CONTRIBUTIONS TO THE PROBLEM OF MAXIMAL CORRELATION!
by
Pérer CSAKI and Jinos FISCHER

Introduction

The classical indices of bivariate stochastic connection are far from being
perfect. The maximal correlation may be regarded as a good measure of the
correlation in its broadest sense, i. e. the intensity of stochastic connection.
This paper aims at giving some contributions to the approach of the problem
of maximal correlation.

In this paper our notations of [1] will be used. A short survey of the main
notions used therein seems desirable.

Let & and 7 be arbitrary measurable functions defined on the probability
space (£2, S, P) and S; denote the smallest o-algebra with respect to which
& is measurable, further L2 = L* (2, S, P). The subspace of L2 consisting of
its elements with zero expected values will be denoted by L2,. Naturally,
S,, L} and L}, can be analogously defined. The symbol Aé denotes the
operator of the orthogonal projection of the elements of Lz, on L}, (condi-
tional expected value, i. e. regression curve) and A, ana]ogouslv the pr0]ect10n
of the elements of L%, on L2,

Thus the correlation ratlo of a standard random variable { on & is

(0.1) 0(C) = | A¢
the maximal correlation of & and 7

F€ Lo |Ifll=1

g€ Ly, |lgll=1

and the mean square contingency

(0.3) CE ) = [[|Aclll = [ Aqll -
If the number A and the pair of random variables f, g satisfy both
equations

o | {Afg=zf | {féll?,o

Av,‘leg geLE],o,

we call 1 an eigenvalue and the pair f, ¢ a pair of eigenfunctions belonging to A.

1 A previous version of this paper has been read on 7. Sept. 1959 at the
Biometric Symposium (Budapest).
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In § 1 some questions concerning the maximal correlation and the line-
arity of correlation are dealt with. Further a method of solving (0.4) in parti-
cular cases is shown. In § 2 some examples are presented.

§ 1. Maximal correlation and conditional expectation

1.1. Both theoretical and practical considerations make it desirable to
have linear correlation. Thus the problem of linearizing the regressions often
arises. In the following some remarks on this question are given.

Theorem 1. For two standard random wvariables f € L, and g € L}, the
following three statements are equivalent :

1° f and g form a pair of eigenfunctions.

2° 6, (9) =0, (h = (/. 9)-

3° f and g are linearly correlated and 6, (9) = 6¢(g); 6, (f) = 0, (f)-

Proof. Let us suppose at first that 1° holds. Then from (0.1) and consider-
ing the norms in (0.4) 2° follows.

For the second, if 2° holds then as from A;g = A, A, g the inequality
|| Asg|l = || Agg|| follows whence

(1.1) (1:9) < 64(9) < O¢9) ,

— according to our assumption — equalities in (1.1) are obtained. On the
analogy of (1.1) we have equalities in

(1.2) (1,9) < 0,(f) =0,(/)
as well.

Equalities on the left side in both (1.1) and (1.2) imply the linear correla-
tion between f and ¢ while those on the right side the other assumptions of 3°.
Finally, let us consider 3°. The linear correlation provides A,g = Af.
On the other hand, 6;(g9) =0,(9) implies A;g =A;g, with respect to
Arg =A;A;g, as the norms of a function and its projection may equal only
if this function is a fix element of the actual projection A;. From the above

A& g= A f o
Similarly
A f=2g
i)

and so we obtain 1°.

As 2° has been deduced from 1°, 3° from 2° and 1° from 3°, our Theorem
is proved.

It is noteworthy that the linear correlation between the members of a
pair of eigenfunctions was already pointed out by H. O. HirscareLD [2] for
the finite discrete case.

Corrollary. If the standard random wvariables f = f(&) and g = g(n) are
linearly correlated further f(x) and g(y) are univalent functions then f and g form
a pair of eigenfunctions.

Proof. In consequence of the univalence L% = L% and L} = L2, 3° of
Theorem 1 is satisfied, thus 1° holds, too.
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1.2. The distance of the standard eigenfunctions belonging to the maxi-
mal correlation, turns out to be 2(1 — S(&, n)) as if fe€ L2, g€L2, are
standard variables, then '

f—gl*=20—-(9),

hence

(1.3) inf  [f—glP=2(1— sup (fg)=2(1—SEn).
fELE, |Ifl|=1 TELE,, |If]|=1
g€ Ly llgll=1 8€Ly,,|lgll=1

Let the preceding infimum problem be modified as

(1.4) inf ||f—Ag|t= inf (1 —2A(fg)+A2)=1—S%& )
F€LL |IfI|=1 fELL,, |If]]=1
8€Lj0|lgll=1 g€ Ly, |8ll=1
—oo<lAlw — il o

Obviously the infimum in (1.4) is lower than in (1.3) save the case S(&, 7)) =1,
when they coincide.

