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by
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Introduction

In this paper the problems of bivariate connection are discussed with the
aid of Hilbert space theory and not by classical methods. This enables a more
general treatment.

The maximal correlation is shown to be a highly adapt measure for the
intensity of bivariate stochastic connection. The calculation of the maximal
correlation leads to the determination of the eigenvalues of a pair of operators.
Some characteristics of this pair of operators will be discussed.

In § 1 the main notions and symbols will be introduced and the condi-
tional expected value will be considered, further some characteristics of the
correlation ratio and the maximal correlation will be discussed. Moreover a
generalized definition of the mean square contingency will be given. In §2
this generalized definition will be proved to include the former definitions of
this notion. Conditions under which the mentioned pair of operators forms a
pair of integral operators will be given.

Finally, a method will be described for replacing any given distribution
by a symmetric one apt to our purposes.

Some characteristics of maximal correlation will be treated with the aid
of these results in our following paper.

§ 1. Basic notions

1.1. First of all, the notions, terminology and symbols used in this
paper will be explained.

Let (£, S, P) be a probability space, i.e. 2 a space of events, S a o-
algebra of its subsets and P a probability measure defined on S (P(2) = 1).

Let & be any random variable (real measurable function defined on £2).
In the following, two random variables which coincide with probability 1
are considered as identical. The expected value of £ — if it exists — is denoted
by M(§), so M(&) = f £d P. S; denotes the smallest o-algebra with respect

2

to which & is measurable, i. e. such a o-algebra of events # for which of =
= {& € B}, where B is any Borel set on the real line. It is pointed out by
J. L. DooB ([2] p. 603) that the random variable { is measurable with respect
to S; if and only if it is a function of &, i. e. if there exists a Borel measurable
function f(z) such that { = f(&).
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L2 =12 (2, S, P) denotes a space of random variables { for which
M(?) is finite. This space L? forms such a complete Hilbert space in which
(&1, &) = M(L; &,) is the scalar product of §; € L2 and , € L2, thus || (|| =
= JM(&?) is the norm ot { € L2. The standard deviation of { € L2 is denoted
by D({), i. e. D(§) =|| £ — M({) ||. We call the random variable C;(%(C-)
where D({) & 0 the standardized of { € L2, and denote it by &*; { is called
standard if { = {* (i. e. if M({) =0, D({) = 1). The correlation coefficient

¢, €L? D(&;) <0 and &, € L2, D({,) 5= 0 is denoted by R({;, {,), thus
R(&y, &) = (5%, 29).

Let us denote the distribution function of any random variable & by

F(x), further

L ~-{f(x) S P@)dF(x) < 001'

L% is a complete and soparable Hilbert spa(o in which the scalar product is
defined by (f,(x), f2 ()) = s L) (@ . In case of & being a discrete

random variable w hl(,h can take on n different values, the space L% is an n-
dimensional Euclidean space.

Let be f(x) € L%. Then the random variable f = f(&) is such that f € L2
The space of random variables of this form are denoted by L% Obviously
L2 = L*(Q, S;, P). Between the elements of the space L% and L% there exists
a one-to-one correspondence preserving the scalar product — and so the norm
as well. Consequently, L2 is a complete and separable Hilbert space and it is
of finite dimension if £ takes on only a finite number of values. All what has
been stated for L2 is \ahd for L2, too.

1.2. Every ran(lom variablo { € L2 can be uniquely decomposed in the
form { = + ' where ' € L% and (" is orthogonal to any element of LZ.
Accordingly, for { there exlsts “such a unique ¢’ ¢ L} that (¢, f) = C f for
any f € L} i. e. { — (' is orthogonal to L2. For {’, mmH E—Fll =€ =€
holds. The operator transforming ¢ into its orthogonal projection on Ls (1 e
into {’) is denoted by A;. Therefore

(1.1 (A¢ L, /) = (Z, f) whenever £ € L2 fcLE.

Later we shall see for any ( € L2, that A, is the regression curve of
£ on & (i. e. the conditional expected value of £ on &).

The conditional expected value is defined by KoLmocorov in the follow-
ing way: the conditional expected value of the integrable random variable
on the conditioning random variable & is such an S;measurable random
variable M(C | &) for which

(1.2) {M(E|&dP = [LdP for any A£€S;.
A A

M(¢ | &) is with probability 1 uniquely determined by the Radon—Nikodym
theorem, further

M(M(]§)) = M(0)
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and for any Sg-measurable random variable f such that (f is integrable,

M 1]€) =FM(E[9)
holds. Consequently,

(1.3) [IM@|&dP = [;faP.

