
UNSOLVED PROBLEMS IN THE ENUMERATION OF GRAPHS1 

by 

F R A N K H A R A R Y 2  

§ 1. Introduction 
Our object is to present several unsolved problems in the enumerat ion 

of graphs in the hope t h a t i t will serve to stimulate act ive interest among 
mathematicians. I t is no t likely t h a t all of these problems will be sett led in 
the near future , for included among their solutions there would be enough 
information to settle the four color conjecture either in the af f i rmat ive or 
the negative. 

We f i r s t i l lustrate what is mean t by a graph enumerat ion problem 
using graphs and directed graphs. We then develop the preliminary concepts 
concerning graphs in order to be able to state the unsolved problems con-
cisely. Sta tements (without proofs) of several methods which have been used 
in the enumeration of graphs are given. The most impor t an t method in this 
area is provided by the elegant and powerful enumerat ion method of P Ó L Y A 
[45]. Fo r Pólya's method or a variat ion thereof has been utilized in most 
known solutions to such problems. We compare problems involving the num-
ber of t rees of various kinds with analogous problems for graphs. Lists of 27 
solved problems and 27 unsolved problems are presented. The importance of 
the unsolved problems and the na tu re of their essential difficulties are 
indicated. The calculation of asymptot ic numbers of g raphs of various kinds 
is also mentioned. We conclude with a comprehensive bibliography of 
articles which either implicitly or explicitly involve the enumerat ion of graphs. 

§ 2. Graphical Preliminaries 

In this section, we develop the definitions of several basic graphical 
concepts. A graph (see K Ö N I G [ 3 9 ] as a general reference on graph theory) 
consists of a finite set of points a, b, c, . . . together wi th a prescribed set 
of unordered pairs of dist inct points. Each such pair of points a and b is a 
line a = ab of the graph G. We then say tha t points a and b are adjacent 
and t h a t the point a and the line a are incident to each other. Note t h a t by 
definition a graph has no lines joining a point with itself nor does it have 

1 This article is based on a talk given in March 1959 at the Combinatorial 
Problems Seminar of the Logistics Project at Princeton University while the author 
was on leave from the University of Michigan. The final draft was completed at the 
Los Alamos Scientific Laboratory during the summer of 1959. 

2 Ann Arbor, USA. 
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t w o distinct lines joining the same pair of points . If the defini t ion of a graph 
is generalized to permit more t h a n one line joining the same pair of points, 
t h e result is called a multigraph, following the terminology in B E R G E [ 1 ] . 
T w o or more lines joining the same pair of dist inct points are called multiple 
lines. If we f u r t h e r allow the presence of loops, i.e., lines joining a point with 
i tself , as well as multiple lines, then we have a general graph. 

Two graphs are isomorphic if there exists a one-to-one correspondence 
between their sets of points which preserves adjacency. I n Figure 1 we show-
all the graphs (up to isomorphism) of four points. 

Figure 1. The graphs of four points. 

Let gpq be the number of graphs with p points and q lines. Let 

9p(x) = ffpo + g pi X + gp2 X2 + • • • 

b e the counting series for t he graphs of p points ; thus the highest power of 
X is p (p — l) /2. 

Л directed graph (or more briefly a digraph) consists of a finite set of 
po in t s together wi th a prescribed collection of ordered pairs of distinct points. 
E a c h such ordered pair (a, b) of points is called a directed line (or more briefly 
a line where t h e meaning is clear by context) , and is denoted by ab. The 
definit ion of isomorphism for digraphs is analogous to t h a t for graphs. In 
F igure 2, we show all the d igraphs of three points. 

/. L A 
Figure 2. The digraphs of three points. 
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Let gpa be the number of digraphs with p points and q (directed) lines. 
To enumera te the digraphs of p po in t s means to f ind the expression for the 
count ing series 

S V ( ® ) = 9 p o + 9 p i x + 9 p 2
x 2 + • • • 

in which the highest power of x is p(p — 1). From Figures 1 and 2 we see 
t h a t the counting series for the g raphs of four points and the digraphs of 
th ree poin ts are respectively: 

9i(x) = 1 + X + 2 x2 + 3 x3 + 2 x4 + x5 + x 6 , 

g3(x) = l + x + 4x 2 + 4 x 3 + 4x4 + x5 + x 6 . 

strong unilateral weak disconnected 

d. Four digraphs with various kinds of connectedness. 

5 A M a t e m a t i k a i Ku ta tó I n t é z e t Közleményei V. A / l — 2 . 
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point s'immetrie line symmetric symmetric 
g. Symmetric graphs. 

a 2-cube a 3-cube 
h. Two cubes. 

Figure 3. 

Let G be a graph with p points and q lines. The complement G' of G 
contains the same set of poin ts as G and two points are ad jacen t in G' if a n d 
o n l y if they are no t adjacent in G. A graph is self-complementary if it is iso-
morphic to its complement. (See Figure 3a.) 

Two lines of a graph are adjacent if they contain a common point. A path 
is a collection of successively ad jacen t lines of the form axa2, a2a3, ..., an_xan 
a n d the n d is t inc t points a, . The length of a pa th is the number of lines 
in it . A graph is connected if the re is a p a t h between any two points. The 
diameter of a connected g r a p h is the max imum distance between any t w o 
points , where the i r distance is t h e length of a shortest p a t h between them. 

A trajectory is a sequence of successively adjacent dist inct lines in which 
t h e points need no t be dist inct . A line sequence is a sequence of successively 
ad jacen t lines in which ne i ther the points nor the lines need be distinct. 
A trajectory, or line sequence is open if i ts f i r s t and last points are dis-
t i n c t ; otherwise it is closed. A n Euler line of a connected g raph G is a closed 
t ra jec tory which contains all the lines of G. An Euler graph is one which 
contains an Euler line. (See F igure 3b.) 

A directed path from ax to an in a digraph is similarly given by a sequence 
of lines axa2, .. ., an_xan on n dis t inct points. Then, as before, an Euler di-
graph D is one which contains a closed directed t ra jectory containing all t h e 
l ines of D. (See Figure 3c.) 
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If digraph D has a p a t h from a to b, we say t ha t b is accessible f r o m a. 
A point basis of a digraph is a minimal collection of points from which all 
other points are accessible. A singleton point basis consists of exactly one po in t . 
A digraph D is strongly connected or strong if each point is accessible f rom every 
other point . D is unilaterally connected or unilateral if for any two points , 
a t least one is accessible f rom the other. D is weakly connected or weak if for 
any par t i t ion of its set of points into two nonempty subsets, there exists 
a line between a point of one subset and a point of the other. Finally, D is 
disconnected if it is not even weak. (See Figure 3d.) 

A cut point of a connected graph is one whose removal results in a dis-
connected graph. A block of a graph is a maximal-connected subgraph con-
taining no cut points of itself. 

The degree of a poin t of a graph is the number of lines to which it is 
incident. A regular graph is one in which every point has the same degree ; 
a cubic graph is a regular graph of degree 3. A graph is homeomorphically 
irreducible if it has no points of degree 2. (See Figure 3e.) 

A cycle of a graph consists of a p a t h a1a2 .. . an together with t he line 
a1an. A complete cycle is one which passes through all the points of the g r a p h ; 
in the graphical l i terature a complete cycle is often called a hamilton line, 
and a graph is hamiltonian if it contains a complete cycle. The length of a cycle 
is the number of lines in it. The lower girth of graph G is t he length of a n y smal-
lest cycle; the upper girth is the length of a longest cycle. (See Figure 3b.) 
A tree is a connected graph with no cycles. (See the first g raph of 
Figure 3f.) 

The index of a connected graph is t he smallest number of lines whose 
removal results in a tree. The connectivity of a graph is the smallest n u m b e r 
of points whose removal results in a disconnected graph. (See Figure 3e.) 

An automorphism of a graph is an isomorphism wi th itself. The group 
of a graph is the collection of all its automorphisms. An identity graph is one 
in which the only automorphism is the ident i ty mapping on the set of po in t s . 
(See Figure 3f.) Two points of a graph are similar if there is an automorphism 
which maps one into the other ; similarity of two lines is analogous. A g raph 
is point-symmetric if all i ts points are similar, it is line-symmetric if all i ts lines 
are similar, and it is symmetric if it is both point-symmetric and line-symmetric. 
(See Figure 3g.) 

A graph is k-colored if each point is assigned one of к colors in such a 
way t h a t no two points of the same color are adjacent , and all к colors are 
used. A graph is k-chromatic or has chromatic number к if it can be ^-colored 
but not (к — l)-colored. A labeled graph is one in which each point is d is t in-
guished from every o ther point. 

The partition of a graph of p points and q lines is the expression for 
2q as the sum of the degrees of the points . The partition of a digraph is the 
vector sum of the ordered pair a t each poin t which gives the number of directed 
lines to and from t h a t point . 

A planar graph is one which can be drawn in the plane in such a way 
tha t none of its lines intersect each other. 

A subgraph of a g raph G is a subset of its points and lines which fo rms 
a graph. A spanning subgraph of G has t he same point set as G. 

