ON THE COMPARISON OF TWO SAMPLES WITH
SLIGHTLY DIFFERENT SIZES

by
J. REIMANN and I. VINCZE

Introduction

In our following considerations we suggest the possibility of a two sample
test of SMIRNOV-type for comparison of samples with slightly different sizes.

If we denote by F,(x)and G, (x) the empirical distribution functions
of the two samples taken independently from populations with continuous
distribution tunctions #'(2) and G(z) resp., then the test of SMirNOV is based
on the statistics

n(lax (F () — Gp())
x)

or
max | F”(Z) . Gm(x) l >
)

The distributions of these statistics under the hypotheses F(z) = G(x)
and in case m = n are due to GNEDENKO and KororLYUK and have simple
forms. In other cases the formulae are more complicated or only asymptotical
representations are at disposal. (See: J. Brackmax [1], V. Ozors [6], J. L.
Hopexs [3], V. S. KorOLYUK [5].

In practice the case m =mn is of great importance. At the design of
experiments the equal size ot samples often can be ensured and the correspond-
ing statistics can be evaluated without much calculations by means of the
following very simple method of GNEDENKO and KoroLYUK [2]:

Let us denote by

Yl o % G

the union of the mentioned two samples &, &,, ..., &, and 9y, M, - .., Ny
resp., arranged in order of magnitude. Let now be
Col=L =y

As it is easy to see in case m = n the known relations

max (%, + ... +9;) maxi,

max (F,,(III) R Gn(x)) =-9 @
x) n n

and
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max|? + ... + 9] max|§,|
max |Fie) —Ge)| =2~ . O
) n n
hold.
The idea lies at hand to make use of the statistics max §; and max |S,|

@ (i

in case of different sample sizes too the distribution of which can be obtained
easily. The necessity of making use of these statistics for nearly equal sample
sizes arises for instance if some of the experiments cannot be used and to
obtain equal sample sizes elements of one of the samples have to be omitted.
This sometimes would mean the loss of valuable information.t

In the following we shall determine the distributions and limiting distri-
butions of these statistics, or more precisely the distributions of the following
statistics: supposed that m > n

Bim = max (n F () — m GQ,(z)),
(x)

and
m—mn
Pt

Bn,m = max |nF (z) —mG,(z) + e ; n}I
(x) |

We shall give the limiting distributions in the case when the sizes of
(m — n)?
b a9
m—+n
where ¢ > 0 is a constant. We shall prove furthermore that in this case
the test based on the statistics B, ,, is asymptotically consistent against all conti-
nuous alternatives, and the statistics B, is asymptotically consistent against all
continuous alternatives F(z) > G(x).
Thus this test can be suggested in cases mentioned above. (In the finite
case in lack of nearer investigations ¢ < 1 may be used.)
Let R, and T, resp. denote the first and last of the indices 7 for
which the sum §; is maximal. Let us further denote by R, ,, the first index

for which l T oy IR
2 2

the two samples only “slightly differ”, i. e. if » — oo an — 4.2,

is maximal. We shall determine the joint

distributiolns and limiting distributions of the pairs of statistics (B, ., B ,.),
(Bim Thm) and (B, ,, B,,). These pairs of statistics evidently enable more
efficient tests, but their tabulations afford considerable efforts.

In the case m =n, i, e, ¢ = 0. we obtain the distributions of GNEDENKO
and KoroLsuk and the distributions contained in article [8] resp.

We wish to mention that our method is connected with that of J. L.
HobaEes [3] used for the determination of the significance probabilities of the
SmirNov two sample test. As standard methods are used and our reflecting
procedure is simpler in the following above article will not be mentioned.

Our § 1 and § 2 cover the mentioned distribution and limiting distri-
bution theorems, § 3 is devoted to the asymptotic consistency, while in § 4
a remark is made concerning the limiting stochastic process.

