ON A THEOREM OF PAUL LEVY
G. SZEKERES!

1. Let f (x) be a continuous strictly increasing function such that
(1) [@)>=z forw.>la-.

A family of fractional iterates of f (x) is obtained by considering Abel’s
equation

(2) A(f(x)) = A(x) + 1, T>a.

If A(z) is a continuous and strictly increasing solution of this functional
equation and A4 _, (y) is the inverse of A(x) (sothat 4_, (4(x)) == for x > a),
then

(3) fr (@) = A_, (A(2) + o), — o <0<

defines a family of functions with the property that
(4) fo’(f‘r (w)) :fa'+‘r (x)7 fl (x) :f(x)'

In particular fy(z) =z and f_, () is the inverse of f(x). Theinterpretation of
(3) and (4) is that they hold for sufficiently large @; for instance f_(x) in (3)
is defined for # > a if ¢ = 0 and for & > 4_, (4(a) — o) if 0 < 0.

Foro =n, n=1,2,..., f, (x) is the n-th natural iterate of f(z),

fn+1(x):f(fn(x))» ) n:1’2:-"y

hence independent of 4(z). For non-integer values of o, f_(z) is not determined
uniquely but depends on the particular solution of the functional equation (1).
To enforce uniqueness we need more information about the expected behaviour
of the iterates.

Suppose that

(5) f@) =2 + o)

where w(z) is differentiable and o’ () — 0 as # — oo. By induction one easily
verifies that

(6) fa(@) =2z 4+ o, (z), D= e e
1 University of Adelaide, Adelaide, South Australia.
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where w,, (x) - 0 as  — oo and

1) T 2nlE)

x> ()
To prove (7) for » + 1, note that
Oy (@) =f(@ + 0, () — 2 =0, (@) + o (@ + o, (7)) =
=0, (@) + 0@ +o,@o (@ +0o,®), 0<0<1,

and this is asymptotically equal to (n + 1) w(x) if (7) is true for », since
o' (& + 0o,(x)) - 0 as n - co. Note that

(8) im f,(x) = limw,(x) = oo

n—»o n— o

for every x > a, by (1). Similarly it can be shown that

fon @) =2+ 0_, (@), _ =102
where
B O_n(®) _

X—> 0 w(x)

It is therefore quite natural to ask whether there exists a family of iterates

(9) fo (@) =2 + o, (z)

such that

(10) fi 2
X— (()(23)

for every real o.

An affirmative answer was given by PaurL LE&vy in 1928;2 he showed
that if w’(z) is of bounded variation then such a family does in fact exist and
is uniquely determined by f(). This is briefly LEVY’s argument:

Suppose first that there exists a family of iterates (9) with the asymptotic
property (10). Let y =/, () and write z, =f,, (), y,=f, (y) sothat lim z,, =
— lim g, = oo by (8). We have f,, (4) = /u (f, @) =/, (o @), Le. "=

n—»o

yn = xn + wcr (wn)
so that
. e 5 —
lim =% i In "% _
n-w (T, e Py g — L,

by (10). In other words, the index of iteration ¢ is determined in a perfectly
unique manner from the formula

N> XTpi) — Tn

for any pair of values z > a, y > a.

2 Ann. Mat. Pura Appl. (4) 5 (1928), p. 282.
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On the other hand, it is easy to show that the limit (11) actually exists,
at least for x < y < f(x), provided that w’(xz) is of bounded variation. For
denoting by o, the right hand member of (11), one finds by a simple calculation

(12) Onir — O = 0,20 _10r(ey _ wi(E)]
w(xn-!-l)

where £,, £, are between z, and %, ,. But 0 < 0, < 1 since z < y < f(2),
() /o(Ty 1) — 1 since @'(x,) >0, and 3| 0’ (§,) — o’ (&,)| converges since
n

o’(x) is of bounded variation. Hence 3| 0,,,; — 0, | converges and lim ¢,=0¢

n— o

n
exists. Note that the convergence of 3|0, ,, — 0, is uniform for fixed # and

n
x < y < f(x) and in fact uniform fora < b < o < f(b), =z <y < f(v).

LEvy‘s argument is incomplete in several respects.® First, if we write
o = M, ¥), it is necessary to show that for fixed z, A(z, y) is continuous and
strictly increasing in y. For only then can we say with certainty that o =
= A(x, ) is solvable for y and that the function y = f, (z) does indeed exist
(for sufficiently large ). Secondly, it is necessary to show that f, () has the
required asymptotic properties.

The purpose of this note is to establish L#vy’s result in a rigorous
manner. More precisely, we shall prove:

Theorem. Suppose that f(x) = x + w(x) where w(@) > 0, o' (x) is of
bounded variation for x > a, and o' (x) — 0 as © — co. Then (a) the limit (11)
exists for every pair of values x > a, y > a. (b) 0 = Az, y) is continuous and
strictly increasing in y. (¢) Ay, ®) = —A®,y). (d) If y =1, (x) denotes the
solution for y of o = Az, y) then the f, (x) form a family of fractional iterates
of f(x) with the asymptotic property (10).

A similar result holds for functions which have the form f(z)= 2z — o()
in a (right) neighbourhood of 0. If w(z) > 0, ' (z) is of bounded variation for
0 <2 <aandw () >0 as z - 04, then f(z) has a uniquely determined
family of fractional iterates f (r) =2 — o (x) with

lim ©0(2) =0
x—=0+ ()

where ¢ is again given by (11). Modifications of the proof are trivial and details
will be omitted.

The requirement that w’(z) be of bounded variation is essential and
relaxation of this condition seems hardly possible. If w'(z) is of unbounded
variation, the limit (11) need not exist at all, as for instance when f(z) =

=z+14 K sinz, ® > 1. In other cases the limit (11) may exist for all
x

3 LEvy’s chief aim was a theory of regular growth of real functions and the above
theorem appeared as an auxiliary result in a largely heuristic work. From the point of
view of the theory of iterations, the theorem obviously has an interest of its own.
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pairs @, y, but 0 = A(z, ) is a constant in an interval of y so that the equation
is not solvable for y. An example of this kind is

1 1 2
)=z +1———sin2 —anx—n), nzrn+—,
f(a) Sy TE =, nSasatg
2
f@)y=x241, n—|—5§x§n+l, =258, 0 e
In fact, 1fw—2thenx,,_n—{-2andlfy——-thenyn_n+2+—:—2—:
n
Hence
lim ¥ "% _ lim : =10z

nse Tni, — &, n-=on-+2

2. Proof of the theorem. We have already verified (a). Continuity of
Az, y) for z < y < f(x) is a straightforward consequence of the uniformity of
convergence of lim o, = 0. Strict monotonity at y =z follows from (12)

n—o

which shows that 2 G"F‘H-—i‘ converges absolutely provided that x <y < f(x)

n
Therefore /o= ﬂ Op41/0, converges to a positive value and we have o > 0.
To extend these results to other values of y, suppose that ¥ > z and let
k be an integer suchthat 2, < ¥y < @y, &40 < Yn < Py na- Now
w(yn) T w(xk+n) + (Yn — xk+n) wl(En)
= (X yqp) + 0, O(ytp) o’(&p)
where 0 <0,<1, #,,, < &, < % ny. Since o’ (§,) >0, we find that

o (Y5)

[i=159 w(wk+n)

=il
But for fixed £,

5 w(x " X =&
lim @@ktn) _ i Tebntr = Tkn
fE>=co w(xn) i w(xn)

— lim Tn + wk+1(xn) = tnsw wk(xn)
IE=ce o(z,)

—

y (7). Therefore for every pair of values ¢ > a, Yy >'a,

(13) tim @80 _ i Yat1—¥n

% w(xn) N~ ¥pi1 — &y
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This gives immediately

(14) Az, f(y)) — Az, y) =1,

and also the existence of any of the two limits on the left provided that the
other one exists. Hence A(z, y) exists for every # > a, ¥ > a. Furthermore,
(13) gives

(15) A, t) = A, y) + Ay, b)

from which the assertions (a), (b) and (¢) of the Theorem follow at once. To
prove (d) we note that in the number triple {z, y, 0} where ¢ = A(z, y), each
pair determines uniquely the third one by (a), (b) and (c). Hence f, (z) exists
and they form a family of fractional iterates of f(z) by (14), (15).

Finally we have to show that f_ () has the required asymptotic behaviour.
We may assume that 0 < ¢ < 1. Now y =/ (x) implies y, =1, (z,) for
n > 0 therefore

(16) o = lim y"._—_x" — lim f«r(xn) — Ly s wa_(xn)

e 0@, nee 0@ e o)
This holds uniformly for @ < b < x < f(b), * < y < f(x), (see remarks after
(12)), and the asymptotic formula (10) follows.

(Received February 20, 1960.)

OB OJIHON TEOPEME P. LEVY
G. SZEKERES
Pe3iome

[Tycteb f(x) ecTb cTporo Bodpactawowmas GyHKUKs, Npruuem

(1) fle) >z, eciii x> a.

Ecin A(x) ectb pemeHue OYHKUMOHAJIBHOI'O YpaBHEHHSI

2) A{f@)} = 4@ +1 @>a),
To GyHKUHU
(3) fo(@) = A_,{4(2) + o}

Y/10BJIETBOPSAKOT COOTHOLLUEHHSIM

(4) fo(F(@) = fo ), h@) = f(@).
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Ho Tak Kak penienue (2) He eJIMHCTBEHHO, TO U QYyHKUMHU f () onpe/iesieHbl 0IHO-
3HAYHO JIMIIb JUISI LieJbIX 3HaueHuii o.

CorznacHo onHomy 3ameyanuto P. LEvy [1] f, craner o/aHo3HauHOM, eciu
notpeboBaTb, 4TOOBl BBITOJHSUINCH YCIOBUSI

(5) f(@) =z + ()
"
(9) fo@) =& + o (),
rje o(x) mbdepenipyema, o’(x) MeeT orpaHMYeHHoe U3MeHeHue, lim o’ (x)=0 u
(10) T L
xe )

B pafore aBTOp /0Ka3blBaeT CyllecTBOBaHHME M €IMHCTBEHHOCTb TAaK OIpejieieH-
HOH f,.
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