It is evident from (1.3) that S(&, ) = 1 holds if and only if the distance
of the unit-spheres of L?, and L2, equals zero. This case may be treated
in four subcases, namely:

a) The unit-spheres are disjoint (example see in [4]). Here maximal
correlation is not attainable (supremum but not maximum in (0.2)).

b) Both differences of the unit-spheres are non-empty sets. Now f(&) =
=g¢(n) holds but both f(z) and ¢(y) have to be non-invertible functions.

¢) One of the unit-spheres contains the other. Now one of & and 7 is
a non-invertible function of the other.

d) The unit-spheres are coincident (L%, = L2,). This means that &
and 7 are univalent functions of each other.

The relation

GW(C) < 040) for all € L?

is necessary and sufficient for n = f(§) (cases ¢) and d)) as follows from a
theorem, see e. g. A. C. ZAANEN ([5], p. 250).

1.3. The value of (1.4) is equal to the mean conditional variance of the
pair of eigenfunctions belonging to the maximal correlation, as

(15) inf||f— Af|*= inf (1 —[|Af[? = inf (1 —63/)) =1 — %, 7).
foits it ffiita

For practical purposes the homoscedasticity (constant conditional variance),
i. e. for standard { the relation A; (2 — (A ()2 =1 — 62 ({), is desired. As
to this we can state

Theorem 2. For the linearly correlated standard random variables & and
the following statements are equivalent :

1° & and n are homoscedastically correlated.
2° 22 1 and 2 — 1 form a pair of eigenfunctions belonging to (&, 1)3.
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Proof. Both A, 7 = (&, m) & and A, § = (&, 1) n are true. Let us first
suppose 1°. From this

[ A — ()P E = A — (AP =1—6in) =1 — (&,9)°
| A, 82— (EmP P = A8 — (A 6P =1—0%E) =1 — (&)
which implies

(1.7)

(1.6)

{ Adnp® — 1) = (& 9?2 —1)
A (& —1)=(En)?(—1).
Conversely, from the linear correlation and (1.7) by (1.6) 1° follows.

Corrollary. If the correlation of the standard variables & and 1 is both linear
and homoscedastic, further if 0 < | (&, m)| < 1 then the third moments of & and
7 vanish.

Proof. According to Theorem 2 (&, & —1) = (n, 12— 1) =0 since
eigenfunctions belonging to different eigenvalues are orthogonal, and thus

M(&%) = M(¢) =M(7?) =M(n) =0.

Remark. In case of the bivariate normal distribution the conditions of
Theorem 2 and the Corollary are evidently fulfilled.

1.4. The calculation of the value of the maximal correlation is in general
rather complicated and practically intractable. In special cases however,
— as will be seen in the following — it can be managed fairly easy.

Let @, @s, ... TeSp. ¥y, ¥y, ... be linearly independent systems in the
spaces L%, resp. L} . In this case we have the following

Theorem 3. The functions

n n -
(1-8) fnzzakn(pk’ In— S‘allcn"/"k anna;m:lEO; n=12,...
k=1 k=

—

are the eigenfunctions of the pair of operators A, A, if and only if such coefficients
b, and by, exist that

n n
(1.9) An(pnz 2 bknwk’ Af’/’nzzb;n"hf n=12,...
k=1 k=1

and in this case the appropriate eigenvalues are

(1.10) Ay =10y Opn » n=1,2,...
moreover, for the coefficients a,,, and ay, the equations
n n
(1.11) S bt ="40in, 3 bytin = Ana, =1 e =124
k=t k=i
are fulfilled.

Proof. If the functions (1.8) are the eigenfunctions belonging to the eigen-
values 4,, that is

A fn=12,9, and A.g,=4,]f, =L, 2, e
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then
n n ;
> A An Pr = }'n 2 Qen P
k=1 k=1
and

knA£1Pk i j’ 2akn(pkr

Tw:

this shows that both A, ¢,, and A;y, are linear combinations of y,, ..., v,
TeSP. P15 « - -y Ppe Formulae (1.11) result from the linear 1ndependence of the
systems {g¢,}, {v,}, wherefrom for i=n a,,b,,= A,a,;, and a;, bpn= 2, an,
which implies (1.10).

Conversely, if (1.9) and (1.11) hold then for the functions (1.8)

A fn akn n(pn 22alm 1k1/’1‘—22akn lkwl_‘}‘ 2amw1_lngn

L—l i=1k=1

and similarly A.g, = 4,f, where 2, = |b,,b,,, thus our statements are
verified.