We conclude this section with the definitions of some miscellaneous 
concepts. An n-cube is a graph with 2" points each of which is a binary n u m b e r 
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with п digits, in which two po in t s are ad j acen t whenever t h e y differ in exact ly 
one digit. (See Figure 3h.) A boolean function of two variables x and y is a 
f in i t e combinat ion of sums, products, a n d complements, of expressions in 
x and y. For each assignment of the values 0 and 1 to the variables x and y, 
a given boolean function has t he value 0 or 1. 

An (abstract) simplicial complex consists of a set P of points a n d a 
collection S of subsets of P called simplexes, which sat isfy the following 
t w o conditions : 

1. E v e r y point is a simplex. 
2. E v e r y nonempty subset of a s implex is a simplex. 
A Latin square of order те is a square matr ix of order те in which every 

row and every column is a permuta t ion of the integers 1, 2, . . . , n. 
A finite automaton or a sequential machine with two inputs 0, 1 a n d a 

f in i te number of states may be defined as follows. There is a directed graph 
whose points a re called s ta tes in which one point is distinguished or rooted 
a n d called t h e initial state. E a c h point has exactly two lines from it, one line 
labeled 0 a n d the other labeled 1. These t w o labels on lines of the digraph 
a re called inputs and serve to determine t h e next state of the machine when 
t h e given s t a t e and the i n p u t are known. We note t ha t directed lines f rom a 
point to itself (loops) are permi t ted here as well as two directed lines both f rom 
one point to another . Also, i t is stipulated t h a t every state is accessible f rom 
t h e initial s t a t e . (See Figure 9 below.) An automaton with outputs 0 and 1 is 
defined by providing a tab le of outputs which associate one of the o u t p u t 
symbols 0 or 1 given the present state a n d the input. 

List I 

UNSOLVED PROBLEMS IN THE ENUMERATION OF GRAPHS 

I. Digraphs 1. S t rong 
2. Uni la tera l 
3. Singleton point hasis 

II. Par t i t ions 4. Graphs with given part i t ion 
5. Homeomorphically irreducible graphs 
6. Regular graphs 
7. Euler graphs 

111. P lana r i ty 8. P l ana r graphs 
9. k-chromatic and k-colored graphs 

10. P l ana r graphs wi th additional pro-
pert ies 

IV. Connectivi ty 11. Graphs of given g i r th and d iameter 
12. Graphs of given index and connect ivi ty 
13. Blocks 
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V. Ising 14. 2-dimensional Ising problem and non-
nearest neighbors 

15. 3-dimensional Ising problem 
16. Paving problem 
17. Cell-growth problem 

VI. Switching 18. Types of complete cycle in an n-cube 
19. Fini te au toma ta 
20. Indecomposable two-terminal networks 

VII. Topological 21. Self-complementary graphs 
22. Simplicial complexes 

VIII. Combinatorial 23. Lat in spuares 
24. Line graphs 

IX. Groups 25. Symmetr ic graphs 
26. Iden t i ty graphs 
27. Graphs wi th given group 

§ 3. Statements of the Unsolved Problems 

We regard a solution of each of the unsolved problems of List I as a 
generat ing function in closed form for the number of graphs of each given 
k ind with a given number p of points and a given number q of lines (or directed 
lines for digraphs). These problems arc divided into nine categories which 
combine related problems. 

I. Problems involving digraphs 

1. Strong digraphs 

We see f rom Figure 2 t h a t the counting series for the strong digraphs 
of three points is 

x3 + 2xi + x5 + xe . 

2. Unilateral digraphs 

Again, we see from Figure 2 t ha t the counting series for unilateral 
d igraphs of three points is 

x2 + 4ж3 + 4xi + x5 + x6 . 

3. Digraphs with a singleton point basis 

Figure 2 shows tha t the counting series for these digraphs with th ree 
po in t s is 

2x2 + 4x3 + 4xi + ж5 + ж6. 

I t is easy to show t h a t every unilateral digraph has a singleton 
po in t basis. 
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II. Problems involving partition 

4. Graphs with a given partition 

From Figure 1, we see t ha t each graph of four points has a different 
part i t ion. For example, t he graph consisting of a single cycle of length 4 
has par t i t ion 2 + 2 + 2 + 2 and is the only graph with this parti t ion. However, 
s tart ing with graphs of f ive points, there exist par t i t ions which belong to 
more t h a n one graph. An example is given by the two graphs shown in Figure 
4, each of which has the par t i t ion 1 + 1 + 2 + 2 + 2. 

5. Homeomorphioally irreducible graphs 

Inspection of Figure 1 shows t h a t the counting series for homeomorphic-
ally irreducible graphs of four points is 

1 + X + X2 + Xs + Xe 

while t h a t for connected homeomorphically irreducible graphs of four points 
is Xs + Xe. 

6. Regular graphs 

This is an interesting special case of graphs with a given parti t ion. 
E v e r y regular g raph of degree one has an even number 2n of points 

which are joined by n lines to form n connected components. Every regular 
graph of degree 2 has a cycle for each of its components. The first interesting 
case of regular graphs is given by cubic graphs. The only cubic graph of four 
points is the complete g raph shown in Figure 1; hence the counting series 
for cubic graphs of four points is simply given by x"\ 

7. Euler graphs and Euler digraphs 

Euler himself showed tha t a g raph has a closed t ra jec tory containing 
all the lines if and only if i t is connected and every point is even (of even 
degree). Hence Euler graphs are subsumed in the category of graphs with a 
given par t i t ion. Namely, t hey are those graphs whose part i t ions have no odd 
par ts . 
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III. Problems involving planarity and colorability 

8. Planar graphs 

K U R A T O W S K I lias shown tha t a graph is planar if and only if it contains 
no subgraph homeomorphic to either of t he two "skew graphs" K- or K33 
shown in Figure 5. 

Hence i t follows tha t every graph of four points is p lanar and t h a t the 
counting series for the planar graphs of f ive points is obtained from t h a t 
of all graphs of f ive points b y subtracting ж5. 

9. A'-chromatic graphs and /«-colored graphs 

Only the number of bicolored graphs has been found in closed form, 
[23]. For example, the bicolored graphs wi th two points of each color are 
shown in Figure 6, in which the two points of each graph to the left are regar-
ded as colored wi th the first color while the two points to the right are colored 
wi th the second color. 

Figure 6. The bicolored graphs with two points of each color. 

By a theorem of K Ö N I G [ 3 9 ] a graph is bichromatic if and only if all 
i ts cycles are even (of even length). Thus we see from Figure 1 t h a t the num-
ber of bichromatic graphs of four points is given by the series 

1 + X + 2x2 + 2 ж 3 + ж 4 . 
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Further , it is clear t h a t there is a one-to-one correspondence between connected 
bicolored graphs and connected bichromatic graphs. But there are more 
disconnected bicolored graphs than disconnected bichromatic graphs. Bico-
lored graphs are regarded as isomorphic even when their two colors a re 
interchanged. 

10. Planar graphs with additional properties 

These problems include planar cubic graphs, p lanar Euler graphs, and 
planar ^-chromatic graphs. 

IV. Problems involving connectivity 

11. Graphs with given girth and given diameter 

From Figure 1, we see t ha t there are exactly three connected g raphs 
with lower girth 3 and the same number with upper gir th 4, and t h a t t he 
counting series for the connected graphs of four points with diameter 2 is-
x3

 - f - X4
 + X5. 

12. Graphs of given index and given connectivity 

Among the connected graphs of four points there are two graphs of 
index 1, one of index 2, and one of index 3. 

A connected graph has connectivity 1 if and only if it has a cut poin t . 
Hence the counting series for connected graphs of four points of connectivi ty 
1 is 2x* xi. The sum of this solution and t h a t of Problem 13 is the 
known number of connected graphs. 

13. Blocks 

i n view of the definitions of a block and of the connectivity of a g raph , 
it follows a t once t h a t blocks are connected graphs with connectivity greater 
than 1. The counting series for blocks of four points is (from Figure 1) xi -j-

-f- ХЪ -f- Xе. 

V. Ising model problems 

14. The two-dimensional Ising problem 
Consider a labeled graph which is an я-dimensional lattice. A subgraph 

of this lattice is called admissible if and only if every point is even. Le t Aq 
he the number of different labeled admissible subgraphs with q lines. Find 
a generating funct ion for the quant i ty Ac. This problem was solved for n = 1 
by I S I N G himself [ 3 5 ] , and for n = 2 by O N S A G E R [ 4 3 ] . However, O N S A G E R 
did not use combinatorial methods and his procedures have not generalized 
to higher dimensions. Hence even though the two-dimensional I S I N G problem 
has been solved, i t is still an unsolved problem to derive a purely combinato-
rial solution.3 

3 This problem has just been solved by. S. SHERMAN in an article to appear-
in vol. I, May I960, Journal of Mathematical Physics. Sherman's method may also 
solve the rest of Problem 14. 
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As a variation of th is problem we have the ease which is called in the 
physical l i terature " interact ion between non-nearest neighbors". We show 
in Figure 7a the g raph of a two-dimensional lattice and in Figure 7b the 
graph obtained from th is lattice on joining those pairs of points which are 
nearest to each other wi thout already being adjacent . We note tha t in physical 
applications, each of these graphs would usually he considered as being drawn 
on a torus, i.e., both pa i r s of opposite sides are identified. 

