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In this paper we consider the functional equation

(1) By, By ooy By W) + Py, -0 By B 50 -
F P (Bypiar Bp—piar s Bois Bp)t BB pins Bppins’ssin B Ba) F v b
+F (@, @y ovr Tyas Tp—q) =0,

where p < n are two arbitrary positive integers, x; € § are independent variables
and the values of the function ¥ lie in a module, i.e. in an additive abelian
group M. We do not impose any restriction upon the set § and we suppose
only that M be a module in which for every positive integer m < n the equation
mX = A4 has a unique solution X = Ajm.

In certain particular cases (1) was solved by elementary methods ([4],
[1], [2]). Here we give equally elementary methods for solving (1) in every
possible case.

1. Let first be p =n.

(2) B s sy ey @) (] @y D) e
L B T B sy Batay Tpsg)i = (@ W i B, e q)i= 10
Then
B, @y e i o ) = = (@ T oy Ty Ty —
» — H(y, Bys o e gy B s == B 5 s 50 gD y)
and
8 ( Ty, B, <+ a5 Byt ) == WUBps Biy oo By T) — FlBy, B o- 40 By )+
b B Ty = oo By B ) Fo(@gy By s Ty Tg) F b
b By, oy e B 1 @) — (B Bt B, ey )
= F s B oy Bgy B) — F (@5, Xy iy, Ty ) 1
+ By, X3y - ooy Bpqy 2,) — F(2g, Tg, - - o, Ty &) +
+ Ky, @g5 ..., &y Ty) — F(Xs, Ty, ..., Ty, X)) +
S L R T,) — (g5 @y o Ty B0) T
e B X Tg5 ooy B Ty) = (g, By o 5 By )
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(@, %), v sy By Bg) = B XS ey Xy Bg) s

+ (0% oo oy Bpyy &) — F(wg, T3y ..., &,y ;) +
+ F(%y, gy o o5 T,y By) — F(Tg, Ty, o5 Tp, @) + ... +
o Oy By v sy Wi Ta) — T O vy B By

By denoting the sum of members with positive sign by n G (2, @, ..., z,)
(from nG = 4 @ can be uniquely determined) we have

(3) - B B e b By ) =G (B s e By ) o —
=G (g Ty e sy By Ty )2

On the other hand every function of the form (3) satisfies the equation
(2) and thus we have (cf. [2]) the

Theorem 1. (3) is the most general solution of the functional equation (2).
We remark that the same consideration shows also that

F(2) = G(x) — G(Cx)
is the general solution of the functional equation
F(x)+ FCx) + ... +FC"1*x) =0

where z is element of an arbitrary set, C is a cyclic operator with period n (C"w =
=) defined on this set and the values of the function F lie in a module
in which the equation nX = A4 has a unique solution (cf. [3]).

2. Now we take n > 2p — 1 and write (1) in more detail

(4) B, By s ovg By B} F T liy By oo i By Bpug) + =00 F

b H (@ Wpee. s s - Bggo Bagt] T F gl 105 By o 55 Tap—t Tag) +- st

e B ts Mgy o « 5 B B Wl s B s = W ) ol
+ Fp(xn, By, «vey Tp—gs Tpy) =0:

We keep the variablesz, ,,, 2, 5, . .., 2, constants and carry all members
of (4) except F (2, @, . ..,2,_;, ¥,) on the right hand side. Thus we have there
p — 1 members depending only upon @y, @3, ...,2, ;, , and n — p members
depending only upon @y, @y, ..., T, 9, Tp_y:

(5) Bl Wy o ooy Wy By) == H (B By « . w5 By s By) +
+ Q@ @y, . o5 Bpgy Bpg):

Putting this back into (4) we have

G (@0 By, « vva By By T T By, < 05 By Bl -
+ Gy, B+ « v Bt Bpd H (5, 2, R e TR
F G By o s W Ty + (@, Ty, o By By ) =0

or by denoting

(6) Fo (@, %, ... Tp 9%y q) =G (2, Ty, - .., Bpg, Tpy) +
b Hiy, Wi <+ o0 Bpz Tp )
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we arrive at
F oy (s By s vy By Bpy) + Fppy (W, Bgs oo oy Tpyo &)+« .. +
+ Fpy (@rs @1y o o0 Bpgp Tpg) = 0.

