ON TESTING FOR NORMALITY
K. SARKADI

Introduction

This paper deals with the following two problems:

1. How to apply the test of normality or the homogenity test of BARTLETT
or CocHRAN for the error term if we have one observation per cell in a two-way
classification table?

2. How to extend the application of any test of goodness of fit for test-
ing the normality on the basis of a simple sample if the expectation and the
variance (or at least one of them) are unknown?

The first problem is of practical interest and was suggested to the author
by P. WeLLiscH!. It is known that most of the variance analysis methods
start from the supposition of a normally distributed error term. However, as
far as I know, in the textbooks on variance analysis no method of proving this
supposition in the case of single observation per cell is treated.

Here the difficulty arises from the fact that forming the differences
between the observed values and their predictions these will not be independent.
It is known however, that dependent normally distributed variables can easily
be linearly transformed into independent ones. Our method of solving the
above problem is based on this fact.

For that reason we have to choose such linear transforms of the original
values which are mutually uncorrelated with expectation 0 and common
variance. In order that the distribution of the transformed variables should be
near to the distribution of the error terms (even in the case of alternative
hypothesis) it is necessary that each of the transformed values should be
highly correlated with one of the original values. This problem is treated in
§§ 2—3.

The second problem is of interest as well. At present the y2-test is the
only one which is adapted to the case of unknown parameters. The transforma-
tions given in Sections 1 and 4 allow, however, to apply any test of goodness
of fit for testing normality. If only the expectation is unknown the solution is
based on the same principle as in the first problem. The general case requires
nonlinear transformation.

Of course the methods may be applied if we have several samples the
theoretical parameters of which are different and unknown. For this case
DunNiN-BArROVSKY and SmirNov [1] have given a transformation reducing
the problem to simple goodness of fit test. But while the transformation in

1 Secretariat of the Council of Plant-Variety Testing, Budapest.
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[1] results for the goodness of fit test only as many data as is the number of
samples, our transformation decreases the number of data only by the number
of unknown constants.

Similar transformation is given for the case of the Gamma parent distri-
bution at the end of § 4. This transformation eliminates the scale parameter
from the distribution of the data.

§ 1. Simple sample with unknown expectation

Let x;, x5, ..., x, be independent random variables with common
variance ¢2 and common expectation u. Let

2x+xn1/n

ir_ni—{_xnyﬁ i=1

n+ Jn n+Vn

It is easy to prove that the following differences:

— =3 Aty ~7
(1) Yi =X — X, Yo=Xp— X, ...,¥p—1 = Xp1— X

have the common expectation 0 and common variance ¢%, further that they
are uncorrelated. The first statement is trivial, the two latters can be e.g.
easily seen from the fact that x, , =(x; +xs+ ... +x,_;)/(n — 1) and

(Xp—1 — ,,)/Vn have the same variance ¢%/(n — 1), both of them are uncorre-
latedtox nl(z_12 ,m—1); and that x;, =x,_; + (x; — X,_;),
= (X,_; —X)Vn+(x, —%,_ 1) and thus the random vectors {x;, x,, .. ., X, _;}
d NV Vo s Y ha\e the same dispersion matrix.
It follows that if the distribution of x; is normal then the variates
Y1, Yo - - +» Yn—y are mutually independent equally distributed normal variates.
The correlation coefficient of x; and y; is
Witk 8 =l o
i»Yi " + Vn

The transformation (1) is optimal among all linear transformations into
n — 1 uncorrelated variates with 0 expectation in the sense that mln R{x; y:}
is maximized by (1).

Proof. The statement is equivalent to the following: If in an =
by = orthogonal matrix C = {¢;;} ¢y = Cpa = ... = Cyp = 1/fn then
min c¢; £ 1 — 1/(n + |/n). (The equivalency is easy to be seen. The transfor-
ign—1
mation matrix C gives a transformed vector whose first n — 1 elements
provide a linear transformation of x, x,, . . ., x,, into » — 1 mutually uncor-
related variables y,,y,, ..., y,_; uncorrelated to x as well, i.e. having 0
expectation independently of w. Apart from constant factors, there is a
1 : 1 correspondance between all possible such transformations and the
possible values of C.)

Evidently for some s <n—1 |¢,=1/n As
R{x; — X, y}=c;|n/(n—1),
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R{x,— X,y}=cu,|n/n—1), R{x,—%x,—%}=—1/(n—1)

and from the geometrical interpretation of the linear functions of x, x,, .. ., x,
it is to be seen that?

arccos R {x; — x,y;} > |arccos R{x, — x, y;} — arc cos R {x,, — x, x; — X}|

the following inequality is valid:

C~:-RX-,I-§].~ 23
i = R{xp. yi} e
and thus the above statement is proved.

