UNSOLVED PROBLEMS IN THE ENUMERATION OF GRAPHS!
by
Frank HARARY?

§ 1. Introduction

Our object is to present several unsolved problems in the enumeration
of graphs in the hope that it will serve to stimulate active interest among
mathematicians. It is not likely that all of these problems will be settled in
the near future, for included among their solutions there would be enough
information to settle the four color conjecture either in the affirmative or
the negative.

We first illustrate what is meant by a graph enumeration problem
using graphs and directed graphs. We then develop the preliminary concepts
concerning graphs in order to be able to state the unsolved problems con-
cisely. Statements (without proofs) of several methods which have been used
in the enumeration of graphs are given. The most important method in this
area is provided by the elegant and powerful enumeration method of Pérya
[45]. For Pdlya’s method or a variation thereof has been utilized in most
known solutions to such problems. We compare problems involving the num-
ber of trees of various kinds with analogous problems for graphs. Lists of 27
solved problems and 27 unsolved problems are presented. The importance of
the unsolved problems and the nature of their essential difficulties are
indicated. The calculation of asymptotic numbers of graphs of various kinds
is also mentioned. We conclude with a comprehensive bibliography of
articles which either implicitly or explicitly involve the enumeration of graphs.

§ 2. Graphical Preliminaries

In this section, we develop the definitions of several basic graphical
concepts. A graph (see KoNia [39] as a general reference on graph theory)
consists of a finite set of points a, b, ¢, ... together with a prescribed set
of unordered pairs of distinct points. Each such pair of points ¢ and b is a
line a. = ab of the graph G. We then say that points a and b are adjacent
and that the point @ and the line a are incident to each other. Note that by
definition a graph has no lines joining a point with itself nor does it have

1 This article is based on a talk given in March 1959 at the Combinatorial
Problems Seminar of the Logistics Project at Princeton University while the author
was on leave from the University of Michigan. The final draft was completed at the
Los Alamos Scientific Laboratory during the summer of 1959.

2 Ann Arbor, USA.
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two distinct lines joining the same pair of points. If the definition of a graph
is generalized to permit more than one line joining the same pair of points,
the result is called a multigraph, following the terminology in BEerGE [1].
Two or more lines joining the same pair of distinct points are called multiple
lines. If we further allow the presence of loops, i.e., lines joining a point with
itself, as well as multiple lines, then we have a general graph.

Two graphs are isomorphic if there exists a one-to-one correspondence
between their sets of points which preserves adjacency. In Figure 1 we show
all the graphs (up te isomorphism) of four points.
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Figure 1. The graphs of four points.

Let g,, be the number of graphs with p points and ¢ lines. Let

gp(‘l‘) :gp0+gp1x+gp2w2+ il

be the counting series for the graphs of p points; thus the highest power of
x is p(p—1)/2.

A directed g?'aph (or more briefly a digraph) consists of a finite set of
points together with a prescribed collection of ordered pairs of distinct points.
Each such ordered pair (a, b) of points is called a directed line (or more briefly

a line where t",he meaning is clear by context), and is denoted by ab. The
definition of isomorphism for digraphs is analogous to that for graphs. In
Figure 2, we show all the digraphs of three points.
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Figure 2. The digraphs of three points.
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Let g,, be the number of digraphs with p points and ¢ (directed) lines.
To enumerate the digraphs of p points means to find the expression for the
counting series

gp(x) :gp0+ gp11'+9p212+ v

in which the highest power of z is p(p — 1). From Figures 1 and 2 we see
that the counting series for the graphs of four points and the digraphs of
three points are respectively: :

gy®) =142+ 222 4 3% + 22% + 25 4 28,
gs@) =14+ 422 4 42° + 42t 4 25 4 8.

@,

a. Three self-complementary graphs.

D>

b. An Euler graph, with lower girth 3 and upper girth 6.

<\7>

c. An Euler digraph.

strong unilateral weak disconnected

d. Four digraphs with various kinds of connectedness.

5%

e. A cubic planar graph, with connectivity 2.
Figure 3.

5 A Matematikai Kutaté Intézet Kozleményei V. A/1—2.
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o
f. Identity graphs.
poin!t symmetric line symmetric symmetric
g. Symmetric graphs.
01 11
0a 10
a 2-cube a 3-cube
h. Two cubes.
Figure 3.

Let G be a graph with p points and ¢ lines. The complement G of G
contains the same set of points as G and two points are adjacent in G’ if and
only if they are not adjacent in G. A graph is self-complementary if it is iso-
morphic to its complement. (See Figure 3a.)

Two lines of a graph are adjacent if they contain a common point. A path
is a collection of successively adjacent lines of the form Ayly, Ay, . ., Ay_y Ay
and the n distinct points a@;. The length of a path is the number of lines
in it. A graph is connected if there is a path between any two points. The
diameter of a connected graph is the maximum distance between any two
points, where their distance is the length of a shortest path between them.

A trajectory is a sequence of successively adjacent distinct lines in which
the points need not be distinct. A line sequence is a sequence of successively
adjacent lines in which neither the points nor the lines need be distinct.
A trajectory, or line sequence is open if its first and last points are dis-
tinct ; otherwise it is closed. An Euler line of a connected graph G is a closed
trajectory which contains all the lines of G. An Euler graph is one which
contains an Euler line. (See Figure 3b.)

A directed path from a, to a, in a digraph is similarly given by a sequence

of lines a?:z, Sl 1a on 7n distinct points. Then, as before, an Euler di-
graph D is one which contains a closed directed trajectory containing all the
lines of D. (See Figure 3c.)



UNSOLVED PROBLEMS IN THE ENUMERATION OF GRAPHS 67

If digraph D has a path from a to b, we say that b is accessible from a.
A point basis of a digraph is a minimal collection of points from which all
other points are accessible. A singleton point basis consists of exactly one point.
A digraph D is strongly connected or strong if each point is accessible from every
other point. D is unilaterally connected or wunilateral if for any two points,
at least one is accessible from the other. D is weakly connected or weak if for
any partition of its set of points into two nonempty subsets, there exists
a line between a point of one subset and a point of the other. Finally, D is
disconnected if it is not even weak. (See Figure 3d.)

A cut point of a connected graph is one whose removal results in a dis-
connected graph. A block of a graph is a maximal-connected subgraph con-
taining no cut points of itself.

The degree of a point of a graph is the number of lines to which it is
incident. A regular graph is one in which every point has the same degree ;
a cubic graph is a regular graph of degree 3. A graph is homeomorphically
irreducible if it has no points of degree 2. (See Figure 3e.)

A cycle of a graph consists of a path a,a, ... a, together with the line
a,a,. A complete cycle is one which passes through all the points of the graph;
in the graphical literature a complete cycle is often called a hamilton line,
and a graph is hamiltonian if it contains a complete cycle. The length of a cycle
is the number of lines in it. The lower girth of graph @ is the length of any smal-
lest cycle; the upper girth is the length of a longest cycle. (See Figure 3b.)
A tree is a connected graph with no cycles. (See the first graph of
Figure 3f.)

The index of a connected graph is the smallest number of lines whose
removal results in a tree. The connectivity of a graph is the smallest number
of points whose removal results in a disconnected graph. (See Figure 3e.)

An automorphism of a graph is an isomorphism with itself. The group
of a graph is the collection of all its automorphisms. An identity graph is one
in which the only automorphism is the identity mapping on the set of points.
(See Figure 3f.) Two points of a graph are similar if there is an automorphism
which maps one into the other ; similarity of two lines is analogous. A graph
is point-symmetric if all its points are similar, it is line-symmetric if all its lines
are similar, and it is symmetric if it is both point-symmetric and line-symmetric.
(See Figure 3g.)

A graph is k-colored if each point is assigned one of %k colors in such a
way that no two points of the same color are adjacent, and all £ colors are
used. A graph is k-chromatic or has chromatic number k if it can be k-colored
but not (£ — 1)-colored. A labeled graph is one in which each point is distin-
guished from every other point.

The partition of a graph of p points and ¢ lines is the expression for
2¢ as the sum of the degrees of the points. The partition of a digraph is the
vector sum of the ordered pair at each point which gives the number of directed
lines to and from that point.

A planar graph is one which can be drawn in the plane in such a way
that none of its lines intersect each other.

A subgraph of a graph G is a subset of its points and lines which forms
a graph. A spanning subgraph of G has the same point set as G.

We conclude this section with the definitions of some miscellaneous
concepts. An n-cube is a graph with 27 points each of which is a binary number

H*
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with n digits, in which two points are adjacent whenever they differ in exactly
one digit. (See Figure 3h.) A boolean function of two variables  and y is a
finite combination of sums, products, and complements, of expressions in
2 and y. For each assignment of the values 0 and 1 to the variables  and ¥,
a given boolean function has the value 0 or 1.

An (abstract) simplicial complex consists of a set I of points and a
collection 8 of subsets of P called simplexes, which satisfy the following
two conditions :

1. Every point is a simplex.
2. Every nonempty subset of a simplex is a simplex.

A Latin square of order n is a square matrix of order » in which every
row and every column is a permutation of the integers 1, 2, ..., n.

A finite automaton or a sequential machine with two inputs 0, 1 and a
finite number of states may be defined as follows. There is a directed graph
whose points are called states in which one point is distinguished or rooted
and called the initial state. Each point has exactly two lines from it, one line
labeled 0 and the other labeled 1. These two labels on lines of the digraph
are called inputs and serve to determine the next state of the machine when
the given state and the input are known. We note that directed lines from a
point toitself (loops) are permitted here as well as two directed lines both from
one point to another. Also, it is stipulated that every state is accessible from
the initial state. (See Figure 9 below.) An automaton with outputs 0 and 1 is
defined by providing a table of outputs which associate one of the output
symbols 0 or 1 given the present state and the input.

List I

UNSOLVED PROBLEMS IN THE ENUMERATION OF GRAPHS

1. Digraphs 1. Strong
2. Unilateral
3. Singleton point basis
II. Partitions 4. Graphs with given partition
5. Homeomorphically irreducible graphs
6. Regular graphs
7. Euler graphs
II1. Planarity 8. Planar graphs
9. k-chromatic and k-colored graphs
10. Planar graphs with additional pro-
perties
IV. Connectivity 11. Graphs of given girth and diameter

12. Graphs of given index and connectivity
13. Blocks
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V. Ising 14. 2-dimensional Ising problem and non-
nearest neighbors
15. 3-dimensional Ising problem
16. Paving problem
17. Cell-growth problem

VI. Switching 18. Types of complete cycle in an n-culbe
19. Finite automata
20. Indecomposable two-terminal networks

VII. Topological 21. Self-complementary graphs
22. Simplicial complexes

VIII. Combinatorial 23. Latin spuares
24. Line graphs

IX. Groups 25. Symmetric graphs
26. Identity graphs
27. Graphs with given group
§ 3. Statements of the Unsolved Problems

We regard a solution of each of the unsolved problems of List I as a
generating function in closed form for the number of graphs of each given
kind with a given number p of points and a given number ¢ of lines (or directed
lines for digraphs). These problems are divided into nine categories which
combine related problems.

I. Problems involving digraphs
1. Strong digraphs

We see from Figure 2 that the counting series for the strong digraphs
of three points is

3 + 22 4 a8 4 a8 .

2. Unilateral digraphs

Again, we see from Figure 2 that the counting series for unilateral
digraphs of three points is

a2 -+ 423 + 4ot + 2% + b .

3. Digraphs with a singleton point basis

Figure 2 shows that the counting series for these digraphs with three
points is

222 4 4% 4 42t 4 25 + 8.

It is easy to show that every unilateral digraph has a singleton
point basis.



70 HARARY

II. Problems involving partition
4. Graphs with a given partition

From Figure 1, we see that each graph of four points has a different
partition. For example, the graph consisting of a single cycle of length 4
has partition 2 4 2 4 2 4 2 and is the only graph with this partition. However,
starting with graphs of five points, there exist partitions which belong to
more than one graph. An example is given by the two graphs shown in Figure
4, each of which has the partition 1 + 1 4 2 + 2 4 2.

———o

Figure 4. Two graphs with the same partition.

5. Homeomorphically irreducible graphs

Inspection of Figure 1 shows that the counting series for homeomorphic-
ally irreducible graphs of four points is

14+ a? + 23 + af

while that for connected homeomorphically irreducible graphs of four points
is o3 4 8.

6. Regular graphs

This is an interesting special case of graphs with a given partition.

Every regular graph of degree one has an even number 2n of points
which are joined by 7n lines to form 7z connected components. Every regular
graph of degree 2 has a cycle for each of its components. The first interesting
case of regular graphs is given by cubic graphs. The only cubic graph of four
points is the complete graph shown in Figure 1; hence the counting series
for cubic graphs of four points is simply given by 3.

7. Euler graphs and Euler digraphs

Euler himself showed that a graph has a closed trajectory containing
all the lines if and only if it is connected and every point is even (of even
degree). Hence Euler graphs are subsumed in the category of graphs with a
given partition. Namely, they are those graphs whose partitions have no odd
parts.
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ITI. Problems involving planarity and colorability
8. Planar graphs
KuraTowskr has shown that a graph is planar if and only if it contains

no subgraph homeomorphic to either of the two ‘“skew graphs” K, or K,
shown in Figure 5.

K33.’ K5\

Figure 5. The two skew graphs.

Hence it follows that every graph of four points is planar and that the
counting series for the planar graphs of five points is obtained from that
of all graphs of five points by subtracting 5.

9. k-chromatic graphs and k-colored graphs

Only the number of bicolored graphs has been found in closed form,
[23]. For example, the bicolored graphs with two points of each color are
shown in Figure 6, in which the two points of each graph to the left are regar-
ded as colored with the first color while the two points to the right are colored
with the second color.
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Figure 6. The bicolored graphs with two points of each color.

By a theorem of Koxic [39] a graph is bichromatic if and only if all
its cycles are even (of even length). Thus we see from Figure 1 that the num-
ber of bichromatic graphs of four points is given by the series

14 = + 222 + 223 4 a4.
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Further, it is clear that there is a one-to-one correspondence between connected
bicolored graphs and connected bichromatic graphs. But there are more
disconnected bicolored graphs than disconnected bichromatic graphs. Bico-
lored graphs are regarded as isomorphic even when their two eolors are
interchanged.

10. Planar graphs with additional properties

These problems include planar cubic graphs, planar Euler graphs, and
planar k-chromatic graphs.

IV. Problems involving connectivity
11. Graphs with given girth and given diameter

From Figure 1, we see that there are exactly three connected graphs
with lower girth 3 and the same number with upper girth 4, and that the
counting series for the connected graphs of four points with diameter 2 is

2 + at | 28,

12. Graphs of given index and given connectivity

Among the connected graphs of four points there are two graphs of
index 1, one of index 2, and one of index 3.

A connected graph has connectivity 1 if and only if it has a cut point.
Hence the counting series for connected graphs of four points of connectivity
1 is 2a3 + 2. The sum of this solution and that of Problem 13 is the
known number of connected graphs.

13. Blocks

In view of the definitions of a block and of the connectivity of a graph,
it follows at once that blocks are connected graphs with connectivity greater
than 1. The counting series for blocks of four points is (from Figure 1) a* +
+ a% + 8.

V. Ising model problems
14. The two-dimensional Ising problem

Consider a labeled graph which is an n-dimensional lattice. A subgraph
of this lattice is called admaissible if and only if every point is even. Let 4,
be the number of different labeled admissible subgraphs with ¢ lines. Find
a generating function for the quantity A,.. This problem was solved for n =1
by Isine himself [35], and for n = 2 by OxsacEr [43]. However, ONSAGER
did not use combinatorial methods and his procedures have not generalized
to higher dimensions. Hence even though the two-dimensional Isixaé problem
has been solved, it is still an unsolved problem to derive a purely combinato-
rial solution.?

3 This problem has just been solved by. S. SHERMAN in an article to appear
in vol. I, May 1960, Journal of Mathematical Physics. Sherman’s method may also
solve the rest of Problem 14.
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As a variation of this problem we have the case which is called in the
physical literature “‘interaction between non-nearest neighbors”. We show
in Figure 7a the graph of a two-dimensional lattice and in Figure 7b the
graph obtained from this lattice on joining those pairs of points which are
nearest to each other without already being adjacent. We note that in physical
applications, each of these graphs would usually be considered as being drawn
on a torus, i.e., both pairs of opposite sides are identified.

(a) (b)

Figure 7. Graphs of a 2-dimensional lattice without and with diagonals.

15. The three-dimensional Ising problem

11115 pwblom is obtained from the preceding one on replacing the dimen-
sion n = 2 by n = 3. No real beginning has been made toward its solution.
Of course the n dimensional Ising problems for » > 3 are also unsolved.

By the area of an admissible labeled subgraph of a two-dimensional
lattice we mean the minimum area enclosed by disjoint cycles constituting
this subgraph. Let 4,, be the number of admissible labeled subgraphs with
¢ lines and area 7. Find a generating function for the quantities 4,,. In the
physical literature, this is shown to be the “two-dimensional Ising problem
with a magnetic field”.

16. A paving problem

Let us start with a two-dimensional lattice with N squares. Consider
n, squares and n, double squares (like dominoes) such that n, + n, = N.
In how many ways can the labeled lattice be “paved” by these ?

17. The cell growth problem

Consider a one-celled animal which has a square shape and can grow
in the plane by adding a cell to any of its four sides. How many connected
animals A, with area » are there up to isomorphism? The animals are assumed
to be simply connected in the sense that there are no ‘holes”.

In Figure 8 we show all the animals with area 1, 2, 3, 4, and 5.

Thus we see that the counting series for the cell growth problem is of
the form

:EA,x’:_-x—l—xz—l—2x3+5x4+12$5+--'
T
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It is also known that 4,= 35 and A4, =107. In Goroms [14], these animals
are studied under the name of polyminoes since they are regarded as a
generalization of dominoes. See Addendum II.
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Figure 8. The cell growth problem.

VI. Switching Problems
18. The number of dissimilar complete cycles in an n-cube

In Figure 3, we see a 3-cube. It is very easy to convince oneself that
there is exactly one similarity type of complete cycle in a 3-cube. It has been
shown by GiLBERT [13] that the counting series for this problem is of the
form a% 4 a3 + 92 4 ... where the coefficient of 2" is the number of
dissimilar complete cycles in an n-cube. The coefficient is not known even
for af.
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19. The number of finite automata

In Figure 9, we have the digraph representation of a finite automaton.
Every point of this digraph is accessible from the point designated as the
initial state.

O

initial state ¢ =

O

Figure 9. A [inite automaton.

20. Indecomposable two-terminal networks

A two-terminal network is a connected multigraph in which two points
are marked # and v and are called the first terminal and the second terminal.
The product or series connection N = NN, of two 2-terminal networks N,
and N, is the network obtained on identifying the points v; and u,. The sum or
parallel connection N = N,+ N, is obtained on identifying u; with «, and
also v; with v,. These two operations on networks are illustrated in Figure 10.

A two-terminal network is series-parallel if it may be constructed from
a finite succession of series and parallel connections starting with the network
having exactly two adjacent points » and v. It is well-known [50] that a two-
terminal network is series-parallel if and only if it is unidirectional, i.e., no
two paths from u to » contain any two points @ and b in opposite orders.

U@V

N1(No):

Figure 10. The product, sum, and composition of two-terminal networks.
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The composition N = N,(IV,), where N, is series-parallel is obtained
on replacing each line of N,, using unidirectionality, by the network N,.
In Figure 10, the composition of two networks, the first of which is series-
parallel, is also illustrated.

A network N is indecomposable if it is not possible to write it in the form
N = Ny(N,). VETUCcHNOVSKY [57] has obtained upper and lower bounds
for the number of indecomposable two-terminal series-parallel networks
with a given number of points. The exact number is not known, and consti-
tutes the present problem.

VII. Topological Problems
21. Self-complementary graphs

It is easy to show that any self-complementary graph has its number
of points of the form p = 4n or p =4n + 1. In Figure 3, we have the self-
complementary graphs of four and five points. The next self-complementary
graphs will therefore have eight and nine points. The counting series for
self-complementary graphs is therefore of the form

2t + 225 + 8, 2% + 8% + 8,212 5523 4 ...

R. REaDp finds that sg== 10 and that these graphs are all planar.
(learly every self-complementary graph on 13 or more points is nonplanar.

22. Simplicial complexes

How many isomorphism types of simplicial complexes are there with a
given number of simplex of each dimension? We illustrate by applying
Figure 1 to write down the counting series for the simplicial complexes with
four points, and a given number of 1-simplexes (lines) and 2-simplexes. Letting
@ and y be the variables standing for the 1-simplexes and 2-simplexes respecti-
vely, we find that this series is of the form

1+z+ 2224328+ a3y ot oty + a5+ 2Py +ady? + a8+
+x6y2+x6y3+x6y4_

VIII. Combinatorial Problems
23. Latin squares

Let L, be the number of Latin squares in which the first the first row
and the first column are in the standard order 1, 2, ..., n. Then the counting
series for Latin squares is known to be (¢f. RiorDAN [52])

22 4 a3 4+ 4at 4 565 4+ 940825 + 1694208027 + . .

-

The result for » > 7 is not known.

Every Latin square may be regarded as a bicolored graph with the
same number of points of each color in which the lines are also colored. Let
K, be the graph whose points are
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and whose lines are all 2 lines of the form ab;. The points of the first color
correspond to the rows of a Latin square while the points of the second color
designate its columns. Each of the lines of K, is colored with exactly one of
n colors in such a way that at each point there is exactly one line of each
color. The matrix interpretation of such a graph is that the color of the line
joining points @, and b; is the element in the (¢, j) place of the matrix.

24. Line graphs

The line graph of a given graph G is that graph L(G) whose points corre-
spond to the lines of ¢ and in which two points are adjacent whenever the
corresponding lines of (/ are adjacent. A criterion for a graph to be the line
graph of some graph is known, Krauvsz [40]. We call such a graph a line
graph. The present problem is to find the number of line graphs with a given
number of points and lines.

IX. Problems involving groups
25. Symmetric graphs

In Figure 3, we have diagrams of graphs which are point-symmetric
but not line-symmetric, line-symmetric but not point-symmetric, and sym-
metric. The problem is to enumerate each of these three kinds of graphs with
a given number of points and lines.

26. Identity graphs

The smallest identity graph which is a tree and the smallest one not a
tree are shown in Figure 3.

27. Graphs with a given group

The group of a graph is by definition a permutation group acting on the
set of points. It is known, FrucHT [11], that every finite group is abstractly
isomorphic to the group of some graph. But it is not known in general whether
a given permutation group is a graph group. The general problem, which
includes this question, is to find the number of (nonisomorphic) graphs with
a given (permutation) group. The line group of a graph is the permutation
group acting on the set of all lines of the graph consistent with the group of
the graphs. As variations and extensions of the above problem, we may ask
for the number of graphs with a given line group and also for the number
of graphs whose group and line group are a given ordered pair of permutation
groups.

§ 4. Various Graph Counting Methods

In this section we shall discuss six methods which have been used in the
enumeration of various kinds of graphs. By far the most important of these
has been Pérya’s powerful and elegant enumeration theorem [45]. After
a statement of POrLya’s Theorem, we present a special case which has heen
derived independently by Davis [6] and SLeprax [55]. We then discuss a
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recent interesting theorem of REeap [49], which is based on the same kind
of group theoretic approach as the theorem of Pérya. The dissimilarity
characteristic theorems of OTTER [44] for trees and Normax [42] for graphs
in terms of its blocks are then reviewed. After some comments on the e nu-
meration of labeled graphs, we conclude this section with a discussion of the
considerations involved in finding asymptotic numbers for graphs.

a. Pélya’s Theorem

We shall state PéLyA’s Theorem in the form which is useful in deriving
the counting polynomials for various kinds of graphs. The desired form is a
specialization of P6rya’s statement to one variable.

Let figure be an undefined term. To each figure there is assigned a
non-negative integer called its content. Let a, denote the number of different
figures of content k. Then the figure counting series a(x) is defined by

©

(1) ax) = D' a,z*.
k=0

Let Y be a permutation group of degree s and order h. A configuration
of length s is a sequence of s tigures. The content of a configuration is the
sum of the contents of its figures. Two configurations are Y-equivalent if
there is a permutation of Y sending one into the other. Let F, denote the
number of Y -inequivalent configurations of content k. The configuration
counting series F(z) is defined by

(2) Fla)= N Fa*.
We shall call Y the configuration group.

The object of P6LYA’s Theorem is to express F(z) in terms of a(x) and Y.
This is accomplished using the cycle index of Y, defined as follows. Let A(j)

denote the number of elements of ¥ of type (j) = (j;, ja» - -, J5), i.e., having
7. cycles of length k, for £k =1, 2, ..., s, so that
(3) 1+ 25+ ... +8js=s.

Let ¥y, ¥s, ..., ys be s indeterminates. Then Z(Y), the cycle index of Y,
is defined as

] (T )
(4) LUY)=— S WDyl vk ... vk
j

where the sum is taken over all partitions (j) of s satisfying (3). For any
function f(zx), let Z(Y, f(x)) denote the function obtained from Z(Y') by replac-
ing each indeterminate y, by f(z¥). Using these definitions, we are able to
give a concise statement of:

Pélya’s Theorem.. The configuration series is obtained by substituting
the figure counting series imto the cycle index of the configuration group.
Symbolically,

(5) Flx) = Z(Y, a(x)).
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This theorem reduces the problem of finding the configuration counting
series to the determination of the figure counting series and the cycle index
of the configuration group. See Addendum I.

We mention that the cycle index of the symmetric group 8, of degree
n is ;

Z(S ) —_I_Zk n!, 5= y]l yjn
oL I kg TR

where the sum is taken over all partitions (j) of » satisfying (3) with s = n.

b. A special case of Pélya’s Theorem

The following special case of POrLya’s Theorem has been independently
discovered by Davis and SLEPI1AN. In addition, the result is also known to have
been found independently by Greasox (unpublished).

Very simply stated, this special case is obtained from Porya’s Theorem,
equation (5), by substituting x = 1. Formally, this gneq By =ZX, a(l))
But from equation (2), F(1) =Y F, and from (1), a(l) = Ja,. But F(1) is
the total number of (inequl\ alent) configurations vnthout regard to content,
and similarly a(1) is the total number of figures without regard to content.
Hence the substitution of # =1 in (5) results in the following formula for
the total number of configurations in terms of total number of figures and the
configuration group. Using the notation of [18], let B = F(1) and b = a(1).
Then (5) becomes
(6) B=1 > b,

h &

Thus B is obtained at once from the cycle index of the configuration

group.

c. A generalization of Pélya’s Theorem

In a recent article, pE Bruwx [2] has developed an interesting genera-
lization of P6éryA’s Theorem. He first restates the method of PéLya in more
abstract and less geometric language as follows: Let D be the domain and
R the range of a collection of functions /, f,, /,, . ... The elements of the range
correspond to figures while the range itself stands for the figure collection
in P6LyA’s terminology. The elements of the domain correspond to the ¢“places”
at which the figures are to be located. Then each function mapping the domain
into the range becomes a configuration. Let 4 be a permutation group which
acts on D. Then in PérLya’s method, two functions (configurations) f, and f,
are equivalent if there is a permutation @ in A4 such that for all z¢ D,

fix) = fylax).

DE BRUIIN considers the more general situation in which there is also a per-
mutation group B acting on R. He then defines two functions as equivalent
if there exist permutations o€ A and B€ B such that for all €D,

h@) =B fy(ax).
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Rather than state the main formula of [2] in all its generality, we state
the following special case, in which R =D and B = 4.

The number of classes of functions of a finite set D into itself, with respect
to group A acting on D, is given by the formula

0 6]
(7) Z A; —, —, o (L — )T — 2y,)71(1 — Bys)7 L. L]
9y, 9,
where these vartial derivatives are evaluated at y, =y, = ... = 0.

The most general result of the article | 2] gives a tormuia 10r thie numiber
of inequivalent functions from D into R where 4 acts on D and B acts on R.
It is easy to see that this kind of combination of the two permutation groups
A and B is (~]osely related to the operation which we [23, 27] have called
“exponentiation’ of permutation groups.

The exponentiation BA of two permutation groups 4 and B which act
respectively on sets D and R is as follows. Let 4 and B have degree d and r
and order m and n. Then B4 acts on RP, the set of all functions from D into R,
so that the degree of BAis r4. The function f€ RP is mapped into the following
function f* by the permutation y€B4 determined by any permutation a€4

and any d permutations (repetitions permitted) 8,, fy. .. ., f4€B, where D =
AT Tl oo B
(8) f(@) =B flazx

Thus the order of BA is mn9.

Hence we see that pE BRUTIN's generalization of Porya’s Theorem may
be regarded as an application of Porya’s Theorem to a new kind of permutation
group, the diagonal of the exponentiation, whose definition is obtained from
(8) on taking all the f8; as the same permutation of B. This concept will be
developed in detail elsewhere.

We note that the cycle index of 83: has been used in [23] to count bi-
colored graphs with the same number of points of each color, and using different
terminology the cycle index of S§» was found by SLEPIAN [55] to enumerate
the types of boolean functions of n variables. A general formula for Z(B4)
has not been found.

d. Read’s Theorem

The results of REap have just appeared [49]. The main result is his
“Superposition Theorem”. By the superposition of two graphs on the same
set of points is meant the graph obtained by forming the union of their sets
of lines, including multiplicity. For example, we show in Figure 11 the graph
obtained by the superposition of three graphs on the same collection of six
points. It must be noted that the lines of &, have color 7 and these colors are
preserved in G. When these three graphs are placed differently on the same
set of points, the resulting superposed graph need not be isomorphic with
the graph G of Figure 11. The question is then: Given three graphs G,, G,
G5, how many distinct superposed graphs can be formed by them? It turns
out that this number depends only on the automorphism groups Y, ¥, Y,
of the three graphs and is given by an expression which we may denote
N(Y,, Y, Y,). In order to state the superposition theorem, let %; be the order
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of the group Y, and let %,(j) be the number of permutations in the group
Y, of type (j) as defined by equation (3). This gives enough notation to write
the cycle index as in (4) of each of these three groups Y,.

U S e il
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/

3

Figure 11. The superposed graph G of the graphs G,, G,, G;.

Superposition theorem.

I}

(9) NXY,Y, Y, = —— S hy()) ha(§) a(G) (12 20 . sde gy LGl Lo G2

hy by by (6}

The theorem holds for the superpositions of any number n of graphs; the
exponent 2 in the right-hand member of (9) being replaced by n — 1. This
theorem is an important and interesting contribution by Reap to the art
of counting. See Addendum I.

e. Otter’s Theorem and Norman’s Theorem

OrTER’s dissimilarity characteristic theorem (10) for trees [44] was used as
an essential lemma in his elegant enumeration of trees in terms of rooted trees.
A generalization (11) of this theorem by NormaN [42] enabled him to solve the
more general enumeration theorem of finding the number of graphs with
given blocks. Derivations from equation (11) of (10) and other formulas
are given in [30].

Let T be any tree, and p and ¢ be the number of dissimilar points and
lines of 7. An exceptional line of T is one whose two points are similar; let
¢. be the number of exceptional lines of 7'. Thus ¢, =0 or 1.

Dissimilarity-characteristic theorem for trees.

(10) p—(g—4q)=1.

Let G be a connected graph with n blocks. Let p be the total number of
dissimilar points in G and 'p, the number of dissimilar points in the Z£’'th
dissimilar block of G.

Dissimilarity characteristic theorem for graphs.

n

(11) > =il =p—1

k=1

The application of both equations (10) and (11) to graph counting prob-
lems is made by summing each of these equations over the collection of all
graphs to be enumerated. The term 1 when summed over all graphs obviously

6 A Matematikai Kutaté Tntézet Kozleményei V. A/1—2.
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gives the total number of graphs while the term p becomes the number of
rooted graphs under consideration. Clever combinatorial devices then serve
to yield formulas for the summation of the remaining terms in these formulas.

f. Labeled graphs

The enumeration of labeled graphs of any given kind is always easier
than.that of unlabeled graphs. We shall mention later some comparison
between the enumeration of unlabeled and labeled graphs of various kinds.
The essential difference is as follows. Regardless of what configuration group
is required in the process of enumerating the ordinary graphs of a given kind,
this group is replaced by the identity group of the same degree for the labeled
case. Since the cycle index of the identity group of degree n is ff, it follows
from Porya’s Theorem that relatively straighttorward combinatorial proce-
dures serve for the enumeration of labeled graphs; see for example Forp and
UHLENBECK [9, I] and GiLBERT [12].

g. Asymptotic problems

The asymptotic number of trees was first studied by PoLya [45]. Further
contributions were made by OTTER [44]. In a more recent study, Forp and
UnLENBECK [ 9, IV] have made a systematic investigation of the number of
asymptotic graphs with various properties. We have developed in an exposi-
tory note [25] asymptotic formulas for certain kinds of binary relations based
on the corresponding kinds of graph. REap has also studied asymptotic
problems in connection with the results obtained by his superposition theorem.

§ 5. Tree counting problems

There have been two recent papers which combine the methods of
Porya and OTTER to enumerate various species of trees. R10rRDAN [51]
obtained formulas for the number of labeled colored and chromatic trees where
these three adjectives are applied in all possible arrangements to the set
of points and the set of lines of a tree. In essentially a sequel to R10rRDAN’S
article, Harary and Prins [31] have enumerated the following kinds of
trees :

Trees with a given partition.
Homeomorphically irreducible trees.
Trees with a given diameter.
Identity trees.

Weighted trees.

. Oriented trees.

. Directed trees.

Signed trees.

Trees of given strength.

10. Trees of given type.

S ool ISR OIS COR Lol =

A signed tree is one whose lines are designated as either positive or
negative. An oriented graph is one in which each line is assigned a unique
direction. A directed tree is obtained from a tree when each line is assigned
either one direction or both directions. A graph of strength n is one in which
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multiple lines are admitted, but not more than » lines join the same pair of
points. A graph of type n has lines of n different colors and is obtained from a’
graph of strength n by assigning colors to its lines in such a way that any two
distinct lines joining the same pair of points have different colors. (READ
has just derived counting formulas for labeled trees of these various species.)

We now compare these known results for trees with corresponding un-
solved problems mentioned above for graphs. The number of trees with a
given partition has been found by the combination of P6rLya’s Theorem and
OTTER’s theorem as mentioned above. REaD [49] has also found the number
of general graphs with a given partition using his superposition theorem.
But his method does not appear to be applicable to the case of graphs in
which loops and multiple lines are not permitted. Thus there have been these
two solutions of variations of problem 4, but the problem itself has not been
solved. Homeomorphically irreducible graphs, being graphs with no points
of degree 2, constitute a special case of graphs with a given partition. Hence
READ’s result serves to enumerate these also for general graphs. In addition,
this counting result has been obtained for trees. The appropriate formulation
for handling this problem by Pérya’s Theorem has not been found. Such a
formulation seems to be required for an attack on problem 5. Problem 6, the
number of regular graphs of degree r, is also a special case of graphs with a
given partition. Hence for general graphs only, REaD’s method serves to
settle these problems. Read has also obtained an application of his super-
position theorem to the case of regular graphs of degree » whose lines are
colored with r colors in such a way that exactly one of each color is incident to
each point. These completely factored graphs are multigraphs and have no loops.

Since EULER graphs may be characterized as connected graphs in which
every point is even, problem 7 is also a special case of problem 4. Thus its
solution for general graphs is derivable from REaD’s formula.

In order to state Reap’s formula for the number of general graphs with
given partition, we require the concept of “Gruppenkranz‘ due to PéLya [45],
which we call in [27] the composition A[B] of permutation groups 4 and B.
As above, let 4 and B have degrees d and r, orders m and n, and act on sets
D and R. Then A[ B] acts on the cartesian product D x R. Any permutation
a€4 and any d permutations (repetitions permitted) g, f,, ..., f; € B deter-
mine the following permutation y of A[ B]:

Y2, y) = (ax;, B;y;)), for all x,€D,y,€R.

Hence the degree of the composition A[ B] is dr and the order is mn4. It follows
at once from their definitions that the exponentiation B4 and the composition
A[ B] are abstractly isomorphic but not permutationally equivalent.

The direct sum A 4~ B acts on D U R and for each a€A4 and pEB, a
permutation y€4 -+ B is defined by:

Ia(u) if weD
|Bw) if ueR.

(This is called “direct product“ by Pérya [45] and others.)
Porya [45] has shown that the cycle index of the direct sum 4 + B
is the product of the cycle indices :

Z(A + B)=Z(A)Z(B),

y(u) =

6*
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and that the cycle index of the composition A[ B]is the functional composition
of their cycle indices :

Z(A[B)) = Z(A,Z(B)).

where the right-hand member is obtained as in equation (5). For example,

1
Z(Sa) = _6— (¥3 + 3Y1 Yo + 2y3) and

1
Z4(8,) = ¥ (41 + ¥2), so that
Z(Sz[Sa]) =1 (Z )2 — (3 + 3y, Yy, + 23/6)]
With this notation, READ’s formula for the number of general graphs
with v; points of degree 7 and ¢ —E 2 7 v; lines is
9 »! Y
(12) N(% 5 [S,-],Sq[bz]])

where Y denotes direct sum, and this number is determined in accordance
with equation (9).

Although the number of trees with a given diameterthas been found [31]
the method of solution appears to offer no clues to the corresponding problem
for graphs. This is the second part of problem 11. The first part of problem
11 asks for the number of graphs with given lower girth and also for the number
with given upper girth. The translation of this condition into an application
of Porya’s Theorem is not straightforward. However, a special case of the
number of graphs of given upper girth has been solved, namely, the number
of Hamiltonian graphs. This problem is handled in the article [20] where the
different graphs having a complete cycle of p points are regarded as super-
graphs of a cycle of length p whose set of points consists of the points of the
cycle.

The number of identity trees was found [31] by means of an application
of another theorem of P6LYA involving configurations in which all the figures
are distinct, to the combined methods of P6Lya and OTTER.

By an abuse of notation, let

Ed— By=2d)y ¥Ry,

where 4 and B are permutation groups of the same degree Pérva [45] has
derived the following very useful result. The counting series for the number
of configurations of length 7 inequivalent w1th respect to S,, in which all
figures are distinct and the figure series is f (), is given by

(13) Z(4,— 8, f (w))

where A4, is the alternating group of degree n.

4See also Riorpaw, The number of trees by height and diameter, to appear in
I. B. M. Journal of Research, 1960.
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By another abuse of notation, let
Z8.)= 3 Z(8,),
n=0

where Z (8,) is defined to be 1, and let
ZA.—8.)= SZ4,—8,).

n=0

There is a well-known combinatorial identity mentioned in [2, 16, 42, 45, 52]:
(14) Z(8 ., f(x)) = exp Z‘ fz")/r .
r=1

This formula is useful in several counting problems, including the number of
rooted trees and of connected graphs. For counting identity trees, a formula
for Z (A. — 8.) is required. This is given in equation (15) below, recently
communicated to us by J. R1orRDAN.

It is readily verified that

LAy 385 Yos 5 s Wn) = B8 380 Uas =+ 5 Und T 28 ¥ — Y Yor — Y555 ) s
It follows at once from this and (14) that

(15) Z(A. — 8., f(x)) =exp }:‘ (= 1)y L fxr)/r.
r=1

Again, the group theoretic formulation required to characterize config-
urations corresponding to identity graphs has not been found ; such a discovery
is required to handle problem 26. Prins [48] has characterized all those
permutation groups which are tree groups. A corresponding characterization
for graph groups is still open. Such a criterion would give a partial answer
to problem 27, that of finding the number of graphs with a given permutation
group. In a previous article [24], we have proposed the more general problem
of finding the number of graphs whose group and line group (defined in [19])
are a given ordered pair of permutation groups.

The number of trees of given strength was found by Harary and Prins
[31] while the number of graphs with given strength is found in the article [16].
Similarly, both the number of trees and graphs of given type are found in the
articles [31] and [16] respectively.

The kinds of graphs corresponding to oriented trees, directed trees, and
signed trees have all been enumerated. The solutions appear in the articles
[21], [16], and [15] respectively. We have here three cases where the enumera-
tion of graphs corresponding to certain kinds of trees have been obtained.
Their study does not suggest methods for proceeding from trees to the enume-

ation of the correspon ding graphs which have not yet been counted.

§ 6. Comparison between solved and unsolved problems

We begin with a list of graph enumeration problems which have been
solved, omitting the tree solutions already mentioned in the preceding section.
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List II
SOLVED PROBLEMS IN THE ENUMERATION OF GRAPHS

. Graphs [16]
. Rooted graphs [16]
. Connected graphs [16]
. Graphs of given strength [16]
Graphs of given type [16]
. Signed graphs [15]
. Subgraphs of a given graph [19]
. Supergraphs of a given graph [20]
. Bicolored graphs [23]
10. Graphs with given blocks [42, 911]
II. Digraphs 11. Directed graphs [16]
12. Weak digraphs [16]
13. Oriented graphs [21]
14. Tournaments [7]
15. Transitive digraphs [60]
16. Functional digraphs [26]
III. Partitions 17. General graphs with given partition [49]
18. Multigraphs which are fully factored [49]
19. Digraphs with given double partition [37]
IV. Switching 20. Two-terminal series-parallel networks [50, 52]
21. Types of Boolean function [46, 55]
22. Spanning trees of a given graph [38]
23. Labeled graphs [12, 91]
24. Labeled series-parallel networks [3]
25. Labeled graphs with a given partition [49]
26
27

I. Graphs

© oo~ OO W =

V. Labels

26. Labeled graphs with given blocks [9I11]
VI. Asymptotic 27. The asymptotic number of graphs and labeled graphs
[21, 91V]

The number of graphs was found by taking the pairs of distinct points
from among p given points as the figures, and the content of a figure as 0 or
1 corresponding to nonadjacency or adjacency of these two points. Thus the
figure series is 1 + 2. The configuration group which serves to count graphs
is then obtained from the symmetric group of degree p by considering as the
objects to be permuted the pairs of distinct objects. The cycle index of the
resulting group is then readily found and Porya’s Theorem gives the counting
polynomial for the number of graphs with p points and a given number of
lines. This beautiful result, which served as a stimulus for all of our subsequent
work on graph enumeration, was communicated to the author in a letter by
PoLya; exactly the same formula was found independently in an unpublished
work of SLEP1AN, who rediscovered PoLyA’s enumeration method in [55].

The counting of rooted graphs is then an easy modification which
results when one takes any one of the objects permuted by the symmetric
group as fixed before forming its “pair group*. The number of digraphs is
also readily obtained from the number of graphs when one constructs the
“ordered pair group* analogously to the pair group.
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Connected graphs are enumerated in terms of the total number of graphs
by a combinatorial method which is exactly parallel to the enumeration of
rooted trees in terms of themselves, as derived by Porva [45]. This result
turns out to be particularly important because of its wide applicability.
In general, it serves to count the number of connected graphs (or other con-
figurations) having a given property when the total number of graphs, both
connected and disconnected, is known. If desired, the formula also serves to
give the total number of graphs of a given kind in trems of the number of
connected such graphs. For example, an immediate application of the method
gives the enumeration of weak digraphs. Problems 1 and 2, which ask for the
number of strong and unilateral digraphs have not been found amenable to
this approach. Problem 3, which asks for the number of digraphs with a single-
ton point basis can be regarded as a generalization of problem 1. For every
strong digraph has a singleton point basis consisting of any one of its points.
Problem 19, the number of finite automata, involves a combination of the
properties that a digraph have a singleton point basis, that its lines be of type
2, and a kind of regularity condition that every point have out-degree 2.
VYSSOTSKY [57] solves a special labeled case of this problem, and also asks
the problem of the number of strongly connected finite automata.

The number of oriented graphs is found analogously to the number of
digraphs, but involves a modification of both the configuration group and the
figure counting series in order to take account of the condition that each line
of an oriented graph has exactly one of two possible directions. Again, a figure
is a pair of distinct points which are either non-adjacent or are joined by a
line in exactly one direction. Hence the figure counting series is 1 + 2z,
where the content of a figure is the number of lines it contains.

The enumeration of signed graphs offers no difficulty whatsoever and
is obtained immediately from the formula for the number of graphs by a
modification of the figure counting series to 1 4 x + y, where the terms
1, z, and y indicate respectively no line, a positive line, and a negative line
joining two points.

Using the line group of a graph as the configuration group and 1 + 2
as the figure counting series, one immediately obtains the number of dissimilar
spanning subgraphs of a given graph. Analogous formulas for the number of
dissimilar supergraphs of a given graph and in general for the number of types
of graph between a given graph-subgraph pair are readily formulated, [22].

Z.ScuURr has kindly pointed out an error in Example 2 of the article [20].
He observes that the correct configuration group for Example 2 is the dihedral
group of degree 4 and writes : “We then have

Fo,0@) =1 + 2 + 2% 4 a3 4 24,

which amounts to deleting the middle row of graphs in Figure 2. The three
graphs in this row are similar to the corresponding graphs in the upper row.:

The problem of enumerating bicolored graphs has recently been handled
by the construction of a new binary operation on permutation groups, called
exponentiation (see § 4, part c. above). An elementary exposition of
the algebraic interaction between this operation and other already known
operations on permutation groups such as the direct sum and the cartesian
product is given in the note, [27].
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Similar although more complicated methods will probably serve to count
the number of tricolored graphs; this has not been accomplished as yet. The
number of k-colored graphs for £ > 3 involves even further combinatorial
complexities. This is part of problem 9. The other part of problem 9 asks for
the enumeration of k-chromatic graphs. Let us consider the simplest case of
such graphs, namely, bichromatic graphs. We have already mentioned that
the number of connected bichromatic graphs and the number of connected
bicolored graphs are equal. But this is not so for disconnected graphs. As a
result of this observation, the entire content of Section 5 of [23] on the number
of connected bicolored graphs is incorrect, and this section should be
deleted.

Problem 8, the number of planar graphs, is entirely untouched. No one
has been able to make even a successful beginning. An intuitive indication
of the essential difficulty of this particular enumeration problem is that
formulas for the number of both planar graphs and those planar graphs which
are 4-chromatic would serve to settle the four-color conjecture one way or
the other. If these two generating functions were obtained and shown to be
equal, then the four-color conjecture would be proved true. On the other hand,
it it turned out that there were more planar graphs than planar 4-chromatic
graphs with a given number of points and lines, then the 4-color conjectures
would thereby be disproved. The enumeration of planar graphs with additional
properties is listed as problem 10.

By means of equation (9), NorMAN [42] has derived a formula for the
number of connected graphs with given blocks. Nevertheless, although he
and several others have tried very hard, no one has succeeded in deriving a
formula for the number of blocks with a given number of points and lines,
problem 13. The enumeration of graphs with given index and connectivity,
problem 12, is conceptually similar. There is a rather complete set of theo-
rems involving the index of a graph and its connectivity, but these have
not proven helpful in finding the kind of permutation group characterizations
of such graphs which would be useful in counting them.

As mentioned above, READ [49] has obtained a formula for the number
of general graphs with given partition. But his method has not provided any
procedure for eliminating graphs with loops and multiple lines. Thus for
graphs, problem 4 remains unsolved, as well as problems 5, 6, and 7. However,
Reap has found a formula for the number of labeled graphs with a given
partitition and without loops or multiple lines. He has also applied his super-
position theorem to obtain the number of multiple regular graphs (without
loops) which are fully factored. But again, his method does not give the
corresponding number of graphs without multiple lines, a special case of
problem 6.

The number of digraphs with a given double partitition was discussed
in the article by Karz and PowerL [37]. They reduced this question to a
formulation by SukHATME which gives recurrence relations for certain number
theoretic functions. SukHATME has constructed tables for these numbers
which serve to give what Karzand PowgLL call the number of <locally restricted
directed graphs® having up to 13 lines. However, a general group theoretic
formula has never been found.

We now mention some recently found formulas for digraphs. LEo Mosgr
shown in [60] that the total number of transitive digraphs with p points
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has (regardless of the number of lines) is equal to
1 2p
p+Lip

Davis [7] has found a formula for the number of tournaments, i.e., complete
oriented graphs. This result is also readily obtained as a special case of the
formula in [21] for the number of oriented graphs. Functional digraphs are
defined as the graphical representation of a binary relation in which each
first element has a unique second element. The number of functional digraphs
has been found [26] by means of a characterization to the effect that every
weak component of a finite functional digraph contains exactly one directed
cycle together with rooted trees located at each point of the cycle.5 It follows
that the configuration group for this problem is the cyclic group and that the
figure counting series is the known generating function for rooted trees.

§ 7. Importance of enumeration problems for other fields

Ising [35] proposed the problem which now bears his name and solved
it for the one-dimensional case only, leaving the two-dimensional case as an
unsolved problem. The first solution to the two-dimensional Ising problem
was obtained by ONsAGER [43]. Recently Kac and Warp [36] discovered a
simpler procedure involving determinants which, however, is not logically
complete.

Their purpose was. to indicate the ideas involved in a purely combina-
torial development of a proof of the two-dimensional Ising problem, and they
provided heuristic arguments only. FEyNMAN’s simplification (unpublished)
of their treatment is even simpler and contains precisely the same logical gap;
a combinatorial formulation of the statement whose proof would complete
this development was given by M. CoHEN in [28].

Among its many equivalent formulations, the Isine problem can he
regarded as an enumeration problem for linear graphs. NEwELL and MoNTROLL
[41] give a very clear exposition of the problem. Consider as in Figure 7a a
two-dimensional lattice with n points. For applications to statistical mecha-
nics, only large values of n are interesting and usually the lattice is regarded
as drawn on a torus.

Regarding Figure 7a as a labeled graph, the first part of problem 14
asks for a purely combinatorial method for counting the distinct admissible
subgraphs, ie., those in which every point is even. Such a combinatorial
solution to the two-dimensional problem serve to fill in the logical gap in
both the treatments of Kac and Warp, and that of FEyxman. It would also
offer some hope for the eventual solution of problem 15, the three-dimensional
Ising problem. (See the footnote of Problem 14.)

The second part of problem 14 asks for the number of admissible sub-
graphs in a two-dimensional lattice with diagonals, as shown in Figure 7b.
This would also be of considerable interest in theoretical physics. The second
part of problem 15 also asks for a variation of the two-dimensional problem,

5 READ has obtained an elegant simplification of this formula, to appear in
Math. Annalen.
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namely for the number of admissible subgraphs with a given number of lines
and a given area. This is referred to in the physical literature as the two-
dimensional IsiNng problem with magnetic eftect.

The paving problem stated as problem 16 was proposed to the author
by G. E. UHLENBECK. It has applications in the statistical mechanics of
liquids. Problem 17, which asks for the number of square-celled animals
as pictured in Figure 8, was proposed independently both by UHLENBECK,
who was interested in the number of different shapes of paving blocks for
eventual application to problem 16, by an anonymus biologist who was
interested in the number of graphs of this kind as the number of different
shapes of animals with a given number of cells, and by Goroms [14]
under the name of polyminoes, or generalized dominoes; he asserts that this
is a well-known unsolved combinatorial problem.

Much effort has already been expended in problem 18, the number
of types of Hamilton cycle in an n-cube, by those interested in applications
to synthesis problems in switching networks. While several kinds of partial
results have been obtained, usually by exhaustive methods, the general
problems has never been appropriately conceptualized. The number of finite
automata, problem 19, would be of considerable interest in switching theory,
as well as problem 20, the number of indecomposable two-terminal series-
parallel networks described above.

The number of symmetric graphs, problem 25, has been studied for
applications to electrical network theory by FosTer [10]. While not solving
this problem, Foster has provided a useful collection of diagrams of sym-
metric graphs, and a classification method.

Problem 21, the number of self-complementary graphs, would be of
interest because of the set theoretic operation of complementation, while
problem 22, which asks for the number of nonisomorphic abstract simplical
complexes, is of interest in combinatorial topology.

Combinatorial considerations play an important part in the statistical
design of experiments. In these processes, Latin squares play an important
role. A closed formula for the number of distinct Latin squares of arbitrary
order n, problem 23, appears to be extremely difficult. The numbers have
been found through » = 7 by exhaustive methods. In connection with “asso-
ciation schemes” of statistical block designs, Conxor [5], Horrmax [33],
and SHRIKHANDE [54] have made a study of the structural prpoperties of
the line graph of a complete graph. The number of line graphs with a given
number of points and lines is stated as problem 24. Further enumeration
problems are suggested by the recent work of Bose, PARKER, and SHRIK-
HANDE in which they disproved EULER’s conjecture concerning the existence
of orthogonal Latin squares of order 4= 4 2.

Krausz [40] has obtained the following elegant characterization :

G is a line graph if and only if there exists a partition of the set of lines

of G into complete subgraphs such that no point of G lies in more than 2

of these subgraphs.

A group theoretic description of line graphs for the purposes of applying
Po6Lya’s method does not appear straightforward.

Obviously, the line graph L, of the complete graph K, satisfies the three
conditions :

1. Each point has degree 2 (n — 2).
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2. Any two nonadjacent points are mutually adjacent to exactly 4 points.
3. Any two adjacent points are mutually adjacent to exactly n — 2
oints.
8 Between them, Cox~NoR, HOFFMAN, andSHRIKHANDE have shown that these
necessary conditions are also sufficient except for » = 8. This gives another
indication of the difficulty of conveniently characterizing and hence of count-
ing line graphs. Surprisingly, Horrmax has just disproved the sufficiency
for n= 8.

We have already noted that counting problems for labeled graphs are
always easier than the corresponding problems for unlabeled graphs. Never-
theless, they are also interesting in their own right. CarriTz and RiorpanN
[3] have found the number of labeled two-terminal series-parallel networks.
Ford and UnLENBECK [9 I, III] have found the number of labeled graphs
and also have counted labeled graphs with given blocks. In addition, they
have made a study of the asymptotic number of graphs with given properties,
extending the work of P6rLya and OrrER in this area. GruBERT [12] has also
enumerated labeled graphs and labeled digraphs. GiLBErRT [13] has done the
most work on a number of types of complete cycles in an n-cube. In a recent
note [21], we have gathered together for a readership of logicians some of the
asymptotic results for graphs which have been found. Husvt [34] has obtained
the number of labeled graphs in which every block is complete. CAYLEY [4]
has shown that the number of labeled trees with p points is pP-2. This result
has been rediscovered many times and is also a special case of Husmr's
formula.

Pérya [47] has written a beautiful and clear exposition of “picture-
writing” which gives an aid to intuition in thinking about graphical enumera-
tion problems.

SENIOR[33] appears to have made the first exhaustive studies on graphs
with a given partition. However, he was very much restrained in his outlook
to the study of those kinds of partitions which have immediate application
to organic chemistry.

We conclude by stating some typical asymptotic formulas for certain
kinds of graphs. As above, f, and T, are the number of trees and rooted trees
with n points while #(2) and 7'(z) are the corresponding generating functions.
Porya [45] has shown that #(x) and T'(z) have the same radius of convergence
7 = 0.3383219. This number » occurs in asymptotic formulas for ¢, and 7',
as does the number b = 7.924780 which is a constant associated with the power
series #(z) and its derivates. With these preliminaries, OTTER [44] derives
the asymptotic formulas :

T hy—n+ 3/2
e et

" o)a w2

Using similar methods, Forp and UHLENBECK [9 I1I] obtain asymptotic
values of %, and H, the number of cacti (previously called “Husimi trees”,
which are connected graphs in which no line lies on more than one cycle)
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with 7 points. In these formulas the common radius of convergence s = 0.22215
of A(x) and H(x) occur, as do the numbers C =4.395 and d = 11.46:

C =112
Hn o, —ST*

2 | nd'2

3d —n+-3/2
i S

i
"oaYmwsiz’

PoLyA has shown in [9 IV] and [25] that the number g, of graphs with
p points satisfies

1 ;
gp~ = op(p-1)2
p!

Furthermore, the number g, , of graphs with p points and ¢ lines is asympto-
tically given by
1 (p(p - 1)/'2]

gp’q & ; (I/'/2

where this formula is known to hold for large p and 0 ((q¢{{p(p — 1)/2,
so that the majority of graphs is included.

The corresponding asymptotic formulas for labeled graphs of these
various kinds are much more easily derived. We may multiply the number
of unsolved problems proposed here by asking for the asymptotic number
of graphs of each kind, and also for the number of labeled graphs of each kind
and their asymptotic numbers.

ADDENDUM I

The following paper is extremely appropriate from a historical stand-
point :

Reprienp, J. H. ,, The theory of group-reduced distributions.” American Jour-

nal of Mathematics 49 (1927) 433—455.

The reference to this paper was found in the book :

LirrLewoon, D. E. The theory of group characters, Oxford, 1940.

This remarkable paper by ReDpFIELD apparently anticipated most of
the major developments in enumeration techniques and results for the next
thirty years. For it contains :

(1) The exact formula of READ Superposition Theorem (9).

(2) Apparently the first published definition of the cycle index of a permu-
tation group under the name of the “‘group-reduction function”.

(3) Formulas for the cycle index of the symmetric, alternating, cyclic and
dihedral groups.

(4) The cycle index of the group of symmetries of a 3-cube. He actually sub-
stitues 1 + x into this cycle index, thereby giving the first known example
of PoéLya’s theorem. This also anticipates the enumeration of the sym-
metry types of hoolean functions due to PérLya and SrLepian!
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(5) A substitution of 1/(1 — 2) into this cycle index. This is a device used
in the formula of [16] for enumerating graphs in which any number of
lines are permitted to join the same two points.

(6) The number of graphs with p points and ¢ lines for p =5 and ¢ =4
as a solution of a problem involving the number of types of binary rela-
tions.

ADDENDUM II

The following remarks concern Problem 17, the cell growth problem.
SteIN, WALDEN, and WiLLiamMsoN have programmed a computing machine
to generate the isomorphism classes of animals. The results, which have
been carefully checked, show that the number of animals with 7 cells is 107
rather than the number 109 which is stated by Goroms. Further, 4_, the
number of 8 celled animals, is 363. In addition to these, there is exactly
one animal with 7 cells which is connected but not simply connected, and
there are 6 such animals with 8 cells. This program is being carried out to
exemplify a purely combinatorial application of a digital computing machine.

(Received January 8, 1960.)
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HEPEUWEHHBIE MNMPOBJEMbI O INEPEYHUCJIEHUU I'PA®OB
F. HARARY

Pe3iome

Llenb paboTel yka3aTb Ha psii 1po0JeM OTHOCHTENbHO IepeuucyieHust
rpaoB, yToObl BHI3BATH MHTEepPeC MATeMATHKOB K TakuUM mnpobiemam. Karkercs
MaJIOBepOSITHBIM, UTO B CKOpoM Oyayllem Bce 3T npo0JieMbl OYAyT pelleHbl,
TaK KaK cpelu HUX (QUIypupyeT M THIIOTe3a 0 YeThlpeX LiBeTax.

CHauano xapaxTepusyercst 3HaueHMe Ipo0JeMbl 0 mepeynciaeHuH rpados
U HanpasJieHHBIX TpagoB. 3aTeM pad0Ta 3HAKOMUT C OCHOBHBIMU ITOHSITHSIMH,
HEOOXOAMMBIX JUJIs1 TOr0, 4TOOBI MOYKHO ObLIO KpaTKO CHOpMyJIMpOBATH Hepe-
mweHHble npoOsembl. [asnee mpuBojasATcsl (0e3 joKa3aTesbCTBA) HEKOTOPBIE Me-
TO/Jbl, KOTOpBIE, NPUMEHSIIOTCSI B 9TOH o0OsacTu, cpeu HUX HauboJiee Bar)KHbHIM
SIBJISIETCsT 9JleraHTHBI U 3ddexTuBHbIT MeTox POLYA [45]. IToT MmeTom, WM
HEKOTOPOEe ero BHJ0M3MeHeHHe NPUMEHSIIOCs] B OCJILIIMHCTBE W3BECTHBIX pelile-
Huil 9TUX npo6seM. CpaBHUMBAIOTCA MpPoOJeMbl OTHOCHTEJIDHO 4ncJia JepeBbeB
Pa3IMYHBIX COPTOB € AHAJIOTMYHBIMU MPOOJIeMaMu 0THOCHTeIbHO rpadoB. ABTOp
JlaeT CIUCOK 27 peulleHHbIX M 27 HepelleHHbIX MpoOJieM. (cM. cTp. 86 u 68.)
OH yKasplBaeT Ha UX 3HAUeHWe M CBSI3aHHBIE C HUMU TPYAHOCTH. YTOMUHA-
eTCsl TaKyKe BbIYMCJeHHME ACUMNT(THYECKOro yucia rpadoB Pa3iMyHbIX COPTOB.
B cBsisu ¢ Temoil jpaercst obumpHast oubauorpadus.
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