We observe that this is an equation of the form (4) with p — 1 instead
of p. For p =1 this equation is

Fy(wy) + Fy(p) + ... + Fy(z,) =0

this involves
(7) Fiyx) =0

(by keeping @,, ..., z, constant F,(x) =C and from nC = 0, by our supposi-
tion on the unique solution of nX = 4 in M, C= 0 follows). We prove that

(8) B % By o055 Bpgu By) =000 By« v B Boing) =
=G (L5 B+ o B By)

By (7) this holds for £ =1 and if it is true for £ =p — 1 it holds for £ = p
too. In fact, if

Ty ®gy - oo By s Tpoy) =Gy (89 By < v By Tpg) —
G (W By 52 s B, Ty ),

then by (6) and denoting

G2y, 2y, . Wy By g ) == Oy, By, s By By )G g (5, T vs Lpogy Bp—q)
we have
H(zy, g, ..., Zp_g, Tp—y) = — G2y, Tyy oy Bpgy Tp—y) +
G Oy, s B g Bg) — O (B By oo v s By Byg) =
=Gy (B, 8 s 35 By, By ) — @y By, By, Bpy)
and by (5)
(9) B oy, B, & ooy By B =085, By 50y Tpgs By —

— Gp(wz, Dy 5o 9 Bpois Tp)

i.e. (8) remains valid for £ = p, qu. e. d. Thus we have proved that every
solution of (4) is of the form (9).

On the other hand every function of the form (9) satisfies the equation
(4). Thus we have the

Theorem 2. (9) is the most general solution of the functional equation (4)
(n =2 2p—1).

3. Now we consider the cases p < n < 2p — 1 and prove the following
Theorem 3. T'he most general solution of the functional equation (1) is for
p<n<?2p—1
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(L0 - I (i Wy oy W ) =

» Tp—1, Tp)

Gy (21, By, - 1 Bpg, Tp—y) — G (Ta, Ty, - . ., Zpq, Tp) +
[2p—n)/2]

' 1 7 e 7 s 7
3 ,% (G (01 g« + 5 Bis Brimp i s = » 5 Bpeags L) —
G A 30 By v o By Biw 0y By ) -

For sake of better understanding we effectuate the proof in the case
n =4, p = 3 but in a manner valid also in the general case. Thus we prove
that

(11) F (z,, 2, %3) = Gy (11, ) — G (w3, @) + Gy (35, T3) — Gy (%35 T,)
is the most general solution of the functional equation
(12) PPz oy iy B (g Ty, L) B @a; 0y, @) + F (X, By T,) = 0
In fact, put z, =c¢ in (12):
(A3 F(zy, @, gy + F (25, T3,0) - F (@05, 0, %) F (¢, 4, Bg) =0

We see that here already all members except F (2, s, ;) depend only
from two (< p) variables. By adding members of the form of the right-hand
side of (11) (we will call expressions of this form G-expressions) we can change
these latter members into such ones, where the z;-s if not kept constant stand
just on the ¢-th places in the function F:

F (x;, 2a, %) + F (@1, % ¢) + F A2y, ¢ T5) + F (¢, @5, T3) +
+ F (2, %3, ¢) + F (23, ¢, ;) + F (c, 71, T3) —
— F (z,, @y, ¢) — F (24, ¢, 25) — F (¢, 2y, 5) =0
ie.
(14) F (21, T, T5) = G§ (T4, Ty) — GF (Tg, T3) + G (21, T) — G (23, 7)) —

[ (g s 6 B (B0, ims) B e @ 2)]

where
(15) Gl %y, 15) = F (@, &y, ) — F (6,25, Ty) ,
Gl (@il = B (©,.6,/%5) -
In order to reduce the members F (x,, @y, ¢) + F (2, ¢, ¥3) + F (¢, @y. ¥3)
in (14) which have not yet the form of G -expressions into functions of less

variables (here already only one variable) we put x; = ¢ resp. x, = ¢ resp.
r, =c¢ into (13) and get

F (2, 25, ¢) + F (23, ¢,¢) + F (¢, ¢, %) + F (¢, 2, 2) =0,
F (x,c,23) + F (¢, 3, ¢) + F (23, ¢, %) + I (¢, ¢;,¢) =0.
F (c, 2g, 23) + F (2, @3, ¢) + F (25, ¢,¢) + F (¢, ¢, %) =0.
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We apply the same way of transformations to these equations by which
we got (14) from (13):
2y, ¢,¢) + F(c,c,z5) + F (¢, 2, x5) +
Zo, ¢, ¢) + F(c, ¢, %i) + F (e, x;, %)
Ty,6,¢) — F (¢, ¢, 25) — F (¢, mp,25) =0
)
)

F (2, 2y, ¢ F(
F{
ol
F (@, ¢, 23) + F(c,xz, ¢) + F (xy,¢,25) + F (¢, %y, €
£
F{
(

C; Xy, C) F(ml,c,a‘a)—F(c,r2,c):O,
F (c, 2y, x3) + F (21, %, ¢) + F (21, ¢,¢) + F (c, ¢, x3) +
+ F (25, 25, ¢) + F (25,¢,¢) + F (c, ¢, ) —

— F (%, %5, ¢) — F (23, ¢,¢) — F (c,c,25) =0.

In the equation obtained by adding the last three equations there
will figure besides the requested members F (2, ,, ¢) + F (24, ¢, x3) +
+ F (¢, ¢y, x3) only G-expressions and functions depending on only one vari-
able:

2 [F (2, Ty, ¢) + F (2, ¢, 3) + F (¢, 2, x3) +
(16) + F (2, ¢,¢) + F(c, 2, ¢) + F(c,c,5)] =
= G} (%1, T3) — G§ (x5, T3) + Gi (21, 23) — GF (5, 3y) ,
where
] GE (zy, ) = F (%;, %5, ¢) — F (¢, %1, %) + F (@4, ¢,¢) — F (¢, 2y, ¢) +
+ F (¢, @y, ¢) — F (c, ¢, x,) ,
l G ()= K (i 6, B+ (@5 ¢, )t K (¢, 6, B3)t-

By our supposition on the solvability of mX = 4 (m = 2) we can write over
(16) as follows:

(18) H (@35 %g m0) 0 By e bmg )k Hi(c, i, Xs) —
1
= (G (2, 23) — G (75, 73) + G} (2,, 73) — GE (x5, ;)] —

— [I(‘ (‘TI’ c, C) + F (Cy x2’ C) + F (C' c, x3)]

Finally we apply the same transformation process as before upon th®
last bracket of (18). We put into (13) 2, =3 =c¢ resp. ¥, = x; = ¢ resp-
T, =2 =-c-and get

K. (5.6, 0) = (¢, ¢,6) - (e, 6,%) + Fi(c,25,0¢) =0,
(19) B (¢, 2y, 0) -+ H (25, 0,0) -+ Feee) + Fe e ) =0,
] H(e, 6m) 2l ¢, Tpyre) -k I (2gr6060) =00 (6 6ne) =10«

We remark that (13) with 2, =z, = x; = ¢ implies
4 (e, o, e)=10
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and by the uniqueness of the solution of nX = 4 (n = 4)
Hife, c,0) =0

Taking this into account we write the equations (19) in the form trans-
formed with G-expressions and add them:

(20) 3 [F (%1, ¢, ) + F (c, %y, €) + F(c,c,23)] =

= G} (v, ;) — G} (%, T3) + G3 (2, 75) — G} (25, 7y) ,
where

I G% (xl’ 5172) == F (xl, c, C) e F (C, xl: C) + F (C’ xzy C) e F (C: c, -272) )
| & (4, 23) = F (2, ¢, ¢) + F (¢, c, a5) .

We divide (20) by 3 (3X = 4 has a unique solution), we put this into
(18) and substitute finally the equation thus obtained into (14) to arrive at
last to

(11) F (21, @3, T3) = Gy (X1, Ty) — Gy (X3, T3) + G, (25, T3) — Gy (25, T,)

where

(21)

G=G—G2+6Y3 (i=01)

Gi(i =0,1; j =1, 2, 3) being the functions defined in (15), (17), (21).

Thus we have proved that (12) implies (11). On the other hand one
verifies immediately that every function of the form (11) satisfies the equation
(12). So it is in the general case p < n < 2p — 1 too and thus Theorem 3 is
proved.

The reader may remark that we did not use in this proof the equation
(12) in its full generality only the particular case x, = ¢ (13) of it. This is so
in the general case too: in order to get the solution (10) it is enough to suppose
the validity of the functional equation (1) for one special constant value ¢

of the variables «, ., %, s, - . ., €y, @, while @y, 2, ..., 2,_,, 7, vary and
our result (10) shows that then (1) remains valid also for 1n(lepen(lontly vari-
able 1@, s o= 5 s £p—15 Tps Bp 15 = = +3 Tps

We remark that also Theorem 2 can be proved by the same method
by which we proved Theorem 3. On the other hand the methods applied to
prove Theorems 1 and 2 can also be applied to prove the special cases of Theo-
rem 3, moreover in these considerations (cf. 1, 2) the existence of a unqiue
solution of mX = 4 is needed only for m = n.

(Received October 27, 1959.)
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0 UUKIIMYECKHUX YPABHEHUSAX
J. ACZEL, M. GHERMANESCU u M. HOSSZU

Pe3siome

PabGora sanumaercs peumeHuem (yHKuUMoHaspbHOro ypasHenust (1), rae
TiepeMeHHbIe SIBJISTIOTCS JJIEMEHTaMM JI00I0 MHOYKecTBa, a 3HAYeHus1 QYHKUUU
9JIEMEHTBI TAKOT0 MOJYJIsA, I/le ypaBHeHus Bujga mX = A npu no0bIX HaTypalb-
HBIX /1, He INPeBOCXOJALMX 71, MMEIOT eJuMHCTBeHHOoe peiweHue X. Hawubosee
oOwiee perlenue (0e3 BCAKUX ycnoBuit perysipHocTr) umeet Buj (3), (9) unu (10),
B 3aBUCHMOCTH OT TOTO, Oyjer i p=n,n=2p—1 wm p < n < 2p — 1.
B arux Tpex cayyasix GurypupyloT M pasHble J0Ka3aTelbCTBA, XOTSI HEKOTOpPbIE
U3 HUX MOTYT ObITh TIPUMEHEHBl U B JIPYTUX CIyyasix.
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