Figure 7. Graphs of a 2-dimensional lattice without and with diagonals. 

15. The three-dimensional Ising problem 

This problem is obta ined from the preceding one on replacing the dimen-
sion n = 2 by n = 3. No real beginning has been made toward its solution. 
Of course the n dimensional Ising problems for n > 3 are also unsolved. 

By the area of an admissible labeled subgraph of a two-dimensional 
lattice we mean the min imum area enclosed by disjoint cycles const i tut ing 
this subgraph. Lot Ag r be the number of admissible labeled subgraphs wi th 
q lines and area r. F ind a generating function for the quantities Ac r. In t he 
physical literature, th is is shown to he the "two-dimensional Ising problem 
with a magnetic f ie ld". 

16. A paving problem 

Let us start wi th a two-dimensional lattice with N squares. Consider 
пл squares and n2 double squares (like dominoes) such tha t пл -j- n2 = N . 
In how many ways can t h e labeled latt ice he "paved" by these ? 

17. The cell growth problem 

Consider a one-celled animal which has a square shape and can grow 
in the plane by adding a cell tp any of its four sides. How many connected 
animals Ar with area r a re there up to isomorphism? The animals are assumed 
to be simply connected in the sense t h a t there are no "holes". 

In Figure 8 we show all the animals with area 1, 2, 3, 4, and 5. 
Thus we see t h a t t he counting series for the cell growth problem is of 

the form 

A(x) = У Arxr ~ x + x2 + 2x3 + 5x4 + I2x5 + . . . 
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I t is also known t h a t Ae= 3 5 and A7 = 1 0 7 . In G O L O M B [ 1 4 ] , these animals 
a re studied unde r the name of polyminoes since they are regarded as a 
generalization of dominoes. See Addendum II . 

• 

Figure 8. The cell growth problem. 

VI. Switching Problems 

18. The number of dissimilar complete cycles in an «-cube 

In Figure 3, we see a 3-cube. I t is very easy to convince oneself t h a t 
there is exact ly one similarity t y p e of complete cycle in a 3-cube. I t has been 
shown by G I L B E R T [13] t ha t t h e counting series for this problem is of the 
fo rm x2 -f- x3 + 9ж4 + • • • where the coefficient of xn is the number of 
dissimilar complete cycles in an те-cube. The coefficient is not known even 
fo r X5. 
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19. The number of finite automata 

In Figure 9, we have the d igraph representation of a f inite au tomaton. 
Every po in t of this d igraph is accessible from the poin t designated as the 
initial s ta te . 

A two-terminal network is a connected mult igraph in which two points 
are marked и and v and are called t he f i rs t terminal a n d the second terminal . 
The product or series connection N = NXN2 of two 2-terminal networks Nx 
and N2 is t he network obtained on ident i fying the points vx and u2. The sum or 
parallel connection N — Nx-\-N2 is obta ined on ident i fy ing ux wi th u2 and 
also vx w i th v2. These two operations on networks are i l lustrated in Figure 10. 

A two-terminal network is series-parallel if it m a y be constructed from 
a f ini te succession of series and parallel connections s ta r t ing with the network 
having exact ly two ad jacen t points и and v. I t is well-known [50] t h a t a two-
terminal network is series-parallel if and only if i t is unidirectional, i.e., no 
two pa ths f rom и to v contain any two points a and b in opposite orders. 

О 
initial stc ' 

О 

Figure 9. A finite automaton. 

20. Indecomposable two-terminal networks 

N j/NJ : и 

Figure 10. The product, sum, and composition of two-terminal networks. 
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The composition N = Л Д А Д where Nt is series-parallel is obtained 
on replacing each line of Nx, using unidirectionality, by the network Nz. 
In Figure 10, t he composition of two networks, the first of which is series-
parallel, is also il lustrated. 

A network N is indecomposable if it is not possible to wri te it in the form 
N = A j ( A T

2 ) . V E T U C H N O V S K Y [ 5 7 ] has obtained upper and lower bounds 
fo r the number of indecomposable two-terminal series-parallel networks 
wi th a given n u m b e r of points. The exact number is not known, and consti-
t u t e s the present problem. 

VII. Topological Problems 

21. Self-complementary graphs 

It is easy to show tha t a n y self-complementary graph has its number 
of points of the form p = 4n or p = 4n + 1. I n Figure 3, we have the self-
complementary graphs of four and five points. The next self-complementary 
g raphs will therefore have eight and nine points . The count ing series for 
self-complementary graphs is therefore of the form 

X* + 2 X5 + s3 X8 + s9 Xй + s12 X12 4- s13 ж13 + . . . 

R . R E A D f inds tha t ss = 10 and tha t these graphs are all planar. 
Clearly every self-complementary graph on 13 or more points is nonplanar. 

22. Simplicial complexes 

How many isomorphism types of simplicial complexes are there with a 
given number of simplex of each dimension? We illustrate by applying 
Figure 1 to wri te down the counting series for the simplicial complexes with 
fou r points, and a given number of 1-simplexes (lines) and 2-simplexes. Let t ing 
x and у be the variables s tanding for the 1-simplexes and 2-simplexes respecti-
vely, we find t h a t this series is of the form 

I 4 ж + 2x2 + Зж3 + x3y + x4 + х*у + x5 -f хъу + хъу2 + ж6 + 

4- ж® у2 ж6 у3 -]- ж6 у* . 

VIII. Combinatorial Problems 

23. Latin squares 

Let Ln be t he number of Lat in squares in which the f i r s t the first row 
a n d the first column are in t he s tandard order 1 , 2 , . . . , n. Then the counting 
series for Lat in squares is known to be (cf. R I O R D A N [ 5 2 ] ) 

ж2 4- x3 4 4ж4 4- 56ж5 4- 9408ж6 + 16942080ж7 + . . . 

T h e result for n > 7 is not known. 
Every L a t i n square m a y be regarded as a bicolored g raph with t he 

same number of points of each color in which the lines are also colored. Le t 
Knn be the g r a p h whose points are 

av . .. ,an,bv ... ,b 
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and whose lines are all n2 lines of the form a,fey. The points of the first color 
correspond to the rows of a La t in square while the points of the second color 
designate its columns. Each of the lines of Knn is colored w i t h exactly one of 
n colors in such a way t h a t a t each point there is exactly one line of each 
color. The mat r ix interpretat ion of such a g raph is tha t the color of the l ine 
joining points a, and fey is the element in t he (г, j) place of the matrix. 

24. Line graphs 

The line graph of a given graph G is t h a t graph L(G) whose points cor re-
spond to the lines of G and in which two poin ts are ad j acen t whenever t h e 
corresponding lines of G are adjacent . A cri ter ion for a g r aph to he the line 
graph of some g raph is known, K R A U S Z [ 4 0 ] . We call such a graph a line 
graph. The present problem is to f ind the n u m b e r of line g raphs with a g iven 
number of points and lines. 

IX. Problems involving groups 

25. Symmetric graphs 

In Figure 3, we have diagrams of g raphs which are point-symmetr ic 
bu t not line-symmetric, l ine-symmetric b u t no t point-symmetric, and sym-
metric. The problem is to enumera te each of these three k inds of graphs wi th 
a given number of points and lines. 

26. Identity graphs 

The smallest identity g r a p h which is a t ree and the smallest one not a 
t ree are shown in Figure 3. 

27. Graphs with a given group 

The group of a graph is by definition a permutat ion g roup acting on t h e 
set of points. I t is known, F R U C H T [11], t h a t every finite g roup is abstract ly 
isomorphic to the group of some graph. But it is not known in general whether 
a given permuta t ion group is a graph group. The general problem, which 
includes this question, is to f ind the number of (nonisomorphie) graphs with 
a given (permutation) group. The line group of a graph is the permutat ion 
group acting on the set of all lines of the g r a p h consistent wi th the group of 
the graphs. As variat ions and extensions of the above problem, we may ask 
for the number of graphs wi th a given line group and also for the number 
of graphs whose group and line group are a given ordered pa i r of permutat ion 
groups. 

§ 4. Various Graph Counting Methods 

In this section we shall discuss six methods which have been used in t h e 
enumerat ion of various kinds of graphs. By fa r the most impor tan t of these 
has been P Ó L Y A ' S powerful a n d elegant enumerat ion theorem [ 4 5 ] . Af t e r 
a s ta tement of P Ó L Y A ' S Theorem, we present a special case which has been 
derived independent ly by D A V I S [ 6 ] and S L E P I A N [ 5 5 ] . We then discuss A 
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recent in te res t ing theorem of R E A D [ 4 9 ] , which is based on the same k ind 
of group theore t ic app roach as the t h e o r e m of PÓLYA. The diss imi lar i ty 
character is t ic theorems of O T T E R [ 4 4 ] f o r t rees and N O R M A N [ 4 2 ] for g r a p h s 
in terms of i t s blocks are t h e n reviewed. A f t e r some commen t s on t h e e nu-
merat ion of labeled graphs, we conclude t h i s section w i th a discussion of the 
considerat ions involved in f inding a s y m p t o t i c numbers for g raphs . 

a. Pólya's Theorem 

We shall s tate P Ó L Y A ' S Theorem in t h e form which is useful in der iv ing 
the count ing polynomials f o r various k i n d s of graphs. T h e desired f o r m is a 
specialization of PÓLYA'S s t a tement t o one variable. 

