EVALUATION OF INTEGRALS BY MONTE CARLO
METHODS BASED ON THE ONE-DIMENSIONAL RANDOM
SPACE FILLING

by
GeorGE BANKOVI

§ 1. Introduction

The fundamental problem. In paper [1] A. RENYI solved the following
problem. Let us place at random on the interval (0, z) successively unit inter-
vals, the left endpoints uniformly distributed on the interval (0, x — 1), but
discarded if the new interval intersects with one of the previous intervals.
The procedure comes to an end when no more “free interval’”’ longer than
unity remains. M (z) denotes the expectation of the number of unit intervals
thus placed. M(x) satisfies the functional equation

X

) Jll(x—{—l):zJ‘ M) dt +1 (@ > 0)
1
0
and the initial condition
(2) M) =0 for z < 1.
It is proved that
(3) lim Jexp[ i du] dz .
X—>—+ u
0

The fundamental idea of this paper. The model described above is a very
special case of the random space filling. There are various ways of generali-
zation by modification of the placing procedure. This paper deals with gene-
ralizations in direction of Monte Carlo methods resulting in procedures for
obtaining the approximative value of integrals of type

(4) Iig} = 59 exp( j g(u) du)dz.

Before a specified discussion we wish to mention in the following section two
general Monte Carlo methods applied for the evaluation of integrals (see [2],
[3], [4])-

Two general methods. a) A general Monte Carlo method applied for
evaluating is as follows. We wish to evaluate the integral
(5) 1= f h(x) dx

D,

339
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where D, is a domain in n-space and z is a vector. Let & be a random vector
variable with density function f(z)

(6) { f(@)de =
Dy
(f(x) = 0 (x € D,,), and equality can hold only for h(x)=0); letz,, z,, ..., 2y

be independent "Observations concerning the values of & Then the random
variable

N
0 =1 i)
‘ N & f@)
is an unbiassed estimator of 7, i. e.
(®) ES) = [ 2D jeyaw =1,
f(z)
Dy
and
h(z)
9) = J — 1| f@)de.

b) An other method is the followmg: It can be assumed without loss of
generality that 0 < h(z) < R. Let us define two random variables & and 7
uniformly distributed on D, and (0, R), respectively. Let (&,, %), (&5, m3), .. .,
(&ns my) be independent pairs of observations concerning the values (&, 7)
and s; a set of randcm variables defined by

(10) g "“s’” =18 e
if (&) >n;
Then the random variable
RmesD, &
(11) S = NJZS,
j=1

is an unbiassed estimator of I and
I(Rmes D, —I)

(12) D%(S) = 7

Several Monte Carlo techniques applied for evaluating integrals are
simple modifications of these methods.

Natural models. The great advantage of the methods mentioned above
is their general applicability, i. e. theoretically almost every integral can be
evaluated by these methods. Considering the goodness of these methods
their great generality is not always tavourable; it seems that the probabilistic
models are related to the operation of integration but not the nature of the
particular integrals considered. We shall call such models artificial models ;
while models having a close connection with the nature of the problem will
be called natural models. The field of applicability of the natural models is in
general smaller than that of the artificial ones, but the natural models (if
their application is possible) come up to the non-probabilistic approximative



EVALUATION OF INTEGRALS BY MONTE CARLO METHODS 341

methods in such cases too, where the application of artificial models is obviously
unfavourable. In this paper a class of natural models is connected to a class
G of functions; by realization of these models estimates for the integrals
I{g} are obtained. Integrals of this type occur e. g. in the solution of Riccati
differential equations (see [5]).

In applying artificial models or numerical integration as well the sub-
stitution in the integrand cannot be avoided; if the integrand is a complicated
function (e. g. it consists of a large number of terms) this circumstance causes
difficulties. These difficulties can be eliminated by applying natural models.

We wish to remark we regard the results of this paper only as first
steps in this direction and our further investigations will aim at finding other
types of random space filling models connected to certain problems of analysis
(solution of differential equations, integral equations, etc.).