2

We can point out (see also R. R. Bamapur [1]) that if { € L? then A;{ =
= M(C | &) with probability 1, i. e. the regression (conditional expected value)
of £ on & coincides with the orthogonal projection of { on L2. Namely, let o € S;
— for which there exists a Borel set B such that o# = {& € B} — then especi-
ally for

f€L? and from (1.1)
[AgCdP = [LaP
A A

wherefrom A, { = M({ | &) with probability 1.
1.3. The correlation ratio of the random variable { € L2 on & is according
to the above

_D(M(18) _ M —M@)|€] _

(1.4) BfC)y=—"2-2"" il el ol | A, C*
; D(0) fe—mgp A

from which

(1.5) OUL) = (A L%, A %) = (C*, A L¥).

Dividing (1.5) by (1.4) we have

(1.6) B:8) = B el T R(, A Q).

lage*l
If £ €L and f € L2
|| Ag&* — (7%, %) f* |12 = || A ¥ |2 — (f*, £*)?

hence

(1.7) GHE) = (%P L [ A E* —(PECH) * B (see Fig. 1).

It is evident, that in case f € L2 we have L}C L2, further L3} = L2 if
and only if f(x) is univalent, i. e. if it has an inverse function. Hence as for
C € L2 the relation AsA L =A, L is valid,

(1.8) A S < [[AL]

follows, where equality holds if and only it A, { is a function of f (in this case
A;{ = A holds, too).
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1.4. As {, = c€ L2 for any real number ¢, consequently the subspace
orthogonal to {, may be considered and denoted by L2 This is the space o f
random variables with expected values zero and finite standard deviations.
Analogously, L%, for such a subspace of L% and L2, for L2.

Let us consider £ and 7, an arbltrary pair of random variables. In 1.4.
and 1.5 the domains of the operators A, and A, are restricted to the spaces L%,
and L3 ,, respectively.

Z*

IL i,
ya —
L

(I =

Arl*
E
f*// L%

Figure 1.

The maximal correlation of & and 7 is defined as

(1.9) S(¢,m) = sup R(/, 9).

feL
geL;

Thismeasure of stochastic connection was firstdefined by H. GEBELEIN[3].
Recently O. SaArmaNovV [6],[7] dealt with this problem and A. R&NvI[5]
generalized the notion.

Relating to the maximal correlation the following lemma is true:

Lemma 1.
(1.10) S, n) = HAUH = ||A£H .
Proof. As
sup [|4,fl| = sup (22 ] = s
ﬂ?ugo ;Lsn HAan

andin case f€L2,, || f|| =1,9 € L2, || g|| =1, according to equation (1.7)

(g)| < (’A . f]
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thus
A
S(§,7) < sup (“A”';“ ,fJ,
feLi,
s b
consequently

S(&, ) = sup [|A, [ =[A,]l.
fELE,
[Ifll=1
Similarly, S(&, 7) =|| A¢|| . Thus our Lemma is proved.

A. RENYI[5] has shown that in the space L2, the operator A;A, is
self-adjoint, positive definite and

(l.ll) 52(5, 77) = sup (.‘e Aﬁf’ f) = HA& A")H .
feLE,
[Ifll=1
If
1.12 K L2, L2
( ) {Afgzlf f€LE,, g€ 1,0

holds then we call 1 an eigenvalue and f, g a pair of eigenfunctions of the pair
of operators A,, A.. According to the results of the authors mentioned above,
in (1.9) the supremum is the maximum if and only if S(&, #) is the highest of

the values | 4| in (1.12). In case of completely continuous A; A,. this condition
is fulfilled.

1.5. Let {f,} and {g,} be complete orthonormal systems in L%, and
L ,, respectively. The positive square roots of the quantities

lHAan2=2‘;(AT,fpgk)2

i

(1.13) |
I AellF= 3 3 (fi, A¢g4)?
i k

are called the double norms of A, resp. A,. Of course, these double norms may
be infinite, too. As

HAnfi“2=2(Anfi»gk)2 and ”Aeng:Z(l‘nAeng
k i

hence

(1.14) [l A, [lI* = lZIl&,f,-!F and IIIAe|||2=%“HAengz-
From (1.1) and (1.13)

(1.15) IiIAq,HP:zi‘%(fp gi° = [l A¢ll*-

By means of the double norm the notion of the mean square contingency
introduced by K. PEArsON may be extended to arbitrary pairs of random
variables &, 7, by defining the contingency as

(1.16) C(& n) = | Ay lll = [l| Aglll -
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According to the definition and (1.14)
(1.17) CE ) = I030) = 3 0%0)-

%

As shown later this definition is equivalent to that proposed by A.
RE~yr (4]

§ 2. An operator discussion of bivariate problems

2.1. Let the joint distribution function of & and 7 be H(x, y) generating
the measure P on the plane [z, y]; similarly, the marginal distribution functions
H, (z) of ¢ and H, (y) of 1 generating the measures P, and P,, respectively,
on the real line. The spaces L2 and L}, resp. L2 and L%, are isomorphic in
the sense explained in 1.1. To the operator Ay defined in the space L2 there
corresponds an operator A transformlng the "elements of L3, into LH, in the
following way: let be f (x 25, and f = f(&) € L}; then to the random vari-
able g = A, f there exists su(:h a unique ¢g(y) € L3, that ¢ = g(n). Then A, is
the operator which transforms f(z) into this g(y). Slmllally, to A; there cor-
responds an operator A, transformmg the elements of L3%; into L . It fol-
lows from the con%trmtlon that A, and A,, per analoglam have the proper-
ties of A, resp. A, The question arises, under which conditions are A; and
A, 1ntegral operators. Concerning this problem there holds the followmg

Theorem 1. T'he pair of operators A, A, forms a pair of integral operators
of and only if P << P, xP,. In this case there exists a function K(z,y) such that
P(E ” K(z, y) dP dP for any Borel set E in the plane [, y]; furthermore,

-

A, f(2) =_j K(z,y) f(x) dH, (x) and A, g(y) =_j K(«c, y) g(y) dH, (y)

hold.
Proof. If P < P, x P, then according to the Radon—Nikodym theorem
there exists such a function K(z, y) that for any Borel set E in the plane

(2, y]

(2.1) P(E) :Y( K(x, y) dH, (x) dH, (y)
E
holds. For f(x) € L3, and g(y) € L},
(&) gm) = ] §1@ o) dB@,y) = | [ K@ 9) /@) gl) dH, (2) dHy (1)

consequently K(z, ) f(x) g(y) is integrable according to the measure P, X P,
for any f(z) € L3, g(y) € L2 . The Fubini theorem implies that

ky) = | Kz, y) (@) dH, (2)

—o

exists for any f(x) € L}, and

oo

{ k(y) gly) dH 5 (y)

—c0

exists for any g(y) € L%,. Hence, (see e. g. A. C. ZaANEN [8] p. 137), k(y) € L}
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follows. Let be k¥ = k(n) € L2. Then in case f =f(§) and arbitrary ¢ =
=g(n) € L}

() = | | K@y i@ g) dH, @) dH, () = [ k@) 9(0) dHy () = (b, g)
wherefrom (f — k, g) = 0 for any g € L2; this results & = A, /, i. .
(2.2) A f@) = | K(@y) @) dH, @) for any f@) € Li,;
analogously,
(2.3) Asg(y) = | K@, y) gly) dHy(y) for any gly) € L,

Conversely, if for operator A, there exists a function K(z, y) specified by (2.2),

then for any pair of Borel sets 4, B—using the notations A={& € 4}, H=
1 A 1 n€B

— meBY; 1= €4 ond 4 ={ IE
0 ¢4 0 n¢B

— the following are true:

P(AXB)=P(€A,n€B)=M{U28) = (Yot %5) =
= (A, 2Zot> 15) = (Ay 2a(@) , 25(%)) = ([ K(z,y) dH,(x) dH,(y) .

AxB

For any Borel set £ in the plane the above equation can be uniquely
extended to (2.1) from which P < P, X P, follows. (Similarly from A, being an
integral operator.) Thus the Theorem is proved.

Remark. The proof shows that either both of A; and A, are integral
operators or none of them.

A. R¥NYI [4] defined the contingency as

(24)  CH&n) =
T K@y —1pd @) aly@) = [ | K@y i) dHyy) 1

= il P P,
o in all other cases

(where K(z, y) is the function figuring in (2.1)).
A. RENYI proves his definition to involve the classical one for cases
treated by K. PEArSON.

Theorem 2. The definition of contingency given in (1.16) is equivalent to
that of (2.4).

Proof. Let
o, /@), ...} and {go(¥), 9, (®¥), ...}

be complete orthonormal systems in L}, resp. L}, further f,(z)=g, (y)=1. Then
{fi@,fa (@), ...} and {g, (¥),9s (¥), ...} will be complete orthonormal
systems in the spaces L3 o resp. L}, ,.
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Therefore
(25) CH&n) =] Al =3 3 (A fi@) @) = 3 3 (A fi@), gim) — 1,
i=1 k=1 i=0 k=0
viz. in case 1 > 1

(Al fi @), 9o (y)) = (f. (@), Ag go (?/)) = (f; (), fo (x)) =0,

similarly in case £ > 1

(A fo @), 9 @) = (90 @), 9, () =0;
further

(Al fo (@), 9o (?/)) =1.
If P < P, XP,,i. e. by Theorem 1 if A, is an integral operator then

(2.6) A= [ [ K y)dH,(x)dH,y(y) = 3 > (A, f(@), 9u»))?.

—o —o i=0 k=0

From (2.5) and (2.6) C*(&, n) =||| A, |||2 =||| A¢||[2— 1, which is
identical to (2.4).

On the other hand, if ||| A, ||| < oo, then A, is known to be a completely
continuous integral operator, thus according to Theorem 1 P < P; X P, must
hold; consequently if the latter does not hold, then C(&, 1) = ||| A, ||| = oo.
Thus our statement is proved.

2.2. Let the measure P be generated on the plane by the joint distribution
of & and 7, further let be

@) {PA(B) :P(AXB)
PB(A) = P(A X B)
where 4 and B are arbitrary Borel sets. P, (B) for fixed 4 and P2 (4) for
fixed B are measures on the class of Borel sets on the real line. As
(2.8) P,(B)< Py(B) and PB(4)< P, (4),

consequently P, < P, and PB < P;. According to the Radon—Nikodym
theorem there exist functions P; (4 | y) and P, (B | @) such that

l P,(B)= [ P,(A|y)dP,
B

(2.9)
|PB<A)= { Py(B|x)ap,,
A
respectively.
[1 x€cA :
Further let be x4 (z) = where A is any Borel set on the real
10 z¢4

line; then

[ A 2a@)dPy = [ 15y) Ay 24@) dH(y) = (A 24@): 26(3) = Pa(B).
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therefore

(2.10) A ga(@) =P (4]y)

for almost every y according to the measure P,. Similarly,
(2.11) A, 15 (y) =Py (B|2)

for almost every @ according to the measure P;. Thus P, (4 | y) resp. P, (B| x)
are the conditional distributions, which generate probability measures (see
J. L. Doos [2] p. 29).

If P, (A) =0 then by (2.8)

PA(B):‘Ypl(AH/)sz:O,
B

whence P, (4 |y) = 0 follows for almost every y according to the measure
P,. This does not imply however, P; (4| y) < P; (4). As to the validity of
the latter there holds the following

Lemma 2. P, (4 |y) < P, (4), P, (B|x) <P, (B) and P < P,xP, do
or do not hold simultaneously

Proof. If P < P, x P, then P, (4 |y) = | K(z,y)dP, and P, (B|z) =
=j' K(z, y) dP, because of A

B

§ [ } K, y)dP,| 8F;= P(AX B} =P 4B)
B A

and
{1 § E(@,9)dP,| 4P, = P(A x B) =PB(4),
A B

wherefrom P, (4 | y) < P, (4) resp. P, (B|x) < P, (B) follow.
Further if P, (4| y) < P, (A4) then according to the Radon—Nikodym
theorem there exists a function K(z, y) for which

Pi(A = [ Kz, p)dP, .
A

For this function K(z, y)
{§ Ktz y)dP,dP, = ([ | K(z,9)dP,|dP; = [ P,(A|y)dP, = P(AX B),
B A B

AxB

which means that P < P, X P,. (Similarly from P, (B|z) < P, (B).)
Thus our lemma is true.

Corollary. In consequence of Theorem 1 and Lemma 2, the following three
statements are equivalent :

1° P, (4| y) <Py (4) (and P,(B|2) <P, (B))

I e ek e

3° A, is an integral operator (and A, too).

2.3. In many cases by the symmetry of the bivariate distribution in its
variables (H(z,y) = H(y, «)) the solution of the problems discussed before
may be facilitated. Namely, if H(x, y) = H(y, ), the problem reduces to the

6 A Matematikai Kutat6é Intézet Kozleményei V. A/3.
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spectral decomposition of a single operator. Viz. if we have a symmetric
distribution P(4 X B) = P(Bx A) then P, = P,, thus L%, = Lj, and by this
A, = A,. The pair of operator equatlons becomes

(A, fl@)=2g(y)
| A, 9(=) = Af(y).