Le t figure be an unde f ined t e rm . T o each f igu re there is ass igned a 
non-negat ive integer called its content. L e t ak denote- t h e number of d i f fe ren t 
figures of con t en t k. T h e n t he figure counting series a(x) is defined b y 

(1) a{x) = ^ a k x k . 
k = 0 

Let F be a p e r m u t a t i o n group of degree s and o rde r h. A configuration 
of length s is a sequence of s figures. T h e content of a configuration is the 
sum of t h e contents of i t s figures. T w o configurat ions are Y-equivalent if 
there is a pe rmuta t ion of Y sending one into the o ther . Let Fk deno te the 
number of F - inequ iva len t conf igurat ions of content k. The conf igura t ion 
counting series F(x) is de f ined by 

(2) F(x)= ^ Fkxk. 
k=0 

We shall call F the configuration group. 
The ob jec t of P Ó L Y A ' S Theorem is t o express F(x) in t e rms of a(x) a n d F . 

This is accomplished us ing t he cycle i n d e x of F , de f ined as follows. L e t h(j) 
denote t h e number of e lements of F of t y p e ( j ) = ( j v f2, • • •, jx)> i-e-> hav ing 
jk cycles of length k, for Ab = 1 , 2 s, so iha t 

(3) h + 2j2+ . . . +sjs = s. 

Let yv y2, • •., ys b e s inde te rmina tes . Then Z(Y), t h e cycle index of F , 
is defined as 

(4) Z(Y) = -)24i)yilyi*---yi'. 
h 0) 

where t h e sum is t aken over all p a r t i t i o n s ( j ) of s sa t isfying (3). F o r any 
funct ion f(x), let Z(Y, f(x)) denote the f u n c t i o n obta ined f rom Z(Y) b y replac-
ing each inde te rmina te yk by f(xk). U s i n g these def ini t ions, we are able to 
give a concise s t a tement o f : 

Pólya's Theorem.. The configuration series is obtained by substituting 
the figure counting series into the cycle index of the configuration group. 
Symbolically, 

(5) F(x) = Z(Y, a(x)). 
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This theorem reduces the problem of finding the configuration count ing 
series to the determinat ion of the f igure counting series and the cycle index 
of the configuration group. See Addendum I. 

We mention t ha t the cycle index of the symmetric group Sn of degree 
n is 

щ п ) = - • , ,. . , yJß •. • vt> 

n\ 0) . . . nJ-)n\ 

where the sum is taken over all par t i t ions ( j ) of n sat isfying (3) with s = п. 

b. A special case of Pólya's Theorem 

The following special case of P Ó L Y A ' S Theorem has been independent ly 
discovered by D A V I S and S L E P I A N . In addi t ion, the result is also known to have 
been found independent ly by G L E A S O N (unpublished). 

Very simply stated, th is special case is obtained f r o m P Ó L Y A ' S Theorem, 
equation (5), by subst i tut ing x = 1. Formally, this gives F ( l ) = Z(Y, a ( l ) ) . 
But f rom equation (2), F (I) = %Fk and from (1), u ( l ) = 2 V But Д 1 ) is 
the total number of (inequivalent) configurations wi thout regard to content , 
and similarly a ( l ) is the to ta l number of figures without regard to content . 
Hence the substi tut ion of x = 1 in (5) results in the following formula for 
the total number of configurations in t e rms of total number of figures and the 
configuration group. Using the notation of [18], let В = F( 1) and Ъ = a( 1). 
Then (5) becomes 

(6) B=l y h(j)b~J*. 
к T o 

Thus В is obtained a t once f rom the cycle index of the configuration 
group. 

c. A generalization of Pólya's Theorem 

In a recent article, D E B R U I J N [2] has developed an interesting genera-
lization of P Ó L Y A ' S Theorem. He first restates the method of PÓLYA in more 
abstract and less geometric language as follows: Let D be the domain and 
R the range of a collection of functions /, fv /2 The elements of the range 
correspond to figures while the, range itself stands for the figure collection 
in P Ó L Y A ' S terminology. The elements of t he domain correspond to the "p laces" 
a t which the figures are to be located. Then each function mapping the domain 
into the range becomes a configuration. L e t A be a permutat ion group which 
acts on D. Then in P Ó L Y A ' S method, two functions (configurations) Д and /2 
are equivalent if there is a permutat ion a in H such t h a t for all x ^ D , 

ЛИ = foj.a. x). 

DE B R U I J N considers the more general si tuation in which there is also a per-
mutation group В acting on R. He then defines two funct ions as equivalent 
if there exist permutat ions a Ç A and ß £ B such that for all x^D, 

f ß x ) = ß /2(a x). 
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Rather t h a n s ta te the m a i n formula of [2 ] in all its general i ty , we s t a t e 
t h e following special case, in which R = D a n d В = A. 

The number of classes of functions of a finite set D into itself, with respect 
to group A acting on D, is given by the formula 

( 7 ) Z . . . ] [ ( 1 - 1 - 2 y , ) - i ( 1 - З г / з ) - ! . . . ] 
9 yx 9 y 2 I 

inhere these nartial derivatives are evaluated at yx — y2 = . . . = 0. 
The most general result of t he article [2 ] gives a f o rmu la for trie n u m u w 

of inequivalent funct ions f rom D into R where A acts on D a n d В acts on R. 
f t is easy to see t h a t this k ind of combinat ion of the two p e r m u t a t i o n g r o u p s 
A and R is closely related t o t h e operat ion which we [23, 27] have called 
" e x p o n e n t i a t i o n " of pe rmu ta t i on groups. 

The exponentiation BA of two p e r m u t a t i o n groups A a n d В which a c t 
respectively on se ts D and R is as follows. L e t A and В h a v e degree d a n d r 
a n d order m a n d n. Then BA a c t s on RD, t h e set of all func t ions f rom D i n to R, 
so t h a t the degree of BA is rd. T h e funct ion f^RD is mapped in to the following 
funct ion / ' b y t h e pe rmuta t ion y£B A de t e rmined by a n y pe rmuta t ion o.£A 
a n d any d p e r m u t a t i o n s ( repet i t ions pe rmi t t ed ) ft, ft, . . . , ftftR. where D = 
[хл, x2, . . . , xpf : 

(8) /'(*,) = ßif(axi). 

T h u s the o rder of BA is mnd. 

Hence we see tha t DE B B U I J N ' S general izat ion of P Ó L Y A ' S Theorem m a y 
b e regarded as a n application of P Ó L Y A ' S Theorem to a new k ind of pe rmuta t ion 
group, the diagonal of the exponentiation, whose definit ion is obtained f r o m 
(8) on tak ing all the ft as t h e same p e r m u t a t i o n of B. Th i s concept will be 
developed in de t a i l elsewhere. 

We note t h a t the cycle index of ha s been used in [23] to count bi-
colored g raphs w i t h the same number of po in t s of each color, a n d using d i f f e ren t 
terminology t h e cycle index of Sf" was f o u n d by S L E P I A N [55] to e n u m e r a t e 
t h e types of boolean func t ions of n var iables . A general formula for Z(BA) 
has not been f o u n d . 

(1. Read's Theorem 

The resu l t s of R E A D h a v e just appea red [49]. The m a i n result is his 
"Superposi t ion Theorem". By t h e superposi t ion of two g r a p h s on the same 
set of points is mean t the g r a p h obtained b y forming t he union of the i r se ts 
of lines, i nc lud ing mult ipl ici ty. For example , we show in F igure 11 the g r a p h 
obtained b y t h e superposit ion of three g r a p h s on the same collection of six 
points. I t m u s t be noted t h a t t h e lines of G, have color i a n d these colors a re 
preserved in G. When these t h r ee graphs a r e placed d i f fe ren t ly on the same 
set of points , t h e resulting superposed g r a p h need no t be isomorphic w i t h 
t h e graph G of Figure 11. T h e question is t h e n : Given t h r e e graphs Gx, G2, 
G3, how m a n y dis t inct superposed graphs can he formed b y them? I t t u r n s 
ou t t ha t th i s n u m b e r depends only on t h e au tomorph i sm groups Y v Y2, Y3 
of the th ree g raphs and is given by a n expression which we may deno te 
N(YV Y2, Y3). I n order t o s t a t e the superpos i t ion theorem, let ft he t h e o rde r 
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of the group Y j and let A,(/) be the number of permutat ions in the g roup 
Yj of t ype (;') as defined by equation (3). This gives enough notation to wri te 
the cycle index as in (4) of each of these th ree groups Y t . 

Superposition theorem. 