If {4, } provides all the non-zero eigenvalues then — in case of maximum
n (0.2) —

S(E: 7) = max Vbnn brlm
holds. n
If the joint distribution is symmetric in its variables the equalities
(1.9) and (1.11) reduce to a;, =a,, and by, =b,,, consequently A, =b,,.

Corollary. This theorem may be applied if the linearly independent functions
can be chosen so that

Pp=E"—MENELL,, v,=u"—M@"eLi, n=12,...

In these particular cases, our Theorem implies that the eigenfunctions are
polynomials if and only if for each n the nth conditional moment is an at most nt-
degree polynomial of the conditioning variable.

In consequence of Theorem 3 the eigenvalues can be found without any
further computation and the coefficients of the eigenfunctions can be deter-
mined from a linear system of equations provided that in both spaces L2,
and L? ; respective systems of linearly independent functions are known such
that their conditional expected values can be written in the form (1.9).

§ 2. Examples

Some examples of calculating the maximal correlation will be presented.
The following symbols will be used:
h(z,y) for the joint density function of & and 7,
hy () for the density function of &,
hy (y) for the density function of 7,
1 (x| y) for the conditional density function of & on 7,
o (¥ | @) for the conditional density function of # on &,
Pir for the joint probability of & =i¢ and n =%,
P for the probability of & =7 and
Y for the probability of n = k.
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1. In this example the maximal correlation coincides with the correlation
coefficient. Let be

0g — :
l1—2)y

log; = y=a<l
z(l —y)

In this case the joint distribution is symmetric, i. e. A(x, y) = A(y, x). Hence,
one-sided treatment of the problem is sufficient. Now

h(2) =1 N=x<1

O=r<y=<1
M, y) =

and
hy (x| y) = h(x, y) =sz< 1 0 =<y < 1.

Therefore, using Theorem 3

n

1 1 3t
k.0 e »1 sl St
ns n+l(n+1+ z) "

i=1

and
el 1
n(n + 1)

The functions &% — M(&") form a complete system of linearly independent
polynomials in LZ%,. Thus {4,} is the set of all eigenvalues, from which we
obtain

}‘n = bnn

1
S(g,n)=zl=?

2. a) Trinomial distribution.

N! i |
i = £ Li— = N——l—k,
Pi i!k!(N_i_k)!plpz( P1— Pa)
where ipj =105 P> .05 iy Fopee< L =10, Do s oNE =100 20 N
i + k < N. Then the marginal distributions are
pl:[]j]pi(l_pl)N_! i:O’l"'-’N’
N
p.k:(k]p’z‘(l—pz)"’—" B0
and the conditional distributions
R e g e
Dy i 1 — p, 1—p, '
&:[N_{ ( B fR=Br BT e I
p;- E)Jl—plt 1—p '
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Now applying Theorem 3:

. P
A" = a;
X
j=21 jnl—‘Pl

where a,, = 1; thus the eigenvalues are

1 )j(N—n)(N—n—l)...(N—n—j—{—l) O
2

BT ST AR R LT mel

n
2
s _1_’11’2—] b s e
(1 —p)(1—p,)
and the maximal correlation is
S(£, ) l/ P1p2 o
L—p)(1—py)
b) Trihypergeometric distribution.
(N1‘ N.,)(N—N,— Nz)
O n—1i—k
o= N il
n
where n, N;, Ny, N are positive integers, N; + Ny < N; ¢ =0,1, ..., n;
k=0,1,...,n; 7+ k < n Similarly to a) we obtain the eigenvalues
1
N—N,—m |A — N, —m))2
1 e Nz——m A —m )
B )

and especially
[T NNy,
S =k = | BT
S 7 A A

2

o % result for S(&, 1) in the same formula as obtained in a).

p_ﬂ
LA

3. A case of S(& ) = C(&, ).

Let us consider the symmetric density function

(2.1) MA@, y) = p,a(@) a(y) + p. [a(@) b(y) + b(x) a(y)] + ps b(z) b(y)

where a(x) and b(z) are linearly 1ndependent. For sake of simplicity let us
suppose that a(z) and b(z) are density functions, further p, > 0, p, = 0,
ps = 0 and p; + 2p, + p; = 1. Then

hy (x) = pa(x) + gb(x) P=p+ P ¢ =P+ Ps-
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The construction of k(z, y) allows at most one non-zero eigenvalue, whence
S(& m) = C(&, 1) .
C2 (&, n) being equal to the square-integral of

