 5a. Now we consider the case 
1 

с > — . 
2 

I t is easy to see t ha t for о ^ у ^ — we have (see e. g. [14]) 

(6.6) 

where 

(6.7) 

+ » kk -iyk 

— Т Г 
x — 

Jck-iyk 
Ж = N 

*=. И 

2 In fact according to a well known theorem of the theory of graphs (see [4], p. 29) 
being a generalization of Euler ' s theorem on polvhedra we have AT — n -f- Cn,N = 
= Xn,N, where — the „cyclomatic n u m b e r " of the graph Гп,ы — is equal to 
the maximal n u m b e r of independent cycles, in Гп.ы (For a defini t ion of independent 
cycles see [4] p. 28). 
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x can he characterized also as the only solution satisfying 0 < x 1 of the 
equation xe~x = y. 

I t follows t ha t if N(n) ~ nc holds with с < 1/2 we have 

(6.8) M(C„ jNW) = n£ 

•2N(n) 

2N(n) 

n 

4 N2(n) 

2 n2 
+ 0(1) = n - N(n) + 0(1) 

which leads to a second proof of the f i rs t pa r t of Theorem 6. 
To prove the second par t , let us remark f i rs t t ha t the number of compo-

n 
nents of order greater t han A is clearly < — . Thus if Ç n N (Â) denotes the 

A 
number of components of order < A of Гп N we have clearly 

(6.9) M ^n.N) M(Cm N(+)) + 0 
n 

The average number of components of fixed order к which contain 
IV k 

at least к edges will be clearly according to Theorem 1 of order |— , i. e. 
\n 

bounded for each fixed value of k. As A can be chosen arbitrari ly large we 
obtain f rom (6.9) t h a t 

(6 .10) M ( f „ l A r ) ~ > М ( т Д 

According to (2.18) it follows t ha t 

( 6 . 1 1 ) M( 
n-

'n,N) 
kk 2 i2AT 

— e " 
n I 2 N k ^ k\ 

and thus , according to (6.6) if N(n) ~ c n holds with с > 1/2 we have 

16.12) lim M ( C „ , N ( „ ) ) 1 

2 c 
x(c) 

x2(c) 

where x(c) is defined by (6.4). Thus Theorem 6 is completely proved. 
Le t us add some remarks. Theorem 6 illustrates also the fundamenta l 

7Ь 

change in the structure of Гп N which takes place if N passes - . While t he 

average number of components of Гп N (as a function of N with n f ixed) 
decreases linearly if N <. — this is no longer t rue for N > — ; the average 

" — 2 2 
number of components decreases f rom this point onward more and more 
slowly. The graph of 

1 

(6.13) z(c) = lim 
N(n) 

M i £ m N ( „ ) ) 

1 

2 с 
x(c) -

с for 

x2(c) 

о с < 
2 

for с > V2 
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as a f u n c t i o n of с is shown by Fig. 4. 
F r o m Theorem 6 one can deduce easily t h a t in case N(n) ~cn with 

с < V2 we have for a n y sequence co„ t end ing a rb i t r a r i ly slowly t o in f in i ty 

(6.14) l im P(]C„,NM - n + N(n) | <«>„) = 1 
n —» + » 

(6.14) follows easily b y remarking t h a t clearly ÇnN ^ n — N. 

F o r the case N(n) wi th с 1I2 one ob ta ins by e s t ima t ing the 
va r i ance of £„,N(n) a r ) d using the inequa l i ty of Chebyshev t h a t for a n y e > 0 

(6.15) Hm p I i _ _L 
n—I-» \ n 2 c 

The proof is similar t o t h a t of (4.21) a n d therefore we do no t go in to details. 

§ 7. The size of the greatest tree 

If N wi th с < l /2 then as we have seen in § 6 all bu t a f i n i t e num-
ber of p o i n t s of Гп N belong to componen t s which are trees. Thus in th is case 
the p rob lem of de te rmin ing the size of t he largest component of Гп N reduces 
to t h e easier question of de te rmin ing t he greatest t ree in Гп ^. This question 
is an swered by the following. 