~ 18ee HopGEs [3] §4. p. 477
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§ 1. Distribution theorems

With the notations of the introduction the following hold:

Theorem 1. In the case F(x) = G(x) and for m > n

m-+n
2k+14+m—mn \n—Ek
| 1 | P(B: .. — k)= k=002 e
( ) ( nm ) m+k+1 m-+n n
n
0, if k<0 or r+k odd,
sl ) S S
m+1
r ‘m—+n —r
(1.2)  P(Bin=Fk Blfn=r)=: (r+ k)( g k)
ehim—n+k+ 8 J\" "3
r2m—r+ k4 2) (m—{—n g
n
ifl—=1,2,...0;: p=Bk k2., 2n—k,

Pl b =) —
0,ifk<0ort+k odd,

t\ /m-+n—t
i sy ABIL T B

(1.3) — = k=0, $=02...20

t—l—hlm—l—n—t m—+n
n
= t \ m+n—t
(+k)( o
2k + ) (k+m—mn) \ 2 J\" "2

BT B
E+k—+2) (m+n—t) m+n’ % “

n

t=k k4+2,...,20—k.

Remarks. The proofs of formulae (1.1) and (1.2) are derived independently
and thus by replacing » =k + 2s the following combinatorical relation is
obtained:

Lo B m—n+k—|—l(k—]—2s] m+n—k—2s)
et b +28 m—841 [ J“

S N8

_m—n—i—2k—i—l m -+ n
m+k+1 m -+ k

)
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which is valid for m > n and £k =1, 2, ..., n. Analogous relation follow
from (1.3).

Before turning to the two sided case, we wish to make some previous
remarks. As the random function nF, (x) — m G, (x) equals to 0 for x = — oo

and equals to n — m<0 for 2 = + oo, the maximum of | nF, (x) — mG,(z) |
cannot be smaller than | n — m|. Consequently concerning the absolute
deviation the following event may be of interest

m—n

< max (n F(x) — mG,(z)) Ex... é iy
(x)
or in other words the value % is the deviation from 0 in the positive direction
and from » — m in the negative direction. If now the absolute maximum of
this deviation is denoted by B, ,, i. e.

B, , =max |n F,(r) — mG,(x) + i
x| 2| 2

then the following theorem holds:

Theorem 2. If F(z) = G(x), m > n and with the notations s = 2k +
+m—n, p=m+n—r

P(B.  — N m—+n m—+n
o (m+” 2 Hm+ys i

—(m+k+78

(1.4)

om+n+1 = 4 yE A i o VE;
=— Zcos"”"—nsink—~s nu}.
BT s s s

n

A=1

P(‘Bn,m = k: Rn,m = 7') S

=y k+4+2ys r =y s—k+1424(s+2)
X S X
[2 r (-;—(r+8)+ys)2P+S—k+2+}~(8+2)

y=—c0 A=—o
(1.5)
% (4 P n 2‘”1’ s—k+2ys ”
5 B8 — B+ 6+ 2)_) I
5 3

r o k+1424s+2) P
( +s—k)+ys))z__mp+k+2+Z<8+2)(%(p+k)+i(s+2))
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3 2. Let us turn now to the proof of our assertions. According to our
introduction let (¥ < (¥ < ... < {%,,, be the union of the entirely inde-
pendent elements of samples &, &,, ..., &, and 7y, %, ..., 7, arranged in
order of magnitude. Of the definition it follows that the system (4, @, .. .,
9, .m) consists of n 41-s.and m — 1-s. In consequence of the indepen-

dency and the common distribution of the sample elements all of the o 'n)
n
possible arrangements of the +1-sand — 1-s are of the same probability
m4+n)’
n

Let us now consider the partial sum
8=0+4+8+... +9, (8,=0)

which gives the difference between the number of £;-s and 7;-s smaller than
(¥ 1i.e. 8;is equal to nF,(l¥ + 0) — m G, (C¥ + 0).

Therefore in proving relations (1.1), (1.2) and (1.3) of theorem 1, we
have to determine the probabilities of the events

(2.1) max S, =k, Kie=10,152,5: -0
1si<2n
(2.2") 8,0 for 1<4<2n incase k=0,r=0

Si<k for 1<i<r—1
S, =k

S8, <k for r4+1<i<2n—*Fk incase k=1,2,...n
r=%k k+2....2n— %

(2.2")

JS,éO for 1<i<t—1

(2.3) 8=0
8;<0 for t4+1<i<2nincase k=0,t=0,2,4...2n

ISigk for 1<ist—~1
St:k

S8;<k for t+1<i<2n—k incase k=1,2,...n,
t=kk+2,...20—k.

(2.3")

In the same way the proof of relation (1.4) of theorem 2 requires the
probability of the event

m—n
2

(2.4) max
0<gism+n

8+
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while for relation (1.5) of theorem 2, the probability of the event

m—ni m —n

S, + il e whifor l<i<r—1,
|
m—mn| m—n
S,- J_ :k)
(2.5) g | =
S{_}_m—ni_m nékfor r+1<i<m+n—=k

2 | 2

is needed.

In order to determine the probabilities of the events (2.1) — (2.5)
we consider the following random walk on the points of the straight line:
Let us start in the origin and arrive after n 4 m steps to the point — (m — n).

n +

According to our assumptions each of the possible . paths have the

same probability, so we have to determine the number of paths satisfying
the restrictions given by relations (2.1) — (2.5). In determining the probabi-
lities belonging to the events (2.1) — (2.3) we shall make use of the method
applied in [8], in case (2.4) and (2.5) we shall refer to a lemma due to
ErLts.

~ 3. Relation (2.1). The number of paths reaching the point +Z is counted.
If we consider such a path and reflect it from the point reaching the height
+ k for the first time about the point -+ %, then we obtain a path which
startes from the origin and reaches after n ++ m steps the height 2 & 4 (m — n).
The number of steps made in the positive direction is m +k, in the negative

direction » — k, thus the number of all such pathes is equal to n+m]‘
n—=k

\ . < . [n+m

Therefore the number of paths not reaching the height 4% is —
n

n-+m

n—k

n-+m
n__
to relation (1.1).

4. The case (2.2"), i. e. k = 0; » = 0. In this case our assertion follows
directly from the following known lemma (see e. g.[7] exercise 37 p. T4,
solution p. 604): The probability of the event, that in a random sequence
consisting of @ — 1-s and f + 1-s, the number of +1-s never exceeds that

g—Rg11

of the — 1-s (i. e. no partial sum exceeds 0) is equal to —

P(max S, <k) and a substraction leads
()

which equals (

a—+1

5. In determining the probability of the event (2.2"") we shall proceed
as in paper [8] for m = n (loc. cit. § 3, p. 190—191). According to this the
number of paths reaching the height & for the first time at the r-th step is

L,
k
r(r—}— ) for k> 0.

2
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For the further part of the path, i. e. for the succeeding m + n — r
steps, it is required that the height 4% must not be exceeded. According

to the lemma in 4. with a::m—r—k andﬂ:n—r+k

il e oS8 1)-th portion of the possible W=
2m —r 4+ k+2 A r+k

2
this condition (k£ =1, 2,...). As each of the considered first » steps and
following m 4+ n — r steps may be combined we obtain the last formula
of (1.2).

In the case of T, of theorem 1 the same procedure may be carried
through, but starting at the endpoint (» — m) and arriving to the origin and
considering in this case the first maximum place.

6. In derivation of the further probabilities we shall make use of the
following general lemma due to ErLris (see e. g. JORDAN [4] p. 404—408):

Let us consider the random walk on the integer points a of the interval
(0, s) of the straight line. Let us start at the point @ =7 (0 <7 < s) and
arrive after N steps to the point a=7j (0 < j < s) passing neither the origin
nor the point s. The number of such paths is given by

only the

) paths satisfy

©

S N :
f(S’N:,i’?‘)= Z[tl . i )_-

E(N—z+7)+7/s

N —
—;—<N+e'+f>+ys))] -

j=—oo

aN+1 5 Ny A% . idm 72.7:
— cos¥N—1 —sin — sin ——

8 et s $ s

This expression is obtained by putting in the cited formulae p =g¢ =%
and multiplying them by 2N i, e. by the number of all possible paths in the
case investigated there and finally changing to our notations.

In our case the random walk takes place in the interval (—( n) —k, k)
starting at point 0 and arriving after m 4 n steps to the pomt (m —n).
For applying our above formulae the interval has to be translated by
(m — n) 4 k. Thus the probability of the event (2.3) is obtained by replacing
in above formulae s =2k +m —n, N=m+n, ec=m+n—£Fk, j=k

f@k+m—mnm+nk+m—n,k)
S (m—}—n

n

’

which gives our formulae in (1.4).

Formula (1.5) is obtained in the following way: The number of paths
starting from the origin and reaching the point £ — 1 in » — 1 steps without
passing the points — (m — n) — k and + £ is

fek+m—nr—1Lk+m—n2k+m—n—1)=f(s,r—1,s—k,s — 1)

using the notation s = 2k + m — n.
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The next step of each path must lead from £ —1 to k. Now the number of
paths starting from £ and reaching after m + n — r steps the point — (m — n)
without having passed —(m —mn) —k—1 or k + 1 is

fec+2,m+n—r,s+1,k+1).

Therefore the number of paths reaching the point £ at the r-th step for the first
time without previously having passed — (m — n) — k and in the following
reaching neither point ¥ 4+ 1 nor — k — (m — n) + 1 is the product of above
two expressions.

We may determine in the same way the number of paths starting from
the origin, arriving at the (m + n)-th step to the point — (m — n) and reaching
the lowest position —(m — n) — k for the first time at the r-th step, without
having passed the height & before, further without reaching the heights & + 1
and — k — (m — n) — 1. Then we obtain

f(s,r—1,8s—k,1)-f(s+2,m+n—r1,k+1).

Expression (1.5) is obtained from above quantities after the following modi-
fications:

/(8,7'-—1,8—]{},8——1):
R r—1 NI E
a [(§<’+’C>~1+ws) (%(r—k)—1+<y+1)s)]—

r=—1 i1
[( (r+%k)—1 +ys‘) (%(r—{-k)—(y—{—l)s”.

As we have only a finite nonvanishing number of terms we may replace in the
second term y + 1 by — p thus the result is only the reverse order translated
by Lin the second terms. Finally each difference in the sum equals the corre-
sponding termin (1.2). For f(s, r —1, s — &k, 1), fs+ 2, m+n—r, s + 1,
k + 1) and f(s + 2, m +n —r, 1, k+ 1) analogous modifications lead to our
results in (1.5).

§ 2. Limiting distribution theorems

7. Under the. conditions F(z)= G(x) and if ﬁi—n —>2¢ (m=n,
m —+n
¢ = 0) the following limiting relations are valid (in each case let be y = 0,
0= 2= 1)

Theorem 3.
__E;’Fﬂ == y] =1 — g4y,

lim P
: Vn -+ m

n—o
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Theorem 4.

BF R+ + T+ \
lim P( 2 <y, —0 <z] =lim P| =2 <y, — 2 <2| =
no \n+m n-+m n-e  |/n+m n+m
S (u+2cv)

JE ([ Mo S,

Theorem 5.

B - ) eFo :
m P =% = yJ = g2¢* 2 \ [6—2[21y+(21+1)c]a 3 e—2[(21+1)(y+c)]zJ A
n-—e Vn+ m e

© Atn?

o E¥82" —'g-zjg 0)»7! L 2
= 8y+c{2e v+ (cosy+c ( l)j.

A=1

Remark. In case ¢ = 0 weobtain from theorem 5 the following forms
of the Kolmogorov distribution:

2 (__ l)i e—zif‘y3

i=—m

and
— e 24+ 1)z
V2n P
2y =
resp.
Using the notations
1 ) _ [(4i—1)y+4ic]*
o) =5 D M4y —dicde =
l=—o0
§ & [+ Dy+ (3 2)e
R st y y 2z
Ply.2) = 5 D 4i+ D)y + @i +2ele
J=—x
the following theorem is valid:
Theorem 6.
lim P\ Bum =, B <z|=
n-e \n+m n+m
I Y
2
=12 [ [t rrnn1 =)+ 11— ) g, o1 dudo.
0 0

Remark. In the case ¢ =0 we obtain the following joint distribution
theorem:
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Corollary. If m —n =o (Jm +n), then

V_ JJ flu,v) f(u,1 —v)dudv,

lim P =
n—o Vn +m $i m+n
where
1 < Qi+l
Fait 1 s i * 22
W 2T s ;

which contains as a special case for m — n = 0 the result of [8] (see p. 188.
theorem 4).

8. Proofs. As to the measure theoretical background of our limiting
distribution theorems we refer to the proof in [8] (see loc. cit. § 4, p. 197.).

For derivation of the formulae of theorems 3—6, the following notations
are introduced:

m+n=2N,
m—n=2l~2c|2N,
r~2Nz,

and from these follow

m+n—r~2N1—2),
m =N + O(JN),
n=N+ O(JN),
s =2k 4 (m —n) ~ 2(y + ¢) 2N,

¢ 1
dy ~—, dz~—=(dr=2()).
AT o @r=2(Y)
We shall make use of the following well-know relations:
v
. \N—1 o
(8.1) zilfl e G
v)
2N+4
(8.2) {2 Mlad
N V2= N

a
8.3 lim [cos ——
35 N—o ( 2N
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a) Proof of theorem 3. The distribution function of the corresponding
final case is (according) to formula (1.1) of theorem 1)

m+n ( 2N 2N

m—k N—l—k] (N
TOmle 2N 2N \*
[ n ] (N] N—J
+

P (——B""" = y) -1 — e,

|/m+n

b) In deriving theorem 4 we start from (1.2) of theorem 1 in case k¥ > 1:

r m-+n—r
_2km—n+k+1)\ 2 2

r@m —r+ k4 2) [m+n’ y

P(B},; < k)=

Applying (8.1) we obtain:

P(Bim=5kRin=r)

where r =k, k4 2, ... 2n — k.
Using above relations we obtain

2k m—n+k+1 Ny(y—}— 2¢)
r2m—r+k+2 2(1 —2)
Of (8.1) and (8.2) it follows that

= |

if r=2N2—co.

m—+n—r
o + k
_ (w+2c)
LA 2(1—2)
m-+n—r
( m—}—n—r)

" m4+n
( m—l—n))

lm—}—n

eZc‘,

5 A Matematikai Kutaté Intézet Kozleményei V. A/3.
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I m-+n—r

(L (l(m—kn—r)

\2/\2 V 1
m+n [zl—zn‘/z V2w

)

2N
By multiplication of above relations we obtain

0 (V+2£)2
P(B;;mzk,R:_m:r)N]/% LB o
T [2(1 —2)]' N 1/2N

which gives the density function of the joint distribution function in theorem
4. The same procedure leads to result for T, as well.
¢) We may obtain in the same way as in a) theorem 5 from the first
formula of (1.4) in theorem 2.
In deriving the second form of the distribution function in theorem 5,
we may make use of (8.3)
Am \m+n ie
cos —
(o002

—>e SO+O?, where s~ 2(y +¢)|m+n,

further
gin P b m—nldw L (COS i ”‘] -
8 S 2 S
Nl[c cAm o 1)‘]
2 y+ec
and

(m+mn\
S

n

d) From formula (1.5) of theorem 2 we may obtain the density function
of theorem 6 in the same way as for the one sided case in b).

§ 3. Proof of the asymptotic consistency

Let us suppose that instead of the null hypothesis Hy: F(z) = G(w)
the alternative hypothesis H, : G(x) = F,(x) == F(z) holds, where the distri-
bution functions are contlnuous We shall prove that in the case of a test

based on the statistics ﬁ'__:’ and on the level (the error of first kind) a, the
m-+n

probability of rejecting H, if it is not true tends to 1 in case n, m — oo,

(m — m)2 ~ 4c¢}(m + n).
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Let us denote by 4 =max | F(x) — F,(z) | and let be z, a point for

X
which | F(@,) — F,(%,) | = 4; as mentioned hefore

Vm—i—n

holds, where in case of B, > d, Vm + n H, is rejected.
The probability of this event is ev1dently not less than that of the event
that for the point z, the following relation holds
i’np,,(xo) — mGla) + 7" | AT

Now it will be shown that under the validity of H, the probability of the
latter event tends to 1. Making use of the fact that F,(z,) = F(z,) + 4 this
event may be written in the following form:

b8 —Vm + n (F (xy) — F(zy)) — ——— Vm + n (Gplxy) — Fi(zy) +
‘m +n m +n
n—m — % m—mn | m—nmn
5 s L e o PR e g
Jm +n (@) £V m-+n ]/m—{—n( 2Ym+n
The terms on the left are — except that of %: /I which tends to infinity
m—+ n

— bounded with probability near to 1. Hence the probability that this event
will occur if H, is valid tends to 1.

In the same way the consistency of the B, statistics can be proved,
under the alternative hypothesis.

§ 4. Remark on the limiting process

Let us suppose now that F(z) =G@)=x in 0 <z < 1, i. e. let us
consider the case of the uniform distribution in the interval (0, 1). For the
stochastic process
n(F, (x) — x) — m(Gn(x) —

Pnml(®) = MEAd ) mih, )
 Vrntm

defined in the interval (0, 1)
M((pn,m(w)) =0,
M [(pn,m(l') (pnvm(x’)] = 2‘(1 e xl) 0=z = o = 1

hold for any z, #". Hence the limiting process is a Gaussian one in (0, 1) with
the same expected value 0 and covariance function as above. Our statistic

nF (®) — mG,(x)/|m + n has the limiting expected value — 2cz and
covariance function x — za'(1 4+ 4¢?).

(Received March 30, 1960.)
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TEOPEMbBI 0 PACITPEJEJIEHUH U NPEIEJIbHOM PACIIPE AEJIEHUMH,
CBSABAHHBIE C JIBYMsS BbIBOPKAMHU C HE3HAUMTEJIbHO
PA3JIMUHBIM YHCJIOM 3JIEMEHTOB

J. REIMANN u 1. VINCZE
Pe3iome

Myctb &,&,..., §, My, Ny, ..., 1, — BHIOOPKU OTHOCUTENILHO CJyyaii-
HBIX BeJIMYMH & M 7 C HeNnpepuiBHBIMM QyHKUMsAMM pacnpefenesus F(x) u G(x),
a F,(z) u G,(x) cCoOTBETCTBYIOIME IMNUpPUYeCKHe (YHKUUM pacIpejesieHusl.

ABTOpBl ONpEJEIAIT TeOpeMbl paclpe/iejlieHus U MpelesIbHOro pacrnpe-
JEJIEHUSI OTHOCHTEJIbHO CJIEAYIOUIMX CTaTHCTUK:

B’tm = max [’ﬂ Fn(x) —m Gm(x)]
(x)

B = max nF,,(x)—me(x)—l—m——nl—m_n.
’ x) 2 2

OTHOCHTEJIbHO 4YMCJIa 3JIEMEHTOB OHM IIpeIoJiaralT, YyTo m > n M B Clyuae
(m — n)?
m-+mn

UMTEJIbHO» PA3JIMYHBbI.

[ycts By u T 03HAYAIOT HUIKHIOI M BEPXHIOI TIPaHb MECT MaKCH-
MYMOB OTHOCHTEJIbHO CTaTHCTUKH B, T. €. MOPSIOK MepBOro U IOCJeIHEro
9JIEMEHTa B COEJIMHEHHOI 1M0CjIe/10BaTEIbHOCTH 3JIEMEHTOB JUISi KOTOPBIX HMeeT
MECTO MaKCUMyM. AHaJIOTHYHBIM 00pa3om nycTb R, ,, 0003HayaeT HUYKHIOW rPaHb
MECT MaKCUMyMOB OTHOCHMTEJIbHO CTATUCTUKU B, ,. Torna npu npeanosoyxeHun
F(x) = G(x) uMeI0T MeCTO CJIeAYIOLMe TeOpeMbl 0 paclpejieseHuu U TIpejelib-
HOM pacrpe/leJIeHUn:

a) Teopembl 0 pacnpeje/ieHUu:

n — oo, —4¢2 rae ¢>0 nocTosiIHHASL, T. €. yKCja 3JIEMEHTOB «He3Ha-
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Teopema 1.

]
__2k+1+m—n. n—k
 m+k+1 [m+ﬂ

. n

(1.1) P(Bim =k)

0 ecau k <0 uau k —+r HeuernHo,
m—mn-+1
m—+1

r m-+mn—r
(12) P(BE, =k RE, —1)= (r+k)( r+k)
2km—n-+k+1) 2 J\" 72

r2m—r+k-+2) m-+n
iy
eciu k=12,....,n; r=kk+2,...,20—k.

t\ f/m+n—t
1 m—n 2 n—;

t+1 m+4+n—t (m—{—n
n

seeall b=10; ¥ =10,

ecl k=0;t=0,2,...:2n,

t m-+n—t
2+ (k+m—n) "2 J\" 7 T2

C+k+2)(m+n—t) W+ﬂ :

(1.8 PIBL =&, T =1 =

n

e k=1,2,...,n; r=kk+2,...,2n—k.