If f(x) = g(x), these equations are identical and f(z) is an eigenfunction of
A,. If f(z) 5~ g(), then by subtracting the second equation of (2.12) from the
first one we obtain

(2.12)

A (f(x) — g(x)) = — Mf(y) — 9(%))

whence f(x) — g(z) is an eigenfunction of A;. Above considerations show the
possibility of reducing the spectral decomposition of a pair of operators to
that of a single operator.

It will be shown that any bivariate distribution may be usefully replaced
by a symmetric one. Let us consider instead of the original bivariate distribu-

tion P the symmetric distribution P defined by
(213)  P(AXB)=(A; A 74@): 25(@) = (A1 24(@): Ay 25(@))

where 4 and B are arbitrary Borel sets on the real line and the first scalar
product is calculated in L%, and the second one in L%, respectively. It is easy

to see that P is a probability measure on the plane. Furthermore, trivially
P(AxB)=P(Bx A) and for the corresponding distribution function
H(x,y) = H(y, ). It is also obvious that both marginal distributions of P
are equal to the distribution of &, i. e.

D=y =P,
and thus
Ly, =Ly, = L.

The last term of (2.13) — equaling FP A|y) P (B|y) dH, (y) —

suggests the following interpretation of the d1str1butlon P: Let us fix any
arbitrary value of 7 and choose an independent pair ot values of &; then P
is the mixture of the distributions of such pairs with respect to 7.

Such transformations were proposed in special cases by H. GEBELEIN 3]
and O. SARMANOV [ 7], too. The role of both operators A, and A, will be taken

over by A, A, according to the distribution P, as shown in
Theorem 3.

© o0

(2.14) S S fe y) dH(x, y) = (A, A, [(@), g(@))
where f(z) € L%, and g(zx) € L},

Proof Aocordlng to the definition of P in (2.18), for characteristic func-
tions (2.14) holds. Therefore our statement is valid for any pair of step func-
tions. Furthermore any function can be approximated to any desired exactness
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by step functions. Thus in consequence of the continuity of its terms, (2.14)
holds in general.

Remark. It is evident from (2.14) that

| S e fy) aBe,y) = 8319)  1@) € Do || i) | =1.

Corollary 1. A = A, A, is the operator generating the conditional expecta-
tion in the sense

(2.15) Af@ = [ fo)dl@|y) fla) € L,

where H, (x| y) denotes the conditional distribution function corresponding
to H(x, y).

Proof. The definition of the conditional expectation — see (1.2) — may
be written in function terminology in the form

(2.16) A f@dPy= | [ f@)zaty)dP /(@) € I,
A

—00 —

for any Borel set 4 on the real line. We shall see that Af(z) satisfies (2.16)
and therefore (2.15), too. Namely, because of Theorem 3

JAf(@) 2P, = (A ]@), z4@) = { § fa) gatw) P

Hence also P, (4 | ¥) =Ay A( x) holds and the correlation ratios con-
cerning P equal I Af(x) V| (fe) € Ly, || f@) || =1).

Corollary 2. The maximal correlation of H(z,y) is equal to the square of
that of H(x, v).

Proof. In consequence of (1.11) and (2.14)

$%(£,m) = sup j | f@)f(y)aP < sup { { f@) g(y)dP.
f(x)€L3p,0 —® — J(x) € Liry,0,] | f(x)||=1 — —e
|[F(x)||=1 8(x) € Liz,,0,]|8(x)||=1

On the other hand from (2.14)

sup J § f@)ygy)apr = sup j (Az A, f(@), g(@)) =
FEOE Lipo, [f(x)]| =1 —o0 oo Y€ Lo, (O] =1 — o
20 € Liryo, 20| =1 #0) € Liro, (9| =1
= sup (Ay f(2), Ay g(2)) < ,sup [A/(@)][[|Ayg(2)||= S*(&. 7).
F € Lio, [109]|=1 (€ Lz, |1 F(0)]i=1
g€ Lir,, |10l =1 £ € Liryo, | g(x)/| =1

Hence our statement follows.

6
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The mean square contingency belonging to the measure P equals

(2-17) > (A fi@), A fil@)r = S [|Af(2)|?
K i

where {f; ()} is a complete orthonormal system in L3, ,. If A, is an integral
operator with kernel K(z, y) then A is an integral operator with kernel

(2.18) K(@,y) = | K(v,2) K(y, z)dHyz)
and (2.17) can be calculated as

(" [ B, y)dH (2)dH,(y) —1.