(9) N(YV Y2, Y3) = - -- — > K(j) h2(j) h3(j) (IÁ 2J... . si- jx\j2\ . .. js\)2 . 
nxh2h3 (j) 

The theorem holds for the superpositions of any number n of graphs ; the 
exponent 2 in the r ight-hand member of (9) being replaced by и — 1. This 
theorem is an impor tant and interesting contribution b y R E A D to t he a r t 
of counting. See Addendum I. 

e. Otter's Theorem and Norman's Theorem 

O T T E R ' S dissimilarity characteristic theorem ( 1 0 ) for trees [ 4 4 ] was used as 
an essential lemma in his elegant enumerat ion of trees in terms of rooted trees. 
A generalization ( 1 1 ) of this theorem by N O R M A N [ 4 2 ] enabled him to solve the 
more general enumeration theorem of f ind ing the number of graphs with 
given blocks. Derivations from equation (11) of (10) and other formulas 
are given in [30]. 

Le t T be any tree, and p and q be the number of dissimilar po in ts and 
lines of T. An exceptional line of T is one whose two points are similar ; let 
qe be the number of exceptional lines of T. Thus qe = 0 or 1. 

Dissimilarity-characteristic theorem for trees. 

(10) p - (q - qe) = 1. 

Let G be a connected graph with n blocks. Let p be the total n u m b e r of 
dissimilar points in G and pk the number of dissimilar points in t he k'th 
dissimilar block of G. 

Dissimilarity characteristic theorem for graphs. 

(П) J § ( p A - l ) = p - l . 
k= 1 

The application of bo th equations (10) and (11) to g raph counting prob-
lems is made by summing each of these equations over the collection of all 
graphs to be enumerated. The term 1 when summed over all graphs obviously 

6 A M a t e m a t i k a i K u t a t ó In t éze t Közleményei V. A/l—2. 
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gives the t o t a l number of g raphs while t h e term p becomes the number of 
rooted graphs under consideration. Clever combinatorial devices then serve 
t o yield formulas for the summat ion of the remaining t e rms in these formulas . 

f. Labeled graphs 

The enumerat ion of labeled graphs of any given k ind is always easier 
t h a n that of unlabeled graphs . We shall mention later some comparison 
between the enumeration of unlabeled a n d labeled graphs of various k inds . 
The essential difference is as follows. Regardless of what configuration group 
is required in t h e process of enumerat ing t he ordinary graphs of a given kind,, 
th i s group is replaced by the identi ty group of the same degree for the labeled 
case. Since t h e cycle index of the identi ty group of degree n is f[, it follows 
f rom P Ó L Y A ' S Theorem t h a t relatively s traightforward combinatorial proce-
dures serve for the enumerat ion of labeled graphs ; see for example F O R D a n d 
U H L E N B E C K [ 9 , I ] a n d G I L B E R T [ 1 2 ] . 

g. Asymptotic problems 

The asympto t ic number of trees was f i r s t studied by P Ó L Y A [ 4 5 ] . F u r t h e r 
contributions were made by O T T E R [ 4 4 ] . I n a more recent study, F O R D and 
U H L E N B E C K [ 9 , IV] have m a d e a systematic investigation of the number of 
asymptotic g r a p h s with var ious properties. We have developed in an exposi-
t o r y note [25] asymptotic formulas for cer ta in kinds of b ina ry relations based 
on the corresponding kinds of graph. R E A D has also studied asympto t ic 
problems in connection with t h e results ob ta ined by his superposition theorem. 

§ 5. Tree counting problems 

There h a v e been two recent papers which combine the methods of 
P Ó L Y A and O T T E R to enumera te various species of trees. R I O R D A N [ 5 1 } 
obtained formulas for the n u m b e r of labeled colored and chromatic trees where 
these three adject ives are applied in all possible arrangements to the se t 
of points and t h e set of lines of a tree. I n essentially a sequel to R I O R D A N ' S 
article, H A R A R Y and P R I N S [ 3 1 ] have enumerated the following kinds of 
t rees : 

1. Trees with a given part i t ion. 
2. Homeomorphically irreducible trees. 
3. Trees with a given diameter. 
4. I d e n t i t y trees. 
5. Weighted trees. 
6. Or iented trees. 
7. Direc ted trees. 
8. Signed trees. 
9. Trees of given s t rength . 

10. Trees of given t y p e . 

Л signed tree is one whose lines are designated as either positive o r 
negative. An oriented graph is one in which each line is assigned a un ique 
direction. A directed tree is obta ined from a tree when each line is assigned 
ei ther one direct ion or both directions. A g r a p h of strength n is one in which 
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mult iple lines a re admit ted, b u t not more t h a n n lines join t h e same pa i r of 
points . A g raph of type n has lines of n d i f fe ren t colors and is obtained f r o m a 
g r aph of s t r eng th n by assigning colors to its l ines in such a w a y tha t any t w o 
dist inct lines jo ining the same pair of po in t s have di f ferent colors. (READ 
has just der ived counting formulas for labeled t rees of these var ious species.) 

We now compare these known results fo r trees with corresponding u n -
solved problems mentioned above for g raphs . The number of trees w i th a 
given par t i t ion has been found by the combinat ion of P Ó L Y A ' S Theorem a n d 
O T T E R ' S t heorem as mentioned above. R E A D [ 4 9 ] has also f o u n d the n u m b e r 
of general g r a p h s with a g iven part i t ion using his superposi t ion theorem. 
R u t his me thod does not a p p e a r to be appl icable to the case of graphs in 
which loops a n d multiple lines are not pe rmi t t ed . Thus t he re have been t h e s e 
two solutions of variat ions of problem 4, b u t t h e problem itself has not b e e n 
solved. Homeomorphical ly irreducible graphs , being graphs wi th no p o i n t s 
of degree 2, cons t i tu te a special case of g raphs with a given par t i t ion. H e n c e 
R E A D ' S result serves to enumera te these also fo r general g raphs . In addi t ion , 
this counting resul t has been obtained for t rees . The appropr ia te formula t ion 
for handling th i s problem by PÓLYA'S Theorem lias not been found. Such a 
formulat ion seems to he required for an a t t a c k on problem 5. Problem 6, t h e 
number of regular graphs of degree r, is also a special case of graphs w i th a 
given par t i t ion . Hence for general graphs only , R E A D ' S me thod serves t o 
settle these problems. Read has also ob ta ined an appl icat ion of his super -
position theorem to the case of regular g r a p h s of degree r whose lines a r e 
colored with r colors in such a way tha t exac t ly one of each color is incident t o 
each point. These completely factored graphs a re mult igraphs a n d have no loops. 

Since E U L E R graphs m a y he characterized as connected graphs in which 
every point is even, problem 7 is also a special case of p rob lem 4. Thus i t s 
solution for general graphs is derivable f rom R E A D ' S formula . 

In order t o s ta te R E A D ' S formula for t h e number of general graphs w i t h 
given par t i t ion, we require the concept of " G r u p p e n k r a n z " due to P Ó L Y A [ 4 5 ] , 
which we call in [27] the composition A[R] of permuta t ion groups A a n d B. 
As above, let A a n d В have degrees d and r, orders m and n, and act on sets 
D and R. Then H [ R ] acts on t h e cartesian p r o d u c t D x R. A n y pe rmuta t ion 
a£A and a n y d pe rmuta t ions (repetitions pe rmi t t ed ) ßv ß2, . . ., ßd £ В de te r -
mine the following permuta t ion у of A[B)\ 

y{xi> yj) = (a xi> ßiУj), for a l l x, ^D.y^R. 

Hence the degree of the composit ion A[B] is dr a n d the order is mnd. I t follows 
a t once f rom the i r definitions t h a t the exponent ia t ion BA a n d the composition 
A [ R ] are abs t r ac t ly isomorphic b u t not permuta t iona l ly equivalent . 

The direct sum A -f В ac t s on D (J R a n d for each a^A and ß^B, a 
pe rmuta t ion y ÇA -j- В is def ined by : 

, . I a(u) if и CD 
y(u) = ) 

[/S(w) if u Ç R . 

(This is called "d i rec t p r o d u c t " b y PÓLYA [45] and others.) 
P Ó L Y A [45] has shown t h a t the cycle i n d e x of the d i rec t sum A + В 

is the product of t h e cycle indices : 

Z(A + B) = Z(A)Z(B), 

6* 
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and t ha t t h e cycle index of t he composition is the functional composition 
of their cycle indices : 

Z(A[B]) = Z(A,Z(B)). 

where the r ight-hand member is obta ined as in equat ion (5). For example, 

Z(S3) = I {y\ + 3y x y2 + 2y3) a n d 
6 

Z(S2) = l- (y\ + y2), SO that 
2 

Z(S2[S3]) = ~ 
6 I 

With this notation, R E A D ' S fo rmula for the n u m b e r of general graphs 
1 " 

with и, po in t s of degree i a n d q = — "У i vt lines is 
2 , = j 

( 1 2 ) N ( 2 S M ] , S q [ S t ] ) , 

where 2J denotes direct sum, and this number is determined in accordance 
with equat ion (9). 

Al though the number of trees with a given diameter4 has been found [31] 
the method of solution appears to offer no clues to the corresponding problem 
for graphs. This is the second part of problem 11. The f i rs t part of problem 
11 asks for t he number of graphs with given lower gir th and also for the number 
with given upper girth. The translation of this condition into an application 
of P Ó L Y A ' S Theorem is n o t s traightforward. However, a special case of the 
number of graphs of given upper gir th has been solved, namely, the number 
of Hamil tonian graphs. This problem is handled in t he article [20] where the 
different g raphs having a complete cycle of p points a re regarded as super-
graphs of a cycle of length p whose set of points consists of the points of the 
cycle. 