Teopema 2. I1pu obosnaveriuu s =2k +m—n

ol & [(mtn 8
(1.4)  P(B,n<¥k) —m'yz_w “m-l—?sl = [m +E+ys
n

]=

amintl & i . kin ., (s—k)An
= E cos"tm —sin ——sin ~———
5 s s s
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2 SN k+2ys r
P(Bn,mzkiRn,mz"')= [ X
m+n) y;—:w ! (l(r—l—s)—{—ys)
(1.5) n 2
s—k—+1+2A(s+2) m—+n—r o
= m+”_r+s_’”'+2“‘3+2)(% (m+n—r) +%(s—k)+l(s+2))
n 25—]04—22 /1 7 "
y=—o £ E(r—}—s—ll)—i—ys
;.=_m?"+"—"+k+2+3(8+2) 2 (m4n—r)+— L+l(s+2)
2

3ameuvanue: B ciyvae m = n u3 (1.1) u (1.4) noayuaiorcss pacrpeeneniisi
["HEOEHKO—K OPOJIIOK-Q.
b) Teopembl 0 IpejebHOM pacrhpe/eeHuu

Eciu F(z)=G(x) un V—;T_—>2c (m=mn,cz=0),
n+

To B ciuyyae y=0, 1 =2=0

Teopema 3. lim P Ew* y} — 1 — e—20—4cy
n—>o Vn +m
Teopema 4.
+ 4 + +
lim P E'T,<y,—l—?—"i<z —hmP B =, T"'m < z| =
n-o n—4+m n+m Vn+m n -+ m
(uz+2c'v)2
+ 2 C) 20(1—)
] J J [v(l du dv.
Teopema 5.
llm P n m

n—-o

= y‘ — g2 2 [e—212iv+ @i+ el — g=2Qi+DW+OI] =
Vn +m /

Am
-

® Alx?

_ /= e — 8oy
BEYET 26

c
cos
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3ameuyanue: B ciyuae ¢ = 0 u3 Teopembl 5 Mosyyaercs ciaeyoumas popma
pacnpepesenuss Konmoropos-a:

V2—” © @it

( '—211/ __ve 8y?

Teopema 6. Hpu 0003HA4eHUAX
_ [@i—1)y+4ic]*

1 oo
> — — ]_- ) W——. ) 22
fe(y, 2) o E [(1—49)y—4ic]e

i=—o
[+ D+ (45-+ 2)e]*

Pely:2)= 5. 2[47+1)y+(47+2)c]e e

j=—o

im P [—22
n—o ‘V +m & n—|—m

. ):
—V [fc(u’ ‘Pc Uzl — Z) + fc( <Pc u, v ]d’u dv .

3ameuanue: B cayuae ¢ =0, korna m —n=0 (Jm + n),

lim P

n—o

==

0 0

_Ri+1)%

1 5 i S 2
fy,2) = E;j(— 1) (2i+1)e 2

— Yy 2
Bpm an 8 i
< e <a] =2 [ [ — naude,

Jdra Gopmysa B KauecTBe CIELUUAJBHOIO CJyyYdsl COAePIKUT Teopemy 4 Ha CTp.
188 pabotel [8].
ABTOpBI JI0Ka3bIBAIOT, YTO KPUTEPUI, OCHOBBIBAIOLIMIA Ha CTaTUCTUKE B,
ACHMIITOTUYHO COCTOSITEJIEH OTHOCHUTEJIbHO BCSIKON HempepbiBHON ajbTepHaTUB-
HOH THIIOTE3bI, & KPUTEPU OCHOBHIBAIOLIMICS HA CTAaTUCTHKE Bp,, acuMITO-
TUYHO COCTOSITEJIEH OTHOCHMTEJIbHO HENpepbIBHONH aJlbTePHATUBHON T'MITOTE3bI.

ABTOpBI 3aMeuyaioT, yTO MpejleJIbHbII Tpollecc CTOXACTHUeCKOro IMpolecca

n F(x) — mG,(x)
Vn+m

wn,m(x) =

siBlisieTcsl I'ayccoBBIM € MaTeMaTHYeCKUM O)KUAAHMeM — 2cx U KOppeJssilu-
OHHOH OQyHkuuelt x—ax a2’ (14+4¢) (0= x<2' < 1).
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