Mz, y) — @) h(y) _ p alz) —bl@) = aly) — by)

where P = p, p; — pj,

h@ hy)  Vpa@) + @) Vpaly) + ably)
we have
C(,n) =|P| J k"(_x)__b(“ﬁ),]?dx: Ui”l_ J de}.
) pa(@) + gb(w) pe | J pa(@)+gbla)
Therefore
Plf,_ [ g(e@ b
(2.2) S(, ) = J (49 22 g\,
p o4 (2q" 2
where H(z, y) = , the related eigenfunction being g k) s
A pa(z) + gb()
x
In the particular case p, =0, we have
SEn)=1— f H ‘M,W))dz
K 2p;s 2y
and in case p, :% oy =ps =10
S, n)=1— S H(a(), b(z)) dz .
Let us consider now
a) an example due to A. RENYI ([3] p. 317), where
xl yl
Mz, y) = '(VQ e 2—e)e v+ (J2e 2 — eV)ex).

In this case the marginal distributions are normal and have the density
functions

x2

(@) = hylar) = ﬁln =

They are uncorrelated, but not independent. In this example p, = p; =0,

1
By = SHG

1 -5 . o
ax)—ﬁ(l@e 2 _e¢), blx)= i
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hence

-]

2 o 2
S(&, =1—I/-—J Be*'g )dp—-— 1401547,
(& m) - (V2e e ?)da 73

b) A further simple special case:
ha,y) =4pray +2p (@ +y) +p; 0<2<L0=<y<]l,

a(x) — 2z, b= 1 0

T

.

a-1

where

IIA
R

lIA
[

/-a

N
7/

\
~a

2

Figure 1.
the maximal correlation is

|
S(&, 1) — f}‘ (arth p— 7).

E.g ifh(z,y) =x+y or h(z,y) =2zy + ~;~, then

S(& n) =log3 — 1 A2 0,0986 .

¢) Anexample where the parallelity between the intensity of connection
and the value of the maximal correlation is manifest.
Let us consider a domain 7' consisting of two squares of unit area

[-1Zz<0;a—1<y<aland (02 <1, —a<y<1—a]

where 0 < aé% (see Fig. 1) and let the joint distribution of & and 7 be

uniform in 7. This may be transformed in a symmetric distribution with density
function of type (2.1)

£

B5) Iz, y) = j h(x’;)-gy—’t) dt

—
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The eigenvalues of the joint density function (2.3) are the squares of
the original ones (see [1] (2.18)).
In the present case
o l—a

p=m=—"" m="; a@®=1 —1<z<0 bdz)=1 o<zxl.

Thus by (2.2)

hiu
S(Eﬂi)=l/%=l/1—2a-

4. An example for multiple eigenvalues. (See A. C. Zaanen [5] p. 539.)
Let us consider the symmetric joint density function (generating a completely
continuous operator)

h(z,y) = k(x — y) 0< o< 2w, 0=<y<2n

where the function k(x) has the following properties: k(x) = 0 with period
2n

27, summable over (0,27) and J k(x) dx :—21—, further k(—z) =%k(z). Then
2
0

hl(x)zfl— 0<z<2m
2n

and
hh(xly) =2nkz—y) 0=<2<2n 0xy<2nr

Now the eigenvalues are
25
Ip=2n | k) cos nzdx n=1,2,..
0
and the respective eigenfunctions
fu=cosné, f,=snné w=1,2,...
i. e. the 4,-s are double eigenvalues. Therefore
S(¢, ) = max |4,].
5. Let the domain 7' be defined on the plane [z, y] by
T ={=y):|z| +|yl"< 1} p>0,9>0

and let &, 7 be uniformly distributed in 7'.2

2 This example is the generalization of P. BArTrAr's unpublished solution for
=g =5
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We shall see that — in case p = ¢ — to the narrower 7'-s higher maximal

correlations are attached. Now,

Az, y) = % for (w,y)€T,

where
1 (1—y2)p 1

4+

t:jfdxdy:alj [dmdy:zif(l_yq)%dy:_]g{l,l+1),
’ : g g’ p

0 0 0

1

xIPe ylP- 1

Figure 2.

The density functions of the marginal distributions are

1
() = % (1 — ||y

z

and the conditional density functions

hl(xl?/) = . 3
2(1 —|y|9?

1
hoy ) = ————
2(1 — |z |P)e

c 1
h(y)}j(l — |yl

|1,

ly|<1

1
el =@ -y, |yl=1,

ly| = —|zPy, @] < 1.