The number of iden t i ty trees was found [31] by means of an application 
of another theorem of P Ó L Y A involving configurations in which all t he figures 
are distinct, to the combined methods of P Ó L Y A and O T T E R . 

By an abuse of nota t ion , let 

Z{A - B) = Z(A)-Z(B), 

where A a n d В are pe rmuta t ion groups of the same degree. P Ó L Y A [ 4 5 ] has 
derived t he following very useful result. The counting series for the number 
of configurations of length n inequivalent with respect to Sn, in which all 
figures are distinct and the figure series is / (x), is given by 

(13) Z {An — Sn, f (x)), 

where An is the a l te rnat ing group of degree n. 

4 See also RIORDAN, The number of trees by height and diameter, to appear in 
I. В. M. Journal of Research, 1960. 
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By ano the r abuse of notation, let 

n = о 

where Z (S0) is defined to be 1, and let 

Z(Aa - Sa) = jbZ(An - 8n). 
n= 0 

There is a well-known combinatorial iden t i ty mentioned in [2, 16, 42, 45, 52]: 

(14) Z(S„,f(z)) = exp j?f(x')/r. 
r= 1 

This formula is useful in several counting problems, including the number of 
rooted trees and of connected graphs. Fo r counting iden t i ty trees, a fo rmula 
for Z (A„ — 8 A is required. This is g iven in equation (15) below, recent ly 
communicated to us by J . R I O R D A N . 

It is readily verified t h a t 

Z(An;yvy2, . . . ,yn) = Z(Sn;yvy2, .. . , yn) + Z(Sn ;yv — y2,y3,-yt, . . . ) . 

I t follows a t once from th is and (14) t h a t 

(15) Z(Aa - S œ , f ( x ) ) = exvjg(-iy+1f(x')/r. 
r= 1 

Again, the group theoret ic formulat ion required to characterize config-
urations corresponding t o ident i ty graphs has not been found ; such a discovery 
is required t o handle problem 2 6 . P R I N S [ 4 8 ] has characterized all those 
permutat ion groups which are tree groups. A corresponding characterization 
for graph groups is still open. Such a cr i ter ion would give a part ial answer 
to problem 27, t h a t of f ind ing the number of graphs with a given pe rmuta t ion 
group. In a previous article [24], we have proposed the more general problem 
of finding the number of g raphs whose g roup and line g roup (defined in [19]) 
are a given ordered pair of permuta t ion groups. 

The number of trees of given s t rength was found by H A R A R Y and P R I N S 

[31] while t he number of g raphs with given s t rength is found in the article [16]. 
Similarly, b o t h the number of trees and g raphs of given t y p e are found in t h e 
articles [31] a n d [16] respectively. 

The kinds of graphs corresponding to oriented trees, directed trees, a n d 
signed trees have all been enumerated. The solutions appear in the art icles 
[21], [16], and [15] respectively. We have here three cases where the enumera-
t ion of g raphs corresponding to certain kinds of trees have been obtained. 
Their s tudy does not suggest methods for proceeding f rom trees to the enume-

ation of t h e correspon cling graphs which have not yet been counted. 

§ 6. Comparison between solve il and unsolved problems 

We begin with a list of graph enumera t ion problems which have b e e n 
solved, omi t t ing the tree solutions already mentioned in t he preceding sec t ion . 
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List II 

SOLVED PROBLEMS IN THE ENUMERATION OF GRAPHS 

I. Graphs 1. Graphs [16] 
2. Rooted graphs [16] 
3. Connected graphs [16] 
4. Graphs of given s t rength [16] 
5. Graphs of given t y p e [16] 
6. Signed graphs [15] 
7. Subgraphs of a given graph [19] 
8. Supergraphs of a given graph [20] 
9. Bicolored graphs [23] 

10. Graphs with given blocks [42, 911] 
II. Digraphs 11. Directed graphs [16] 

12. Weak digraphs [16] 
13. Oriented graphs [21] 
14. Tournament s [7] 
15. Transi t ive digraphs [60] 
16. Func t iona l digraphs [26] 

III. Par t i t ions 17. General graphs wi th given par t i t ion [49] 
18. Mult igraphs which are fully factored [49] 
19. Digraphs with given double par t i t ion [37] 

IV. Switching 20. Two-terminal series-parallel networks [50, 52] 
21. Types of Boolean funct ion [46, 55] 
22. Spann ing trees of a given graph [38] 

V. Labels 23. Labeled graphs [12, 91] 
24. Labeled series-parallel networks [3] 
25. Labeled graphs wi th a given par t i t ion [49] 
26. Labeled graphs wi th given blocks [ 9 Ш ] 

VI. Asymptot ic 27. The asymptot ic number of graphs and labeled graphs 
[21, 9IV] 

The number of graphs was found by taking the pai rs of distinct points 
from among p given points as the figures, and the content of a figure as 0 or 
1 corresponding to nonadjacency or adjacency of these t w o points. Thus t he 
figure series is 1 + X. The configuration group which serves to count graphs 
is then obta ined from the symmetr ic group of degree p by considering as t he 
objects to be permuted t he pairs of dis t inct objects. The cycle index of the 
resulting g roup is then readi ly found and P Ó L Y A ' S Theorem gives the count ing 
polynomial for the number of graphs wi th p points and a given number of 
lines. This beaut i fu l result, which served as a stimulus for all of our subsequent 
work on g r a p h enumeration, was communicated to the au thor in a let ter b y 
PÓLYA; exac t ly the same formula was found independently in an unpublished 
work of S L E P I A N , who rediscovered P O L Y A ' S enumeration method in [ 5 5 ] . 

The count ing of rooted graphs is then an easy modification which 
results when one takes a n y one of the objects permuted by the symmetr ic 
group as f ixed before fo rming its "pair g roup" . The number of digraphs is 
also readily obtained f rom the number of graphs when one constructs t he 
"ordered pa i r group" analogously to the pa i r group. 
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Connected graphs are enumerated in terms of the total number of graphs 
b y a combinatorial method which is exactly parallel to the enumeration of 
rooted trees in t e rms of themselves, as derived by P Ó L Y A [ 4 5 ] . This result 
t u rns out to be par t icular ly impor tan t because of its wide applicability. 
In general, it serves to count the number of connected graphs (or other con-
figurations) having a given proper ty when the total number of graphs, bo th 
connected and disconnected, is known. If desired, the formula also serves to 
give the total number of graphs of a given k ind in trems of t he number of 
connected such graphs . For example, an immediate application of the method 
gives the enumerat ion of weak digraphs. Problems 1 and 2, which ask for t he 
number of strong and unilateral digraphs have not been found amenable t o 
th is approach. Problem 3, which asks for the number of digraphs with a single-
t o n point basis can be regarded as a generalization of problem I . For every 
s t rong digraph has a singleton poin t basis consisting of any one of its points. 
Problem 19, the number of f in i te automata, involves a combination of t he 
propert ies tha t a d igraph have a singleton point basis, tha t its lines be of t y p e 
2, and a kind of regularity condition tha t every point have out-degree 2. 
V Y S S O T S K Y [ 5 7 ] solves a special labeled case of this problem, and also asks 
t he problem of the number of strongly connected f ini te au tomata . 

The number of oriented graphs is found analogously to t he number of 
digraphs, but involves a modification of both the configuration group and t he 
f igure counting series in order to take account of the condition t h a t each line 
of an oriented g raph has exactly one of two possible directions. Again, a f igure 
is a pair of distinct points which are either non-adjacent or are joined by a 
line in exactly one direction. Hence the f igure counting series is 1 + 2x, 
where the content of a figure is the number of lines it contains. 

The enumerat ion of signed graphs offers no difficulty whatsoever a n d 
is obtained immediate ly from the formula for the number of graphs by a 
modificat ion of the figure count ing series t o 1 + x -f- y, where the t e rms 
1, x, and y indicate respectively no line, a posit ive linn, and a negative line 
jo ining two points. 

Using the line group of a graph as the configuration group and 1 -j- x 
a s the figure counting series, one immediately obtains the number of dissimilar 
spanning subgraphs of a given graph. Analogous formulas for the number of 
dissimilar supergraphs of a given graph and in general for the number of t ypes 
of graph between a given graph-subgraph pair are readily formulated, [22]. 

Z . S C H U R has kindly pointed out an error in Example 2 of t he article [20]. 
He observes t h a t the correct configuration group for Example 2 is the dihedral 
g roup of degree 4 and writes : " W e then have 

fQ„Q,(x) = 1 + * + 2x* + ж3 + x*, 

which amounts to deleting the middle row of graphs in Figure 2. The th ree 
graphs in this row are similar to the corresponding graphs in the upper row-." 

The. problem of enumera t ing bicolored graphs has recently been handled 
b y the construction of a new b ina ry operation on permutat ion groups, called 
exponentiat ion (see § 4, pa r t c. above). An elementary exposition of 
t he algebraic interact ion between this operation and other already known 
operations on permuta t ion groups such as the direct sum and the cartesian 
produc t is given in the note, [27]. 
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Similar although more complicated methods will probably serve to count 
the n u m b e r of tricolored graphs ; this has not been accomplished as yet . The 
number of k-colored graphs for к > 3 involves even further combinatorial 
complexities. This is p a r t of problem 9. The other p a r t of problem 9 asks for 
the enumerat ion of ^-chromatic graphs . Let us consider the simplest case of 
such graphs , namely, bichromatic graphs . We have already ment ioned tha t 
the n u m b e r of connected bichromatic graphs and the number of connected 
bicolored graphs are equal . But this is not so for disconnected graphs . As a 
result of th is observation, the entire content of Section 5 of [23] on the number 
of connected bicolored graphs is incorrect, and this section should be 
deleted. 

Problem 8, the number of p lanar graphs, is ent i rely untouched. No one 
has been able to make even a successful beginning. An intuitive indication 
of the essential d i f f icul ty of this par t icular enumerat ion problem is tha t 
formulas for the number of both p lanar graphs and those planar graphs which 
are 4-chromatic would serve to settle the four-color conjecture one way or 
the other . If these two generating func t ions were obtained and shown to be 
equal, t h e n the four-color conjecture would be proved t rue. On the o ther hand, 
if it t u r n e d out tha t there were more p lanar graphs than planar 4-chromatic 
graphs wi th a given number of points and lines, t hen the 4-color conjectures 
would the reby be disproved. The enumerat ion of p lanar graphs with additional 
propert ies is listed as problem 10. 

By means of equat ion (9), N O R M A N [42] has derived a formula for the 
number of connected graphs with given blocks. Nevertheless, a l though he 
and several others have tr ied very hard , no one has succeeded in deriving a 
formula for the number of blocks wi th a given number of points and lines, 
problem 13. The enumerat ion of g raphs with given index and connectivity, 
problem 12, is conceptually similar. There is a ra ther complete set of theo-
rems involving the index of a graph a n d its connectivity, but these have 
not proven helpful in f ind ing the kind of permutat ion group characterizations 
of such graphs which would be useful in counting them. 

As mentioned above, R E A D [49] has obtained a formula for the number 
of general graphs with given part i t ion. Bu t his method has not provided any 
procedure for el iminating graphs wi th loops and multiple lines. Thus for 
graphs, problem 4 remains unsolved, as well as problems 5, 6, and 7. However, 
R E A D has found a formula for the number of labeled graphs wi th a given 
part i t i t ion and without loops or mult iple lines. He has also applied his super-
position theorem to ob ta in the number of multiple regular graphs (without 
loops) which are fully factored. But again, his me thod does not give the 
corresponding number of graphs wi thou t multiple lines, a special case of 
problem 6. 

The number of digraphs with a given double part i t i t ion was discussed 
in the art icle by K A T Z and P O W E L L [ 3 7 ] . They reduced this question to a 
formulation by S U K H A T M E which gives recurrence relations for certain number 
theoretic functions. S U K H A T M E has constructed tables for these numbers 
which serve to give what K A T Z and P O W E L L call the number of "locally restricted 
directed g raphs" having up to 13 lines. However, a general group theoretic 
formula has never been found. 

We now mention some recently found formulas for digraphs. L E O M O S E R 
shown in [60] that the total number of transitive digraphs with p points 
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has (regardless of the number of lines) is equal to 

1 

p + 1 
(2p\ 

V ) 
D A V I S [7] has found a formula for the number of tournaments , i.e., complete 
oriented graphs. This result is also readily obtained as a special case of the 
formula in [21] for the number of oriented graphs. Functional digraphs are 
defined as the graphical representation of a b inary relation in which each 
f i r s t element has a unique second element. The number of functional digraphs 
has been found [26] by means of a characterization to the effect t h a t every 
weak component of a f ini te funct ional digraph contains exactly one directed 
cycle together with rooted trees located a t each po in t of the cycle.5 I t follows 
t h a t the configuration group for this problem is the cyclic group and tha t the 
f igure counting series is the known generating funct ion for rooted trees. 

§ 7. Importance of enumeration problems for other fields 

IS ING [ 3 5 ] proposed the problem which now bears his name and solved 
it for the one-dimensional case only, leaving the two-dimensional case as an 
unsolved problem. The f irs t solution to the two-dimensional Ising problem 
was obtained by O N S A G E R [ 4 3 ] . Recently K A C and W A R D [ 3 6 ] discovered a 
simpler procedure involving determinants which, however, is not logically 
complete. 

Their purpose was to indicate the ideas involved in a purely combina-
torial development of a proof of the two-dimensional Ising problem, and they 
provided heuristic arguments only. F E Y N M A N ' S simplification (unpublished) 
of their t rea tment is even simpler and contains precisely the same logical gap; 
a combinatorial formulation of the s tatement whose proof would complete 
this development was given by M . C O H E N in [28]. 

Among its m a n y equivalent formulations, the I S I N G problem can be 
regarded as an enumerat ion problem for linear graphs. N E W E L L and MONTROLL 
[41] give a very clear exposition of the problem. Consider as in Figure 7a a 
two-dimensional lat t ice with n points. For applications to statistical mecha-
nics, only large values of n are interesting and usually the lattice is regarded 
as drawn on a torus. 

Regarding Figure 7a as a labeled graph, the f i rs t par t of problem 14 
asks for a purely combinatorial method for counting the distinct admissible 
subgraphs, i.e., those in which every point is even. Such a combinatorial 
solution to the two-dimensional problem serve to fill in the logical gap in 
bo th the t rea tments of K A C and W A R D , and t h a t of F E Y N M A N . IT would also 
offer some hope for the eventual solution of problem 15, the three-dimensional 
I S I N G problem. (See the footnote of Problem 1 4 . ) 

The second p a r t of problem 14 asks for the number of admissible sub-
graphs in a two-dimensional latt ice with diagonals, as shown in Figure 7b. 
This would also be of considerable interest in theoretical physics. The second 
p a r t of problem 15 also asks for a variation of the two-dimensional problem, 

5 R E A D has obtained an elegant simplification of this formula, to appear in 
Math. Annalen. 
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namely for the n u m b e r of admissible subgraphs with a given number of lines 
and a given area. This is referred to in the physical l i terature as the two-
dimensional I S I N G problem wi th magnetic effect. 

The paving problem stated as problem 16 was proposed to the author 
by G . E . U H L E N B E C K . I t has applications in the statistical mechanics of 
liquids. Problem 17, which asks for the number of square-celled animals 
as pictured in Figure 8 , was proposed independently both by U H L E N B E C K , 
who was interested in the number of different shapes of pav ing blocks for 
eventual application to problem 16, by an anonymus biologist who was 
interested in the number of g raphs of this kind as the number of different 
shapes of animals wi th a given number of cells, and b y G O L O M B [14] 
unde r the name of polyminoes, or generalized dominoes; he asserts tha t this 
is a well-known unsolved combinatorial problem. 

Much effort has already been expended in problem 18, the number 
of t ypes of Hamil ton cycle in a n «.-cube, by those interested in applications 
to synthesis problems in switching networks. While several kinds of par t ia l 
results have been obtained, usual ly by exhaust ive methods, the general 
problems has never been appropria te ly conceptualized. The number of f inite 
au toma ta , problem 19, would be of considerable interest in switching theory, 
as well as problem 20, the n u m b e r of indecomposable two-terminal series-
parallel networks described above. 

The number of symmetric graphs, problem 25, has been studied for 
applications to electrical network theory by F O S T E R [ 1 0 ] . While not solving 
th is problem, F O S T E R has provided a useful collection of diagrams of sym-
metr ic graphs, and a classification method. 

Problem 21, the number of self-complementary graphs, would be of 
in teres t because of the set theoret ic operation of complementation, while 
problem 22, which asks for the number of nonisomorphic abs t rac t simplical 
complexes, is of in teres t in combinatorial topology. 

Combinatorial considerations play an impor tan t par t in the statistical 
design of experiments. In these processes, La t in squares play an important 
role. A closed formula for the n u m b e r of distinct Lat in squares of arbi t rary 
order n, problem 23, appears to be extremely difficult. The numbers have 
been found through те = 7 by exhaus t ive methods. In connection with "asso-
ciation schemes" of statistical block designs, C O N N O R [ 5 ] , H O F F M A N [ 3 3 ] , 
a n d S H R I K H A N D E [ 5 4 ] have made a study of the structural prpopert ies of 
the line graph of a complete g raph . The number of line graphs with a given 
n u m b e r of points and lines is s t a t ed as problem 24. Fur the r enumeration 
problems are suggested by the recent work of B O S E , P A R K E R , and S H R I K -
H A N D E in which t h e y disproved E U L E R ' S conjecture concerning the existence 
of orthogonal La t in squares of o rde r 4 N + 2. 

K R A U S Z [40] has obtained t h e following elegant characterization : 
G is a line graph if and only if there exists a partition of the set of lines 
of G into complete subgraphs such that no point of G lies in more than 2 
of these subgraphs. 