—0 —oo

If the pair of operators A, A, has a pair of eigenfunctions f(z), g(y)

belonging to the eigenvalue A then f(z) is an eigenfunction of A and belongs
to 22. (This can be seen by substituting one of the operator equations into the
other.)

It is easy to see that (2.17) — if it is finite — is not less than 205 (f)

and the equality holds if and only if {f; (z)} is a system of eigenfunctions
(for (A A f; (@), f; (®)) =|| As A, f; () || holds in the case Ay A,f; (z) =
= 2%f, (®)). If A has a complete eigenfunction system, (2.17) may be written
as Y A% where the 4;-s are the eigenvalues of the pair of operators A;, A,.

Evidently, all what has been stated in this part for A, A; may be shown
analogously for A; A, as well.

The fact that both marginals of the distribution P equal one of the ori-

ginal marginal distributions is evidently advantageous in cases we have one
discrete or differentiable marginal.

(Received April 28, 1960.)
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0 CTOXACTHUECKHX (CBsA3sX C I1BYMSA INEPEMEHHBIMHU
P. CSAKI u J. FISCHER

Pe3tome

Pabora uccieayer psii CBOMCTB CTOXAaCTUYECKUX CBsI3eil ¢ AByMSs NepemeH-
HBIMU C ITOMOUIBI0 TUJIb0EPTOBBIX MPOCTPAHCTB. ITOT METOJ UCCIIeJ0BAaHUST BO3-
MO)KEH TIOTOMY, YTO HEKOTOpble XapaKTePUCTUKH CTOXACTHYECKOH CBSI3U ME3Ly
clyyalHBIMM BeqMuyuMHamMu & U 7 (YCJIOBHOE paclpejiesleHue, yCJIOBHOE MaTeMa-
THYECKOE O)KMJIaHue, DSl Mep CHJIbI CTOXACTUYeCKOH CBsA3M) MoryT OBITH omuca-
HbI ONpeJeJIeHHBIMU B COOTBETCTBYIOLIMX I'MJIbOEPTOBBIX IMPOCTPAHCTBAX NAapamu
onepaTopoB A¢, A, unu A;, A,. Tak ycsoBHoe pacrpejesenne & OTHOCHTEIILHO 7

Pi(Aly) = A, za@),
yCﬂOBHOC MaTeMaTuyeCKoe O)XKUuJaaHue
M(E|n) = A, ¢,

KOppeJIsILMOHHOE OTHOLUEHHE
0,(8) = [[ A, €|

(otHOcUTeNbHO cTangapTHoro &). Iajiee MakcumanbHast Koppensiuus & u 7
SEn) =[|Ay |l = [|A¢ll;

a TNOHATHE KOHTMHIeHIMM o0obwaercs: Ui 1000i mapbl clyyalHbIX BeJIMUMH
E it
CEm) = ||| Aqlll = ll| Ag]l]-

JlokaseiBaercst, yTo A,, A, Torjla M TOJbKO TOrJa Napa HHTErpasibHbIX
oneparopos, ecin P < P, x P, (teopema 1). Ha ocHoBanuu aToro JokasbiBaercs,
yTO BBILIETIPUBEIEHHOE OIpeJleieHe KOHTUHI€HLMM COBMAJIaeT ¢ OIpejiesieH1eM
A. RExNvYI (treopema 2).

C moMmolIbI0 HEKOTOPOIl JiemMbl, 00001ast Teopemy 1, n0oKa3biBaeTcsi 9KBHU-
BaJICHTHOCTb CJIEAYIOIMX TpeX OINpe/lesleHuit:

1. P,(A|y) < Py(4) n Py(B|x) < PyB),

2,8 | Pl

3. A, u A, uHTerpasibHble OlepaTopbl.

C nomouibto onepatopa A = A; A, aeTcsl MeTOJl 3aMeHbl JI000M TJIOCKO-
CTHOI1 BEpPOATHOCTHON Mepbl P CUMMETPUYHOM Mepoil P, 9KBUBAJIEHTHOI € TOUKH
3peHUsi paccMaTpuBaeMblX BONPOCOB. B ¢Bsi3u ¢ 9TUM Jl0Ka3biBaeTcsi, 4To

+o0 4+ o

[ | f@) g(y) dP = (Af(), g(x))

—00 —o0

(reopema 3). Ha ocHoBaHMM 3TOr0 J0Ka3blBAeTCsl, UTO OTHoCsWascsa K P makcu-
masnbHasi Koppensuus S*(&, 7).
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