Theorem 7a. Let An N denote the number of points of the greatest tree which 
is a component of Гп М. Suppose N = N(n) ~ cn with с =/= 1/2. Letcon be a sequence 

x(c) x*(c) 
< S = 1 
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tending arbitrarily slowly to -+- Then we have 

l im P M 
П - + ® 

N,N(N) & — 
a 

log и loglog + cün J = О 

lim P N ( n ) £ _ log » — — loglog и 
a 

Û>„ = 1 

(7.1) 

and 

(7.2) 

where 

(7.3) e~a = 2 ce1_2c  

and thus a > 0.) 

Proof of Theorem 7а. W e have clearly 

(7-4) Р ( 4 л ) ^ z) = P Tfc ^ 11 ^ У M(rfc) 

a n d thus by (2.18) 

(i. e. a = 2 с — 1 — log 2 с 

(7.5) 

I t follows tha t if z1 

we have 

(7.6) 

Р ( 4 „ М . ) è «) = о 

log n — — loglog n 

ne 
г " ' г 

+ « G 

P H n d v í n ) ^ z i ) = 0 ( £ - а ш » ) • 

This proves (7.1). To prove (7.2) we have to est imate the mean and variance 

logn loglogn — w n . We have b y (2.18) 
2 

М ( т . 
a i* — g<"»„ 

71 2 с У 2 

D2(T2J) = 0(M(T 2J) . 

of rZi where z2 = 

(7.7) 

a n d 

(7.8) 

Clearly 

P0N,M„) ^ Z2) > Р(г2г ^ 1) = 1 - P(r2i = 0) 

a n d it follows f r o m (7.7) and (7.8) by the inequal i ty of Chebyshev tha t 

(7.9) P(r2 , = 0) = 0 ( e - " - ) . 

T h u s we obtain 

(7.10) P {AnMn) > z 2 ) ^ l - 0 ( e — »). 

T h u s (7.2) is also proved. 
Remark. If с < — the grea tes t tree which is a component of Tn N wi th 

2 
N ~ cn is — as mentioned above — a t the same t ime the greatest component 
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of Гп N, as Гп N contains with probability tending to 1 besides trees only com-
ponents containing a single circle and being of moderate size. This follows 
evidently from Theorem 4c. As will be seen in what follows (see § 9) for 

с > — the situation is completely different, as in this case F n N contains 
2 

a very large component (in fact of size G(c)n with G(c) > 0) which is not a 

tree. Note tha t if we put с = — l o g n we have a — ' log n and — l o g n ^ k 
2 к k a 

in conformity with Theorem 2c. 
We can prove also the following 

Theorem 7b. If N~ cn, where с =f=— and e~a = 2ce1~2c then the number 

of isolated trees of order h = 1 log те loglog те 
2 

I resp. of order >h ( where 

I is an arbitrary real number such that h is a positive integer) contained in 
Гп N has for large n approximately a Poisson distribution with the mean value 

1 = 
, 5 / 2 p - a I ,5 2 p—al 

2 с У 2 n 
resp. fi = 

2 с ] / 2 те ( 1 — е ~ а ) 

Corollary. The probability t h a t ЯП>ЛА(П) with N(n)~ ne where c=j= 
1 

does not contain a tree of order 2 
a 

log те loglog те 

e x p - for те—> where a — 2c — 1 

-f-1 tends to 

- log 2c. 
2 с ]A2 те (1 — e ~ a ) 

The size of the greatest tree which is a component of ГпЫ is fair ly large 
Tl 

if N ~ —. This could be guessed from the fact t h a t the constant factor in the 
2 

1 5 1 
expression — log n loglogw of the „probable size" of the greatest compo-

a 2 I 

nent of PnN f iguring in Theorem 7a becomes infinitely large if с = — . 
2 

7Ъ 
For the size of the greatest tree in ГпМ with N the following 

2 
result is valid: 

те 
Theorem 7c. If N ^ and An N denotes again the number of points 

2 
of the greatest tree contained in P,hN, we have for any sequence con tending to 
4-°° for те— 
(7.11) 

and 

l im P (AntN > n*3con) = 0 

(7.12) lim P 
П—+® 

A n,N = 1 . 