The transformation given by (1) gives the possibility of applying any
test of goodness of fit in case of unknown mean and known variance and we
can take into account that the expectation is unknown not only in applying
a y%-test but in that of KoLmocorov, SMIRNOV and RENYI too. In addition,
if we apply the y2-test the diminishing of the degrees of freedom due to the
estimation of the expectation can be avoided.

The element x, plays a special role among the sample elements in the
transformation. It is chosen for the sake of simplicity; of course any of the
sample elements can be randomly chosen.

§ 2. Two-way classification, one observation per cell
Let the variates x;; (¢ =1,2,...,s;, §=1,2,...,v) be independent
with common variance o2 and with expectations
E{x;}=u.+p.+u,;

where the constants u.., u;., u.; are unknown.
Now we can define the following (s — 1) (v — 1) uncorrelated variates:

(2) ‘ Yii— xij_X;-—x:j+xf-
(1=1,2,...58 =15 9=04.,2,. .., 0—1)
where
5x,j—}—wav
v __ j=1
X, =
. v—i—Vv
s =
inj-i-XSJVS
i
A s—{—V.s

2 . Vv2 X;y + vsz xs,+ . st
: (s+vs)(v+ v) :

2 In g geometrical interpretation this is the triangle inequality in the spherical
triangle determlned by the vectors corresponding to the variates x; — X, xn — X, y;.

3 A Matematikai Kutaté Intézet Kozleményei V. A/3.
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As shown below cov (y;;, yi) = 0 for (¢, j) # (k,7) and the variates y;;
have common expectation and variance E {y;;} =0 and D2 {y;;} = o

Proof. The quantities x,; — ., X3; — K., . - ., X5; — Hs. have the com-
mon expectations u.; — u.. and variance ¢% Thus applying the transformation
(1), we obtain the transforms y;; having the expectation 0 and variance ¢
The quantities y;; and yj, will be independent for j ==/ because of the in-
dependency of x;;”s and uncorrelated for j =1, 7 < k because of the property
of the transformation. Now we apply the transformation (1) to the series
Yi1> Yies - - +» Yip Which leads — after some calculation — to the quantities y;;
defined by (2). The quantities y;; thus have the expectation 0 and variance
o2. It follows in case of a norma{ parent distribution that the quantities y;;
will be mutually independent. As their first two moments do not depend on
the assumption of normality they will be mutually uncorrelated in the non-
normal case.

The correlation coefficient between x;; and y;; is

i Repr= (1= ) 53 )

x;; will be called basic element if it has a highly correlated correspondent
among the transformed values. The above transformation has the property
that the basic elements form an s —1 by » — 1 submatrix in the original
matrix of the x;; s. This property is advantageous both for the purpose of
simplicity of the formulae and that of applying COoCHRAN’s or BARTLETT’s
test. But the author does not know whether the transformation is
optimal in the sense of § 1. The intercorrelations betwen the basic ele-
ments can be decreased in absolute value by other choices of the basic
elements. This is, e. g. the case for s =v =3 if we choose x,, x;3, X;;, X5,
for basic elements. One could expect that such choices may provide an
increased min R {x;;,y;;} In the mentioned special case, however, this does

1

‘J
not hold. The optimal transformation with the mentioned choice of basic
elements is

Yia=— % [(2 e Vg)“zz i (4 == Vg)“za g (4 i Vg)“% ¢ (2 i Vg)u”]
Yisi= s i[(2 S Vg)“zz g+ VE) uy + (4 — Va) ugy + (2 + VE) ]
) )

Y= = [(4+V6)uss + @+ V6)uy + (2 — V6) ugy + (4 — V6) ug]

Yo = — i [(4—V8)uyy + (2 —V6) uys + (2 +V/6) ugy + (4 +18) U]

where

1 g 1< Ly o
u,’j:xij—ggxkj_ggx”—i_gg ;xm
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In this case

1 6
(5) | R{x;;,yi} = _%E

for (¢,7) = (1,2),(1,3),(2, 1), (3,1). Formula (3) gives for this case R{x;;,y;;} =
= (2 + }/3)/6 which is larger than (5).

The transformation (2) gives the possibility of testing the normality of
the error term in our case. In addition it allows the testing of homogenity of
variance between rows or between columns or between different tables of data
with CocHRAN’s or BARTLETT’s criterion.

Evidently any row and column may play the role of the v-th row and
s-th column in the written formulae. The choosing of them however, must not
depend on the actual values.

§ 3. The general case of variance analysis

The case of n-way classification can be treated in the same way. In
principle, the method can be extended for any case of variance analysis.

§ 4. Transforms independent from variance

In this Section there are given transforms which are independent not
only from the unknown expectation but from the unknown variance too.
In case of normality tests in general not only the expectation but the variance
is unknown too. Thus our transformation gives the possibility of applying any
test of goodness of fit for the general case of testing normality. Let us suppose
we have performed the transformation given in Sections 2, 3 or 4 and we
have » variates y,,y,, ...,y, with 0 expectation and variance 0% Suppose
they are independent and normally distributed. We define the following
transforms:

1 v—3
6 zl.zs ’-I — i=l,2,...,v—l
(6) gy "(2 . ( )
where
y}
Rt yhat ... Y
and

t
[ P11 — 2)91dx

I:(P; 9) == 1
[ 2PY(1 — 2)11de
0

is the incomplete Beta-function tabulated in [3].
v—1

Since 1, %, is the distribution function of t;, the variates z;

defined by (6) are uniformly distributed in the interval (—1, 1). According to
a theorem of E. Lukics[2] y? 4+ y?,, + ... + y? and y¥/(y? .+ ... +¥?)

3*



274 SARKADI

are independent which implies that the variates z,, z,, ..., z,_, are mutually
independent.

If the alternative hypothesis holds the variates z; are in general not
identically distributed and not independent. If » tends to infinity and ¢ remains
constant the distribution of z; tends to the distribution of 2 @ (y;) — 1 where

D(y) = (2m)—12 fl e—*dx.

We may apply any test of goodness of fit for the z,’s.

The distribution of zs with small » — ¢ for the alternative hypothesis
requires further investigations. Probably the goodness of fit tests can be
ameliorated for large series if we omit a few values from the end of the series
of z;’s.

The results of this Section can be extended easily for the case of a Gamma
parent distribution. If w;, w,, ..., w, are independently distributed and have
a common Gamma distribution with density function

o’

I'(2)

A—1 e—ax

where A is known but a is unknown the transformation
z;= Iy, (4, (v — i) 4)

t=12,...,v—1)
can be applied, where
Wi

:wi—f—wi_,_l-i—...—{—w,,.

t.

L

The variates z; defined by the above formula are uniformly distributed
in the interval (0, 1). Their mutual independency follows again from the theorem
of LuxrAcs [2].

The above transformation gives the possibility of applying any test of
goodness of fit in the case of a Gamma distribution with unknown a and
known 4.

(Received January 27, 1960.)
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0 NMPOBEPKE I'MIIOTE3bl HOPMAJIbHOCTU
K. SARKADI

Pe3iome

Pabora 3anumaercs AByMsl CJIeLyIOIUMU Ipo0JIeMamHu.

1. KaKk MO)XHO HCCJIe[]0BaTh HOPMAJIbHOCTb paclipe/ieIeHUsi 0CTaTOUHOI 0
yjleHa MM NpousBecTd Mpody BARTLETT-a uiim COCHRAN-a OTHOCHUTEJIbHO OJIHO-
PORHOCTH, ecu B Tabiulle ABYCTOpOHHeH KjaccupuKauuu uMeeTcsl 0JHO Hab-
JII0JIeHNe B KaK/I0H siueiike?

2. Kak Mo)KHO NpUMeHATb J1000H MeToJ MpoBepKM THUIIOTEe3bl HOpMaJlb-
HOCTH, €CJIM He M3BECTHO MaTeMaTHUecKoe O)KuJaHue, QUCIepCUsi UM oba 3TH
3HAYyeHus?

Hatorcst npeo6pasoBanusi, Jejarwline BO3MOKHBIM IpOBeJleHHe BbIIeyKa-
3aHHBIX MCCJIeIOBAHUN.

DPopmyia (1) B cayuae npoctoit nmpobel, a Gopmysia (2) B ciayuae Tadauubl
JABYCTOPOHHEH KyaccupuKauuy ¢ OAHUM HalJIOleHHeM B cHUCTeMe Ipeo0dpasyioT
BEJIMUMHBI B BeJMYMHBl 0e3 KOppessiiuy, ¢ HYJIeBBIM MaTeMaTUYeCKUM O0XKH-
JlaHuMeM U Jaucrepcueif, paBHoOHl ucxopnHell. Ilpumensis mpeobpasoBanue (6) K
TIOJIyYeHHBIM TaKuM 00pa3oM BeJMUYMHAM, IOJIyUYMM He3aBUCHMBbIE 3HAYEHHS Z;,
pacrnpefienenne KOTOpBIX OyJeT paBHOMepHbIM Ha otpe3ke [— 1, 4 1], ecin
UCXO/HOE pacnpejeseHue ObLI0 HOPMAaJbHBIM.
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