Let us choose the linearly independent functions (see Theorem 3) as

(pnzlflpn'— M(lé"pn),

7 A Matematikai Kutat6 Intézet Kozleményei V. A/3.

Yo =|7]" — M(|n|™) n=1,2,...
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Then as results from
1 (vl
[lephelpde= 2 | emas=_Zoa—|yr,
K. (X — |y o i
we have
A= A== MU, Ay=_

consequently

(L —[&]P)y* —M(|n[*™)

)
pn—{—l = qn + 1

nn

whence the eigenvalues are
1

" Yen+1) @et )

The eigenfunctions belonging to such eigenvalues do not by all means form
complete systems and thus C(§, 7)is to be determined. These are, however,
all the non-zero eigenvalues as

Hc%mzﬂ R “ Iij:lly—w ;

1 (l—w’

dxdy e 1 ; 2(_1),, .'—;} o da dy —
A—lelpa—lypp |a—gpp | = .
0 0

= n 1 n —
= (> (—A) +1(1—.1/‘1)dy—

n=0

_2 pn+1)(qn+ 1+§1?"

where binominal expansion and beta-function were applied. Accordingly, the
maximal correlation proves to be

S(&, ) = max : — = .
n Y(pn+1)(gn+1) Vip+1)(g+1)
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and the related eigenfunctions

1 1
=B et s T
h=|¢| Do g91=|n| g+ 2

It is to be noted that in this example:

a) the correlation coefficient as well as the correlation ratios vanish.

b) in calculating the maximal correlation — if it is attainable — &
and 7 may be replaced by | &£ | and | 7|, respectively, if and only if to S(&, )
there belongs a pair of even eigenfunctions. Consequently, the domain 7' may
be reduced e. g. to its upper half or even to its positive quadrant without alter-
ing the value of the maximal correlation.

(Received April 28, 1960.)
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3AMEUYAHHME O NPOBJEME MAKCHUMAJIbHOH KOPPEJISILIUHA
P. CSAKI u J. FISCHER
Pe3iome

Pa6ota 3aHMMaeTcs MaKCMMasbHON KoppeJsiliel, sIBJSIIOILEHCS CO MHO-
I'HX TOYEK 3pEeHHUs1 HauJlyyllled Mepo Cuiibl cToXacTHueckoi cBasu. B § 1 naworces
Heo0XoMMble M J0CTATOYHbIE YCJIOBUSI TOro, yroObl CTaHJApTHBIE CIyyailHbie
BeJMuuHbl f = f(§) m g=g(n) Obun Mapoit cobcTBeHHBIX QYHKIMIA Napbl onepa-
TopoB A u A, (reopema 1). B janbHeifiem Xapaxrepusyercs ciyyaif
S(§, n) = 1 u naercs HeoOXoauMoe U J0CTATOYHOE YCJIOBHE TOr0, 4T00BI 7 Oblia
Gynxuueit or &: 0,(8) < 04C) nns Beex § ¢ KoHeuHoit aucnepcueit.

H1s1 ciyyast B3aMMHO JIMHeHHOHN perpeccuu aaeTtcst HeoOXoauMoe U JlocTa-
TOYHOE YCJIOBME TOTO, YTOOBI M yCJIOBHAs AMCIepCHsi perpeccuit Obl1a IMOCTOSIH-
HOM (Teopema 2).

Kpome Toro jaercst MeTojl BbIUMCIIEHUS] COOCTBEHHBIX 3HaUeHUH U PyHK-
UMiA napel onepaTopoB Ag, A, B TOM Cllyyae, KOIrjJla M3BeCTHbI JIMHeHHO He3aBu-
CUMBIE CHCTeMbl QYHKUHUH @), @, ... U P, ¥,,... BeJHunH & U 7 C KOHEYHOI
aucnepcueif, yrosnersopsiomux (1.9) (teopema 3). B KauecTBe creuuasibHOIoO
clyyasi 1oJjiyyaercsi, yTo co0CTBeHHbIe YHKUMM B TOM U TOJIbKO B TOM Cllyyae
MHOTOYJIEHBI, €CJIM 7-bie YCJIOBIble MOMEHTHl CYThb MHOTrOWIEHbl He BbIle n-0if
CTeNeHH YCJIOBHOM BeJIMUMHBI.

B § 2 npuBojuTCs psifl IPUMEPOB BBIYMCIIEH U 1 MAKCUMAJIBH O KoppessiLuy.

7*



	5. kötet / 3.sz.�����������������������
	CSÁKI, P. - FISCHER, J.: Contributions to the problem of maximal correlation�����������������������������������������������������������������������������������

	Oldalszámok������������������
	325����������
	326����������
	327����������
	328����������
	329����������
	330����������
	331����������
	332����������
	333����������
	334����������
	335����������
	336����������
	337����������


