ON A THEOREM OF PAUL LÉVY

G. SZEKERES1

1. Let f(x) be a continuous strictly increasing function such that

$$f(x) > x \quad \text{for } x > a.$$

A family of fractional iterates of f(x) is obtained by considering Abel's equation

(2)
$$A(f(x)) = A(x) + 1, x > a.$$

If A(x) is a continuous and strictly increasing solution of this functional equation and $A_{-1}(y)$ is the inverse of A(x) (so that $A_{-1}(A(x)) = x$ for x > a), then

(3)
$$f_{\sigma}(x) = A_{-1}(A(x) + \sigma), \qquad -\infty < \sigma < \infty$$

defines a family of functions with the property that

(4)
$$f_{\sigma}(f_{\tau}(x)) = f_{\sigma+\tau}(x), \qquad f_{\tau}(x) = f(x).$$

In particular $f_0(x) = x$ and $f_{-1}(x)$ is the inverse of f(x). The interpretation of (3) and (4) is that they hold for sufficiently large x; for instance $f_{\sigma}(x)$ in (3) is defined for x > a if $\sigma \ge 0$ and for $x > A_{-1}(A(a) - \sigma)$ if $\sigma < 0$. For $\sigma = n, n = 1, 2, ..., f_n(x)$ is the n-th natural iterate of f(x),

$$f_{n+1}(x) = f(f_n(x)), \qquad n = 1, 2, ...,$$

hence independent of A(x). For non-integer values of σ , $f_{\sigma}(x)$ is not determined uniquely but depends on the particular solution of the functional equation (1). To enforce uniqueness we need more information about the expected behaviour of the iterates.

Suppose that

$$f(x) = x + \omega(x)$$

where $\omega(x)$ is differentiable and $\omega'(x) \to 0$ as $x \to \infty$. By induction one easily verifies that

(6)
$$f_n(x) = x + \omega_n(x), \qquad n = 1, 2, 3, ...$$

¹ University of Adelaide, Adelaide, South Australia.

where $\omega'_n(x) \to 0$ as $x \to \infty$ and

(7)
$$\lim_{x \to \infty} \frac{\omega_n(x)}{\omega(x)} = n.$$

To prove (7) for n + 1, note that

$$\begin{split} \boldsymbol{\omega}_{n+1}\left(\boldsymbol{x}\right) &= f(\boldsymbol{x} + \boldsymbol{\omega}_{n}\left(\boldsymbol{x}\right)) - \boldsymbol{x} = \boldsymbol{\omega}_{n}\left(\boldsymbol{x}\right) + \boldsymbol{\omega}\left(\boldsymbol{x} + \boldsymbol{\omega}_{n}\left(\boldsymbol{x}\right)\right) = \\ &= \boldsymbol{\omega}_{n}\left(\boldsymbol{x}\right) + \boldsymbol{\omega}\left(\boldsymbol{x}\right) + \boldsymbol{\omega}_{n}\left(\boldsymbol{x}\right)\boldsymbol{\omega}'\left(\boldsymbol{x} + \boldsymbol{\theta}\,\boldsymbol{\omega}_{n}\left(\boldsymbol{x}\right)\right), & 0 < \theta < 1 \text{ ,} \end{split}$$

and this is asymptotically equal to $(n+1)\omega(x)$ if (7) is true for n, since $\omega'(x+\theta\omega_n(x))\to 0$ as $n\to\infty$. Note that

(8)
$$\lim_{n \to \infty} f_n(x) = \lim_{n \to \infty} \omega_n(x) = \infty$$

for every x > a, by (1). Similarly it can be shown that

$$f_{-n}(x) = x + \omega_{-n}(x),$$
 $n = 1, 2, ...$

where

$$\lim_{x \to \infty} \frac{\omega_{-n}(x)}{\omega(x)} = -n.$$

It is therefore quite natural to ask whether there exists a family of iterates

$$f_{\sigma}(x) = x + \omega_{\sigma}(x)$$

such that

(10)
$$\lim_{x \to \infty} \frac{\omega_{\sigma}(x)}{\omega(x)} = \sigma$$

for every real σ .

An affirmative answer was given by PAUL Lévy in 1928; he showed that if $\omega'(x)$ is of bounded variation then such a family does in fact exist and is uniquely determined by f(x). This is briefly Lévy's argument:

Suppose first that there exists a family of iterates (9) with the asymptotic property (10). Let $y = f_{\sigma}(x)$ and write $x_n = f_n(x)$, $y_n = f_n(y)$ so that $\lim x_n = \lim_{n \to \infty} y_n = \infty$ by (8). We have $f_n(y) = f_n(f_{\sigma}(x)) = f_{\sigma}(f_n(x))$, i.e. $n \to \infty$

$$y_n = x_n + \omega_\sigma(x_n)$$

so that

$$\lim_{n\to\infty}\frac{y_n-x_n}{\omega(x_n)}=\lim_{n\to\infty}\frac{y_n-x_n}{x_{n+1}-x_n}=\sigma$$

by (10). In other words, the index of iteration σ is determined in a perfectly unique manner from the formula

(11)
$$\sigma = \lim_{n \to \infty} \frac{y_n - x_n}{x_{n+1} - x_n}$$

for any pair of values x > a, y > a.

² Ann. Mat. Pura Appl. (4) 5 (1928), p. 282.

On the other hand, it is easy to show that the limit (11) actually exists, at least for $x \leq y \leq f(x)$, provided that $\omega'(x)$ is of bounded variation. For denoting by σ_n the right hand member of (11), one finds by a simple calculation

(12)
$$\sigma_{n+1} - \sigma_n = \sigma_n \frac{\omega(x_n)}{\omega(x_{n+1})} \left[\omega'(\xi_n) - \omega'(\xi_n') \right]$$

where ξ_n , ξ_n' are between x_n and x_{n+1} . But $0 \le \sigma_n \le 1$ since $x \le y \le f(x)$, $\omega(x_n)/\omega(x_{n+1}) \to 1$ since $\omega'(x_n) \to 0$, and $\sum_n |\omega'(\xi_n) - \omega'(\xi_n')|$ converges since $\omega'(x)$ is of bounded variation. Hence $\sum_n |\sigma_{n+1} - \sigma_n|$ converges and $\lim_{n \to \infty} \sigma_n = \sigma$ exists. Note that the convergence of $\sum_n |\sigma_{n+1} - \sigma_n|$ is uniform for fixed x and $x \le y \le f(x)$ and in fact uniform for $a < b \le x \le f(b)$, $x \le y \le f(x)$.

Lévy's argument is incomplete in several respects. First, if we write $\sigma = \lambda(x, y)$, it is necessary to show that for fixed x, $\lambda(x, y)$ is continuous and strictly increasing in y. For only then can we say with certainty that $\sigma = \lambda(x, y)$ is solvable for y and that the function $y = f_{\sigma}(x)$ does indeed exist (for sufficiently large x). Secondly, it is necessary to show that $f_{\sigma}(x)$ has the required asymptotic properties.

The purpose of this note is to establish Lévy's result in a rigorous manner. More precisely, we shall prove:

Theorem. Suppose that $f(\mathbf{x}) = x + \omega(\mathbf{x})$ where $\omega(\mathbf{x}) > 0$, $\omega'(\mathbf{x})$ is of bounded variation for $\mathbf{x} > a$, and $\omega'(\mathbf{x}) \to 0$ as $\mathbf{x} \to \infty$. Then (a) the limit (11) exists for every pair of values $\mathbf{x} > a$, y > a. (b) $\sigma = \lambda(\mathbf{x}, y)$ is continuous and strictly increasing in y. (c) $\lambda(y, \mathbf{x}) = -\lambda(\mathbf{x}, y)$. (d) If $y = f_{\sigma}(\mathbf{x})$ denotes the solution for y of $\sigma = \lambda(\mathbf{x}, y)$ then the $f_{\sigma}(\mathbf{x})$ form a family of fractional iterates of $f(\mathbf{x})$ with the asymptotic property (10).

A similar result holds for functions which have the form $f(x) = x - \omega(x)$ in a (right) neighbourhood of 0. If $\omega(x) > 0$, $\omega'(x)$ is of bounded variation for 0 < x < a and $\omega'(x) \to 0$ as $x \to 0+$, then f(x) has a uniquely determined family of fractional iterates $f_{\sigma}(x) = x - \omega_{\sigma}(x)$ with

$$\lim_{x \to 0+} \frac{\omega_{\sigma}(x)}{\omega(x)} = \sigma$$

where σ is again given by (11). Modifications of the proof are trivial and details will be omitted.

The requirement that $\omega'(x)$ be of bounded variation is essential and relaxation of this condition seems hardly possible. If $\omega'(x)$ is of unbounded variation, the limit (11) need not exist at all, as for instance when $f(x) = x + 1 + \frac{1}{x} \sin x$, x > 1. In other cases the limit (11) may exist for all

³ LÉVY's chief aim was a theory of regular growth of real functions and the above theorem appeared as an auxiliary result in a largely heuristic work. From the point of view of the theory of iterations, the theorem obviously has an interest of its own.

pairs x, y, but $\sigma = \lambda(x, y)$ is a constant in an interval of y so that the equation is not solvable for y. An example of this kind is

$$f(x) = x + 1 - \frac{1}{n(n+1)} \sin^2 \frac{1}{2} \pi n(x-n)$$
, $n \le x \le n + \frac{2}{n}$,

$$f(x) = x + 1$$
, $n + \frac{2}{n} \le x \le n + 1$, $n = 2, 3, \ldots$

In fact, if x=2 then $x_n=n+2$ and if $y=\frac{5}{2}$ then $y_n=n+2+\frac{1}{n+2}$:

Hence

$$\lim_{n \to \infty} \frac{y_n - x_n}{x_{n+1} - x_n} = \lim_{n \to \infty} \frac{1}{n+2} = 0.$$

2. Proof of the theorem. We have already verified (a). Continuity of $\lambda(x, y)$ for $x \leq y \leq f(x)$ is a straightforward consequence of the uniformity of convergence of $\lim_{n \to \infty} \sigma_n = \sigma$. Strict monotonity at y = x follows from (12)

which shows that $\sum_{n=0}^{\infty} \frac{\sigma_{n+1} - \sigma_n}{\sigma_n}$ converges absolutely provided that $x < y \le f(x)$.

Therefore $\sigma/\sigma_0 = \prod_{n=0}^{\infty} \sigma_{n+1}/\sigma_n$ converges to a positive value and we have $\sigma > 0$.

To extend these results to other values of y, suppose that y > x and let k be an integer such that $x_k < y \le x_{k+1}$, $x_{k+n} < y_n \le x_{k+n+1}$. Now

$$\begin{split} \omega(y_n) &= \omega(x_{k+n}) + (y_n - x_{k+n}) \, \omega'(\xi_n) \\ &= \omega(x_{k+n}) + \theta_n \, \omega(x_{k+n}) \, \omega'(\xi_n) \end{split}$$

where $0 < \theta_n \le 1$, $x_{k+n} < \xi_n < x_{k+n+1}$. Since $\omega'(\xi_n) \to 0$, we find that

$$\lim_{n\to\infty}\frac{\omega(y_n)}{\omega(x_{k+n})}=1.$$

But for fixed k,

$$\lim_{n \to \infty} \frac{\omega(x_{k+n})}{\omega(x_n)} = \lim_{n \to \infty} \frac{x_{k+n+1} - x_{k+n}}{\omega(x_n)}$$

$$= \lim_{n \to \infty} \frac{x_n + \omega_{k+1}(x_n) - x_n - \omega_k(x_n)}{\omega(x_n)} = 1$$

by (7). Therefore for every pair of values x > a, y > a,

(13)
$$\lim_{n\to\infty} \frac{\omega(y_n)}{\omega(x_n)} = \lim_{n\to\infty} \frac{y_{n+1} - y_n}{x_{n+1} - x_n} = 1.$$

This gives immediately

(14)
$$\lambda(x, f(y)) - \lambda(x, y) = 1,$$

and also the existence of any of the two limits on the left provided that the other one exists. Hence $\lambda(x, y)$ exists for every x > a, y > a. Furthermore, (13) gives

(15)
$$\lambda(x,t) = \lambda(x,y) + \lambda(y,t)$$

from which the assertions (a), (b) and (c) of the Theorem follow at once. To prove (d) we note that in the number triple $\{x, y, \sigma\}$ where $\sigma = \lambda(x, y)$, each pair determines uniquely the third one by (a), (b) and (c). Hence $f_{\sigma}(x)$ exists and they form a family of fractional iterates of f(x) by (14), (15).

Finally we have to show that $f_{\sigma}(x)$ has the required asymptotic behaviour. We may assume that $0 < \sigma < 1$. Now $y = f_{\sigma}(x)$ implies $y_n = f_{\sigma}(x_n)$ for n > 0 therefore

(16)
$$\sigma = \lim_{n \to \infty} \frac{y_n - x_n}{\omega(x_n)} = \lim_{n \to \infty} \frac{f_{\sigma}(x_n) - x_n}{\omega(x_n)} = \lim_{n \to \infty} \frac{\omega_{\sigma}(x_n)}{\omega(x_n)}.$$

This holds uniformly for $a < b \le x \le f(b)$, $x \le y \le f(x)$, (see remarks after (12)), and the asymptotic formula (10) follows.

(Received February 20, 1960.)

ОБ ОДНОЙ ТЕОРЕМЕ P. LÉVY

G. SZEKERES

Резюме

Пусть f(x) есть строго возрастающая функция, причем

$$f(x) > x, ecли x > a.$$

Если A(x) есть решение функционального уравнения

(2)
$$A\{f(x)\} = A(x) + 1$$
 $(x > a)$,

то функции

(3)
$$f_{\sigma}(x) = A_{-1}\{A(x) + \sigma\}$$

удовлетворяют соотношениям

(4)
$$f_{\sigma}(f_{\tau}(x)) = f_{\sigma+\tau}(x), \qquad f_{1}(x) = f(x).$$

282 SZEKERES

Но так как решение (2) не единственно, то и функции $f_{\sigma}(x)$ определены однозначно лишь для целых значений σ .

Согласно одному замечанию Р. Lévy [1] f_{σ} станет однозначной, если потребовать, чтобы выполнялись условия

$$f(x) = x + \omega(x)$$

И

(9)
$$f_{\sigma}(x) = x + \omega_{\sigma}(x),$$

где $\omega(x)$ дифференцируема, $\omega'(x)$ имеет ограниченное изменение, $\lim_{x \to \infty} \omega'(x) = 0$ и

(10)
$$\lim_{x \to \infty} \frac{\omega_{\sigma}(x)}{\omega(x)} = \sigma.$$

В работе автор доказывает существование и единственность так определенной f_{σ} .