A group theoretic description of line graphs for the purposes of applying 
P Ó L Y A ' S method does not appear straightforward. 

Obviously, the line graph Ln of the complete graph Kn satisfies the three 
condit ions : 

1. Each poin t has degree 2 (те — 2). 
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2. Any two nonadjacent points are mutua l ly adjacent t o exactly 4 points . 
3. Any two adjacent po in t s are mutua l ly adjacent t o exactly n — 2 

points . 
Between them, C O N N O R , H O F F M A N , a n d S H R i K H A N D E h a v e shown that these 

necessary conditions are also sufficient except for n = 8. Th i s gives ano ther 
indication of the difficulty of conveniently characterizing a n d hence of count-
ing line graphs. Surprisingly, H O F F M A N has just disproved the sufficiency 
for n = 8. 

We have already noted t h a t counting problems for labeled graphs a re 
always easier t h a n the corresponding problems for unlabeled graphs. Never-
theless, they are also interesting in their own right. C A R L I T Z and R I O R D A N 
[3] have found the number of labeled two-terminal series-parallel networks. 
Ford and U H L E N B E C K [ 9 I , I I I ] have found the number of labeled g raphs 
a n d also have counted labeled graphs with given blocks. I n addition, t h e y 
have made a s tudy of the asymptot ic number of graphs wi th given properties, 
extending the work of P Ó L Y A and O T T E R in this area. G I L B E R T [12] has also 
enumerated labeled graphs and labeled digraphs. G I L B E R T [ 1 3 ] has done t h e 
most work on a number of t y p e s of complete cycles in an и-cube. In a recent 
note [21], we have gathered together for a readership of logicians some of t h e 
asymptot ic results for graphs which have been found. I I U S I M I [ 3 4 ] has obta ined 
t he number of labeled graphs in which every block is complete. C A Y L E Y [ 4 ] 
has shown tha t the number of labeled trees with p points is pp~2. This resul t 
has been rediscovered many t imes and is also a special case of H U S I M I ' S 
formula. 

P Ó L Y A [47] has wr i t ten a beautiful a n d clear exposi t ion of "pic ture-
wri t ing" which gives an aid to intuition in th inking about graphical enumera-
t ion problems. 

S E N I O R [53] appears to have made the f i rs t exhaustive studies on g raphs 
with a given par t i t ion. However, he was very much res t ra ined in his out look 
t o the s tudy of those kinds of partit ions which have immedia te application 
to organic chemistry. 

We conclude by s ta t ing some typical asymptotic formulas for cer ta in 
kinds of graphs. As above, tn and Tn are the number of t rees and rooted t rees 
wi th n points while t(x) and T(x) are the corresponding generat ing funct ions. 
P Ó L Y A [ 4 5 ] has shown tha t t(x) and T(x) have the same rad ius of convergence 
r = 0 . 3 3 8 3 2 1 9 . This number r occurs in asymptot ic formulas for tn and Tn, 
as does the number b = 7 . 9 2 4 7 8 0 which is a constant associated with the power 
series t(x) and its dérivâtes. With these preliminaries, O T T E R [ 4 4 ] der ives 
t he asymptot ic formulas : 

" ' 2 [ л n3 2 

^ frV-n-

" ~ 4 ][Ж И 5 2 ' 

Using similar methods, F O R D and U B L E N B E C K [ 9 1 1 1 ] obtain asymptot ic 
values of hn and Hn, the number of cacti (previously called "Husimi t rees" , 
which are connected graphs in which no line lies on more than one cycle) 
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with n points . In these formulas the common radius of convergence s — 0.22215 
of h(x) and H(x) occur, as do the numbers С = 4.395 a n d d = 11.46: 

H„ 
Cs~n+li2 

2 )[лпзг 

3 ds-"+32 

4 f . 5 2 л n 

P Ó L Y A lias shown in [ 9 I V ] and [ 2 5 ] tha t the n u m b e r gp of graphs with 
p points satisfies 

g 1 _ 2 Р ( Р - 1 > 2 . 
p\ 

Furthermore, the number gp q of graphs wi th p points a n d q lines is asympto-
tically given by 

q\ 2 

where, this formula is known to hold for large p and 0 «<7<XP (p — l)/2, 
so that the major i ty of g raphs is included. 

The corresponding asymptot ic formulas for labeled graphs of these 
various kinds are much more easily derived. We may mult iply the number 
of unsolved problems proposed here b y asking for t h e asymptotic number 
of graphs of each kind, and also for the n u m b e r of labeled graphs of each kind 
and their asymptot ic numbers . 

ADDENDUM 1 

The following paper is extremely appropriate f rom a historical s tand-
point : 

R E D F I E L D , J . H . „The theory of group-reduced distr ibut ions." American Jour-
nal of Mathematics 49 (1927) 433—455. 

The reference to this paper was f o u n d in the book : 
L I T T L E W O O D , I ) . E . The theory of group characters, Oxford , 1 9 4 0 . 

This remarkable pape r by R E D F I E L D apparently ant icipated most of 
the major developments in enumeration techniques and results for the nex t 
th i r ty years. For it contains : 
( 1 ) The exact formula of R E A D Superposition Theorem ( 9 ) . 
(2) Apparently the first published defini t ion of the cycle index of a pe rmu-

tation g roup under the name of the "group-reduction function". 
(3) Formulas for the cycle index of the symmetric, a l te rnat ing , cyclic and 

dihedral groups. 
(4) The cycle index of the g roup of symmetr ies of a 3-cube. He actually sub-

stitues 1 -f- x into this cycle index, t he reby giving the f i r s t known example 
of P Ó L Y A ' S theorem. This also ant icipates the enumera t ion of the sym-
metry t y p e s of boolean functions due to P Ó L Y A and S L E P I A N ! 
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(5) A s u b s t i t u t i o n of 1/(1 — X ) i n t o t h i s cycle i n d e x . T h i s is a d e v i c e used 
in t h e f o r m u l a of [ 1 6 ] for e n u m e r a t i n g g r a p h s in w h i c h a n y n u m b e r of 
l i nes a r e p e r m i t t e d t o j o i n t h e s a m e t w o p o i n t s . 

(6) T h e n u m b e r of g r a p h s w i t h p p o i n t s a n d q l ines f o r p = 5 a n d q = 4 
a s a so lu t ion of a p r o b l e m i n v o l v i n g t h e n u m b e r of t y p e s of b i n a r y rela-
t i o n s . 

A D D E N D U M I I 

T h e fo l lowing r e m a r k s c o n c e r n P r o b l e m 17, t h e cell g r o w t h p r o b l e m . 
S T E I N , W A L D E N , a n d W I L L I A M S O N h a v e p r o g r a m m e d A c o m p u t i n g m a c h i n e 
t o g e n e r a t e t h e i s o m o r p h i s m c lasses of a n i m a l s . T h e resu l t s , w h i c h h a v e 
b e e n c a r e f u l l y checked , s h o w t h a t t h e n u m b e r of a n i m a l s w i t h 7 cel ls is 107 
r a t h e r t h a n t h e n u m b e r 109 w h i c h is s t a t e d b y GOLOMB. F u r t h e r , Aö, t h e 
n u m b e r of 8 celled a n i m a l s , is 363. I n a d d i t i o n t o t h e s e , t h e r e is e x a c t l y 
one a n i m a l w i t h 7 cells w h i c h is c o n n e c t e d b u t n o t s i m p l y c o n n e c t e d , a n d 
t h e r e a r e 6 such a n i m a l s w i t h 8 cells. T h i s p r o g r a m is b e i n g c a r r i e d o u t t o 
e x e m p l i f y a p u r e l y c o m b i n a t o r i a l a p p l i c a t i o n of a d i g i t a l c o m p u t i n g m a c h i n e . 

( R e c e i v e d J a n u a r y 8, 1960.) 
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Н Е Р Е Ш Е Н Н Ы Е ПРОБЛЕМЫ О ПЕРЕЧИСЛЕНИИ ГРАФОВ 

F. IIARARY 

Резюме 

Цель работы указать на ряд проблем относительно перечисления 
графов, чтобы вызвать интерес математиков к таким проблемам. Кажется 
маловероятным, что в скором будущем все эти проблемы будут решены, 
так к а к среди них фигурирует и гипотеза о четырех цветах. 

Сначало характеризуется значение проблемы о перечислении графов 
и направленных графов. Затем работа знакомит с основными понятиями, 
необходимых для того, чтобы можно было кратко сформулировать нере-
шенные проблемы. Далее приводятся (без доказательства) некоторые ме-
тоды, которые, применяются в этой области, среди них наиболее важным 
является элегантный и эффективный метод P Ó L Y A [ 4 5 ] . Этот метод, или 
некоторое его видоизменение п р и м е н я т с я в большинстве известных реше-
ний этих проблем. Сравниваются проблемы относительно числа деревьев 
различных сортов с аналогичными проблемами относительно графов. Автор 
дает список 27 решенных и 27 нерешенных проблем, (см. стр. 86 и 68.) 
Он указывает на их значение и связанные с ними трудности. Упомина-
ется т а к ж е вычисление асимптотического числа графов различных сортов. 
В связи с темой дается обширная библиография. 
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