4 A Materna t ika i K u t a t ó In téze t Közleményei V. All—2. 
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Proof of Theorem 7c. We have by some simple computation using (7) 

(7.13) M ( r k ) = . 

k k - 2 

n — к 

2 

- 4 + 1 / nkk~~2e~k 

k\ 

Thus it follows t h a t 

(7.14) P ( d n , N > n 2 * c o n ) ^ V Mir k) = 0 
к^п'^юн 

1 

Wn 

which proves (7.11). 
On the other hand, considering the mean and variance of x* = V1 rk , 

Wn 
it follows that 

M ( T * ) ^ А со*2 where A > 0 and D 2 ( T * ) = 0(w3
n
2) 

and (7.12) follows b y using again the inequality of Chebyshev. Thus Theorem 
7c is proved. 

The following theorem can be proved by developing fur ther the above 
argument and using Lemma 1. 

Theorem 7d. Let т(ц) denote the number of trees of order ^ pn2!3 contained 

in Г 71 
n,N(n) where Ü < у < and N(n) ~—. Then we have 

2 

(7.15) 

where 

(7.16) 

l i m P„.N(n)(T(P) = j) = —— 
1— + » у ! 

e~xdx 
-1-3/2 

(7 = 0 , 1 , . . • > 

J / 1 2 ; 

§ 8. When is Гп N a planar graph ? 

We have seen tha t the threshold for a subgraph containing к points 
2 _ J L 

and к d edges is n k + d ; thus if N ~ cn the probability of the presence 
of a subgraph having к points and к -+- d edges in N tends to 0 for n — 
for each particular pair of numbers к 4, d 1. This however does not 
imply tha t the probabil i ty of the presence of a g raph of arbitrary order having 
more edges than vertices in Гп N wi th N ^nc tends also to 0 for n—v 
In f ac t this is not t rue for с > д/2 as is shown b y the following 
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Theorem 8a. Let %n<N(d) denote the number of cycles of Gn N of arbitrary 
order which are such that exactly d diagonals of the cycle belong also to Г' м. 

Then if N(n) 

(8 .1) 

where 

(8 .2) 

= 1 -o( \n) where —°° < A < we have 

hm P(XnMn)(d) = j) 
Л - » + » 

+ о» Д 

~ 2 - 6 d - d \ J 

J p-Q gJ e 
(7 = 0,1, - . . ) 

y2i x еП • e dy . 

Proof of Theorem 8a. We have clearly as the number of diagonals of a 

к — gon is equal to — -
2 

(8.3) M ( ^ > N ( d ) ) = 2 
1 I n 

2 к 
( к - 1 ) 

I k(k — 3)' 

n r . 

n 1 k\\ 
2 2 J 

N --k - d j 
In j \ 

2 j 
\ N ! 

and thus if N (n) = n + XVTl
 + 0(уп) 

2 

(8.4) M ( Z n . N ( „ > ( < * ) ) ' 
2d+1 • d\ nd У к 2 " - 1 1 + 

fc=4 

3 k ' 
2 n 

I t follows from (8.4) tha t 
'У у 

(8.5) lim M ( Х п М п № ) = — f У2"'1 еГз 2 dy . 

The proof can be finished by the same method as used in proving Theorem 2a. 

Remark. Note tha t Theorem 8a implies t h a t if N(n) = \- con \n 

with Gin-4- then the probability that r n J V ( n ) contains cycles with any 
д  

prescribed number of diagonals tends to 1, while if N(n) = u>n\n 
2 

the same probability tends to 0. This shows again the fundamental difference 
7Ь 7Ь 

in the structure of Г„ N between the cases N < — and N > —. This differ-
2 2 

ence can he expressed also in the form of the following 

Theorem 8b. Let us suppose that N(ri) ~ nc. If с < — the probability 
2 

2* 
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that the graph Гп Ы(„) is planar is tending to 1 while for с > this probability tends 

to 0. 
Proof of Theorem 8b. As well known trees a n d connected g raphs contain-

ing exact ly one cycle a re planar. T h u s the first p a r t of Theorem 8b follows 
from Theorem 5e. On t he other h a n d if a graph contains a cycle wi th 3 dia-
gonals such tha t if these diagonals connect the pa i r s of points (Pit P\) (i = 
= 1, 2, 3) the cyclic order of these po in t s in the cycle is such t h a t each pair 
(P„ P'i) dissects the cycle into two p a t h s which b o t h contain two of the other 
points t h e n the g r a p h is not planar . Now it is easy to see t h a t among the 
ik(k- 3 ) \ 

2 
^ J triples of 3 diameters of a given cycle of order к there are a t least ß 

triples which have t h e mentioned p roper ty and thus for large values of к 
approximately one o u t of 15 choices of the 3 diagonals will have t he mentioned 

proper ty . I t follows t h a t if N(n) = — + con ][n w i th con->- t he proba-

bility t h a t rU)N(n) is n o t planar tends t o 1 for n —>- + This proves Theorem 
7Ь г— 

8b. We can show t h a t for N(n) = f- 7.\n with a n y real X t he probability 
2 

of Г„ N ( n) not being p l a n a r has a posit ive lower l imit , but we canno t calculate 
ts value. I t may even be 1, though this seems unlikely. 

§ 9. On the growth of the greatest component 

We prove in th is § (see Theorem 9b) that t he size of the greatest com-
ponent of Гп N(„) is for N(n) ~cn w i t h с > х/г wi th probability tending to 1 
approximately G{c)n where 

(9.1) ö(c) = l - ^ 
2c 

and x{c) is defined b y (6.4). (The curve у = G(c) is shown on Fig. 2b). 
Thus by Theorem 6 for N(n) ~ cn with с > */2 almost all points of 

Fn,N(n) (i- e- all but o(n) points) belong either to some small component which 
g 

is a t ree (of size at most 1/a (logre — - loglogrc) -f 0(1) where a = 2c —1 —log 2c 
2 

by Theorem 7a) or to t h e single " g i a n t " component of the size ~G(c)n . 
Thus the si tuation can be summarized as follows: the largest component 

of Г„ N(„\ is of order logn for —— ^ с < V,, of order и2/3 for —^— and 
' n n 2 

of order n f o r ^ ^ > 1f2. This double " j u m p " of the size of the largest 

N(n) 
component when —- passes the value 1/2 is one of the most s t r ik ing facts 

7b 
concerning random graphs . We prove f irs t the following 



ON" THE EVOLUTION OF RANDOM GRAPHS 53 

Theorem 9a. Let -Жn д;(/1) denote the set of those points of Гn N which belong 
to components of size > A, and let HnN(A) denote the number of elements of 
the set d%*n}N{A). If Nßn) ~(c — e) n where e>0, с — e 1/2 and Nz(n) ~cn 
then with probability tending to 1 for n-> from the HnNl(n)(A) points 
belonging to Жn Ni(n)(A) more than (1 — b) Hn NiM(A) points will be contained 
in the same component of fnN!(„) for any b with 0 < Ь < 1 provided that 

(9.2) . 
s 2 Ô 2 

Proof of Theorem 9a. According to Theorem 2b the number of poin ts 
belonging to trees of order rg. A is with probabil i ty tending to 1 for n — + °° 
equal to 

n 
л ьк-1 

£ — [ 2 ( c - e ) ] " " 1 е " 2 ^ - " ) 
k=\ к I 

o(n) 

On the other hand , the number of points of Г„ Nl(n) belonging to components 
of size < A and containing exact ly one cycle is according to Theorem 3c 
o(n) for c—e ist 1/2 (with probabil i ty tending to 1), while it is easy to see, t h a t 
the number of points of Г п Ы ^ belonging to components of size s i A a n d 
containing more t h a n one cycle is also bounded with probabili ty tending to 1.) 

Our last s ta tement follows by using the inequality (4.19) from the fac t 
t h a t the average number of components of the mentioned t y p e is, as a simple 

calculation similar to those carried out in previous §§, shows, of order О — 
n 

Let denote the event t h a t 

(9.3) \HnMl(JA) - nf(А, с-e)\ < rnf(A.c-e) 

where т > 0 is an arbi t rary small positive number which will be chosen later 
a n d 

1 A hk-1 
(9.4) f(A, с) = 1 У (2 ce-2c) > 0 

2 c i f f I k\ 

and let E ^ denote the contrary event. I t follows from wha t has been said 
t h a t 

(9.5) lim Р(Щ>) = 0 . 
оо 

We consider only such E n N ^ n ) for which (9.3) holds. 
Now clearly Гп N2M is obta ined from EriiNi(n) by adding N2(n) —Nß^^ne 

new edges a t r andom to + n Vi(n). The probabil i ty t h a t such a new edge should 
HniNltn)(A) 

connect two poin ts belonging to Ж n jv^roM), is a t least 
- а д 

n 

| 2 j 

and thus by (9.3) is not less t h a n (1 — 2т) f2 (А, с — e), if n is sufficiently 
large and т sufficiently small. 
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As these edges are chosen independent ly f rom each other, it follows 
by the law of large numbers tha t denoting by vn the number of those of the 
N2(n) — Njn) new edges which connect two points of and by E^2) 

the event t ha t 

(9.6) vn ^ e(l -3r)f2(A,c-e)n 

and by Я ® the contrary event, we have 

(9.7) lim P(Ei2>) = 0 . 

We consider now only such Г NtM for which takes place. Now let us 
consider the subgraph Р*,ы»(п) 

of r n Ni(n) formed by the points of the set 
>УЕrk yL(rl)( A) and only of those edges of Гп>мг(п) which connect two such points. 

vVe shall need now the following elementary 
Г 

Lemma 2. Let ava2 ar be positive numbers, "V a : = 1. If m a x aj< a 
jT i 1 <,i<,r 

then there can be found a value к (1 к < r — 1) such that 

(9.8) and 

I — A * 1 + A 
< У а,<п 

2 2 

- a " 1 + 
< > a , < - 1 -

2 - j ^ T , , 2 

Proof of Lemma 2. P u t Sj = y at ( j = 1, 2, . . . , r). Let j0 denote the 
i= 1 

least integer, for which 8j > 1/2. In case Sjo — 1/2 > 1j2 — Sjo_x choose 
k=j0 — 1, while in case S]a — 3I2 ^ a/2 — (Sy0-i choose k=j0. I n both 
cases we have | Sk — */2 I á — á — which proves our Lemma. 

2 2 
Let the sizes of t he components of Г*N2(n) be denoted by bv b2, . . ., br. 

Let E(3> denote the even t 

(9.9) m a x bj > Hn Nl(n)(A) (1 — 6) 

and Effl the contrary event . Applying our Lemma wi th a = 1 — b to the 

numbers = L i t follows t h a t if the event 2?*,3) takes place, the 
НпШп){А) 

set<3fnNl(n)(A) can be spli t in two subsets and PXE'h containing H'n and 
H'f points such tha t Hf + H"n = #„ i J V l ( n )(A) and 

(9.10) H M ) ( A ) Ô- < min {H'n, Щ) ^ max (Щ, Щ) ^ Hn,NlM(A) [l - 1 
z z 

fur ther no point of -Ж'п is connected wi th a point of Pj^'f in I '* № ( n ) . 
I t follows tha t if a poin t P of t he set belongs to Рж"п (resp. 

JP'f) then all other points of the component of Гп N l ( n ) to which P belongs are 
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also contained in (resp. As the number of components of size > A 

of U n JVl(n) is clearly < the number of such divisions of the set 
A 

does not exceed ""•NUn>(A). 
If fur ther takes place then every one of the vn new edges connect-

ing points of - Ж п ^ ^ ф А ) connects ei ther two points of or two points 
of <J?"n. The possible number of such choices of these edges is clearly 

H ' n 

2 + Щ 
2 

As by (9.10) 

(9.11) 

Hi I Hi 
2 

4 2 2 

1 -
e ( l - 3 r ) / s ( A , C - e ) n 

i t follows tha t 

(9.12) P(^3>) ^ 2~Á  

and thus by (9.3) and (9.6) 

(9.13) Р ( Я £ » ) ^ е х р nf(A,c — e) 

Thus if 

(9.14) A e<5(l — Зт) f(A,c — e) > (1 + r ) l o g 4 

( 1 + t ) log2 e(l — Зт) f(A, с — e) ô 
A 2 

t hen 

(9.15) lim р д а ) = 0 . 
со 

As however in case с — e > x/2 we have f(A, с — e) ^ G (с — e) > 0 
for any A, while in case с — s - 1 / 2 

(9.15a) / A, 
A hk-l hk—Ï 1 

2 — - ^ - -mk\ek k^A+i k \ ek 2|lÀ 
^ Л 

1 50 
the inequality (9.13) will be satisfied provided t h a t т < — and A > . 

1 0 e 2 <5 2 

Thus Theorem 9a is proved. 
Clearly the "g ian t " component of the existence of which (with 

probabi l i ty tending to 1) has been now proved, contains more t h a n 
(1 _ T ) ( i - d ) n f ( A , e - e ) 
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poin ts . By choosing E, т and д sufficiently small and A sufficiently large, 
(1 — r) (1 — Ó) f(A, с — e) can be brought as near to G(c) as we want. Thus 
we have incidentally proved also the following 

Theorem 9b. Let gn N denote the size of the greatest component of Гп Ы-
If N(n) ~cn where с > ij2 we have for any rj > 0 

(9.16) lim P 
П— + oo 

QnMn) - G(c) i < у 

x ( c )
 œ F - 1 

where G(c) = 1 — —— and x(c) = V -— (2c e~2c)k is the solution satisfying 
•J.C к I 

0 < x(c) < \ of the equation x(c) e~x(c) = 2ce~2c. 

Remark. As G(c) - > 1 for с —*• + 0 0 it follows as a corollary f rom Theorem 
9b t h a t the size of the largest component will exceed (1 — a)re if с is suffi-
c ient ly large where a > 0 is a rb i t ra r i ly small. This of course could be proved 
direct ly . As a ma t t e r of fact, if t he greatest component of Гп Ы(̂ п) wi th N(n) ~nc 
would not exceed (1 —a)n (we denote this event by B n ( a , c)) one could b y 
L e m m a 2 divide t h e set V of t h e n points Plt . . . . P n in two subsets V resp. 
V" consisting of n' resp. n" po in ts so that no two points belonging to different 
subse ts are connected and 

о . ! ? : 
a n 

A m'n (n', n") ^ max («.', n") 1 - n . 

But the number of such divisions does not exceed 2", and if the n points 
a re divided in th is way, the n u m b e r of ways N edges can be chosen so t h a t 
only points belonging to the same subset V' resp. V" are connected, is 

As 

re' + re" + 
2 2 

N 

re' + 
ft 

re re2 

< 
a) 

1 —-2 2 2 2 
. it follows 

(9.18) P(Bn(a, c)) 5Á 2" 

Thus if а с > log4, then 

1 — 
N(n) _ 

< 2ne 2 

(9.19) lim P( Bn(a, с)) = 0 

which implies t h a t for с > and У(п) ~ c n we have 

(9.20) l i m ^ ( 1 - a ) re) = 1 



ON" T H E EVOLUTION OF RANDOM G R A P H S 57 

We have seen t h a t for N(n) ~ cn with с > 1/2 the random g raph 
consists with probabi l i ty tending to 1, neglecting o(n) points, only of isolated 

тъ k k — ^ 
trees (there being approximately (2c e~2c)k trees of older k) and of 

"2c k\ 
a single giant component of size ^G(c)n . 

Clearly the isolated trees mel t one af ter ano ther into the g ian t compo-
nent , the "danger" of being absorbed by the " g i a n t " being greater for larger 
components. As shown by Theorem 2c for N(n) ~ — те log те only isolated 

2 к 

, -, г N(n) — 1/2 те log те , ,. , , 
trees of order <Lk survive, while lor > -J-00' t he whole 

те 
graph will with probabi l i ty tending to 1 be connected. 

An interesting question is: wha t is the "l i fe- t ime" distr ibution of an 
isolated tree of order к which is present for N(n) ~ cn ? This question is 
answered by the following 

Theorem 9c. The probability that an isolated tree of order к which is present 
in Tn Nl(n) where Nx(n) ~ cn and с > 1/2 should still remain an isolated tree 
in л/,(„) where N2(n) ~ (c + i) те (i > 0) is approximately e~2kt ; thus the 
„life-time" of a tree of order к has approximately an exponential distribution 

with mean value ^ and is independent of the "age" of the tree. 

Proof. The probabi l i ty t h a t no point of t he tree in question will be 
connected with a n y other point is 

N , ( n ) ^ 

И 
j~N,(n)+1 

This proves Theorem 9c. 

[те — к 

I 2 
— j + к] 

§ 10. Remarks and some unsolved problems 

We studied in detail the evolution of Г N only till N reaches the order 
of magni tude n log те. (Only Theorem 1 embraces some problems concerning 
the range N(n) ~ т е а with 1 < а < 2.) We wan t to deal with the structure 
of Гп N ( n ) for N(n) ~ cna with a > 1 in greater detail in a fortcoming paper; 
here we make in th is direction only a few remarks. 

F i rs t it is easy to see tha t Г n ^ is really nothing else, t han the 

complementary g r a p h of T n N(ny Thus each of our results can be reformulated 
to give a result on the probable s t ructure of Г„ N with N being not much 

less t h a n jП j . For instance, the s t ructure of Гп N will have a second ab rup t 

change when N passes the value if N < — c n wi th с > х/2 

then the complementary graph of Гп N will contain a connected g raph of order 
f{c)n, while for с < г/2 this (missing) "g iant" will disappear. 
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for N near to , let us consider the maximal number of pairwise independent 

To show a less obvious example of this principle of ge t t ing result 
n 

2 
points in Гп N. (The vertices P and Q of the g r aph Г are called independent 
if t h e y are not connected by an edge). 

Evident ly if a set of к points is independent in P n iv(n) t h e n the same 
points form a complete subgraph in the complementary graph Гп<щп . . As 
however Г„ has the same s t ruc ture as Г it follows b y Theorem пЖп) — c МШИШС a0 " „,(») - N(n) 

1, t h a t there will be in P n a lmost surely no к independent points if 

— N(n) = о K - k ' i ) i. e. if N(n) = — o n 

Pn,N(n) almost surely к independent points i fW(n) = 

but there will he in 

, / . M 
— со n ( A—l ' where 

a)n t ends arbi t rar i ly slowly to An other interesting question is: what 
can be said about t h e degrees of t he vertices of r n N . We prove in this direction 
the following 

Theorem 10. Let DnN^(Pk) denote the degree of the point Pk in /ft,v(n) 
(i. e. the number of points of Гп which are connected with Pk by an edge). Put 

Dn = min DnMn) (Pk) a n d Dn = m a x DnMn) (Pk). 

N(n) 
lim 

n—+ » П log П 

1 

Suppose that 

(10.1) 

Then we have for any e > о 

(10.2) lim P 
П—+ œ 

We have further for N(n) ~ cn for any к 

1 S k á n 

-T — 1 < e = 1 

; Dn 

( 1 0 . 3 ) lim P(DnMn) (Pk) = j) = (2 c)J e -2c 

1 i t 
( 7 = 0 , 1 , . . . ) . 

Proof. The probabil i ty t h a t a given ver tex Pk shall be connected by 
exact ly r others in 1 n n is 
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thus if N(n) ~ c n the degree of a given point lias approximately a Poisson 
distr ibution with mean value 2c. The number of points having the degree r 
is thus in this case approximately 

(r = 0 , 1 , . . . ) . 
r ! 

If N(n) = (и log«) con wi th con ->- then the probabil i ty t h a t the degree of 

a poin t will be outside the interval ~ —7-— (1 — e) and ^ ^ ^ (i e) js ap_ 
n n 

proximate ly 
^ т (2 con • log w)fc e~2w" ,0zn Q 

| f c—2Iogrc-o>„ \>e-21ogn •«,, 

and thus this probabil i ty is о , for any e > 0 . 

Thus tho probabili ty tha t the degrees of not all n points will be between 
t he l imit (1 ± e) 2con l ogn will be t end ing to 0. Thus the assertion of Theorem 
10 follows. 

An interesting question is: wha t will be the chromatic number of ГпЫ ? 
(The chromatic number Ск(Г) of a g r a p h Г is the least positive integer h such 
t h a t the vertices of the graph can be coloured by h colours so t h a t no two 
vertices which are connected by a n edge should have the same colour.) 

Clearly every t ree can be coloured by 2 colours, and thus b y Theorem 
4a almost surely Ch (Гп N) —2 if N = o(n). As however the chromatic 
number of a graph having an equal number of vertices and edges is equal 
t o 2 or 3 according to whether the only cycle contained in such a graph is 
of even or odd order, it tollows from Theorem 5e t ha t almost surely Ch (Гп ^) ^ 3 
for N(n) ~nc with с < 1I2. 

7Ь 
For N(n) ~ — we have almost surely Ch ^ 3. 

As a matter of fact , in the same way, as we proved Theorem 5b, one 
n 

can prove t ha t Гп ^(п) contains for N(n) almost surely a cycle of odd 

order. I t is an open problem how large Ch (ГпЫМ) is for N(n) ~ cn with с >1/2
l . 

A fur ther result on the chromatic number can be deduced from our 
above remark on independent vertices. If a graph Г has the chromatic number 
h, then its points can lie divided in to h classes, so t h a t no two points of the 

71 
same class are connected by an edge; as the largest class has a t least points, 

h 
i t follows tha t if / is the maximal number of independent vertices of F we have 

7b Í7l\ 2( 
f —. Now we have seen tha t for N(n) = — о 

h U 1 

f ^ Je; it follows t h a t for N(n) =\ 

n 
> —. 

к 

11 — 0 u \ 

n ^ almost surely 

almost surely Ch (Гп<N(n)) > 
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O t h e r o p e n p r o b l e m s a r e t h e fo l l owing : f o r w h a t o r d e r of m a g n i t u d e 
of N(n) h a s i „ i A , ( r ! ) w i t h p r o b a b i l i t y t e n d i n g t o 1 a Hamilton-line (i.e. a p a t h 
w h i c h passes t h r o u g h all v e r t i c e s ) r e sp . in case n is e v e n a factor of degree 1 
( i .e . a se t of d i s j o i n t edges w h i c h c o n t a i n al l v e r t i c e s ) . 

A n o t h e r i n t e r e s t i n g q u e s t i o n is : w h a t is t h e t h r e s h o l d f o r t h e a p p e a r -
a n c e of a " t o p o l o g i c a l c o m p l e t e g r a p h of o r d e r Jc" i.e. of Jc p o i n t s s u c h t h a t 
a n y t w o of t h e m c a n b e c o n n e c t e d b y a p a t h a n d t h e s e p a t h s d o n o t i n t e r -
s e c t . F o r к > 4 w e d o n o t k n o w t h e so lu t ion of t h i s q u e s t i o n . F o r к = 4 

Ti 
i t f o l lows f r o m T h e o r e m 8a t h a t t h e t h r e s h o l d is — . I t is i n t e r e s t i n g t o 

2 
c o m p a r e t h i s w i t h a n ( u n p u b l i s h e d ) r e su l t of G . D I R A C a c c o r d i n g t o w h i c h 
if N ^ 2n — 2 t h e n Gn N c o n t a i n s c e r t a i n l y a t o p o l o g i c a l c o m p l e t e g r a p h 
of o r d e r 4. 

W e h o p e t o r e t u r n t o t h e a b o v e m e n t i o n e d u n s o l v e d q u e s t i o n s i n a n o t h e r 
p a p e r . 

Remark added on May 16, 1960 . I t s h o u l d b e m e n t i o n e d t h a t N . V . 
S M I R N O V (see e. g. Математический Сборник 6 ( 1 9 3 9 ) p . 6) h a s p r o v e d a 
l e m m a wh ich is s i m i l a r t o o u r L e m m a 1. 

( R e c e i v e d D e c e m b e r 28, 1959.) 
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О РАЗВЁРТЫВАНИЕ СЛУЧАЙНЫХ ГРАФОВ 
P. ERDŐS и A. RËNYI 

Резюме 

Пусть даны п точки Pv Р2,..., Рт и выбираем случайно друг за другом 

N из возможных ребер (Р,, P f ) т а к что после того что выбраны к ребра 

каждый из других к ребер имеет одинаковую вероятность быть вы-

бранным как следующий. Работа занимается вероятной структурой так 
получаемого случайного графа Гп Ы при условии, что N = N(n) известная 
функция от п и п очень большое число. Особенно исследуется изменение 
этой структуры если N нарастает при данном очень большом п. Случайно 
развёртывающий граф может быть рассмотрен как упрощенный модель роста 
реальных сетей (например сетей связы). 
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