§ 2. A simple model

In this paragraph the procedure applied by A. Rényr is adapted to a
simple modification and generalization of his model. Our model (in a special
case) does not differ from the fundamental model in its limiting properties
and it is convenient for theoretical and numerical computations.

Let &y, %5, ..., @y, . .. be observations of a random variable & uniformly
distributed on the interval (0, z) and let us place in these points weights in
accordance with the following rules:

1° In the point z; we put a weight w(z) (where w(x) statisfies conditions
to be determined later); the argument denotes the length of the ““free interval”
containing the point ;.

2° We establish a <prohibitive interval” with the endpoints z, — a,
2, + b, where a and b are positive numbers.

3° We “multiply the free intervals” (0, x, — a) and (2, + b, ) by the
positive constants ¢; and c¢,, respectively, in the sense that all weights (deter-
mined by the values of the function w(z)) falling subsequently into these
intervals must be multiplied by these constants.

4° The point @, is discarded if it falls into the prohibitive interval;
otherwise it is placed.

5° If the point @, is placed we put in z, a weight the value of which
depends on the length of the free interval containing z,.

6° A second prohibitive interval is established with the endpoints
Ty — a, Ty + b.

7° We multiply the two new free intervals by ¢, and c¢,, respectively
(i. e. the new intervals are multiplied by one of the values ¢}, ¢, ¢y, ¢3). Evi-
dently where a new prohibitive interval intersects with one of the endpoints
of the interval (0, #) or with one of the previous prohibitive intervals no new
free interval comes to exist.

8° If the point @, falls into one of the prohibitive intervals it is discarded;
otherwise it is placed, and so on.

9° The procedure comes to an end when the interval (0, ) contains
no more free intervals.

This method of the random space filling will be called strategy A.

The sum of the weights put thus on the interval (0, x) is a random
variable; let us denote its expectation by m(z). Considering that the points
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are uniformly distributed on every free interval, it is easily shown that m(x)
satisfies the functional equation

(13) m(x):C—ljm(t—a)dt+9%Jm(x—t—b)dt+w(x) (@ > 0)
’ T X
0 0

and the initial condition
(14) m(x) =0 for 2:=.0.

In the following we are giving a limiting relation for the quotient m(z)/x.
Let be in (13)

(15) wx) — (n=0).
In the following only the properties that w(x) is a positive function

(0 < < + oo) and that the Laplace-transform of di(w w(®)) exists, are
i

utilized.
Multiplying (13) by 2 and taking derivatives we obtain

(16) m(x) + xm'(x) = ¢; m(x — a) + ¢, m(@ — b) + (n + 1)a".
Multiplying (16) by e~ $* and integrating with respect to  from 0 to oo:

T m(z) e—*dx | f xm/(x)e-Fdr =
0 0

am . .
1
=, Jm(x —a)e—*dx ¢y J m(x — b)e—*dzx + M )
gntl
0 0
Introducing the Laplace transform
(18) p(s) = T m(x) e—*dx (Res > 0)
0

equation (17) obtains the form

Pl —bs  I'(n+2
(19) Pl0) + gl BT E R TEER .
8 n+
In our further considerations the following three lemmas are applied:
Lemma 1.
(20) lim ¢(s)=0,

S>>+
where @(s) is defined by (18).

Proof. It can be seen by simple considerations that there exists a constant
K depending on @ and b only so that the number of points resulting from
strategy A is not greater then Ka + 1; thus

(21) m(x) < L(z) (Kz + 1) 2"
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where

(22) L(z) = (max (c,, €5, 1))Kx+1,

From (21) considering (18)

(23) o(s) < | L(2) (K + 1) 2" e~ da,
0

and from this fact the statement of the lemma follows.

Lemma 2. (See [6] Theorem 108 and [1].) If a(x) is a monotonically
increasing function (0 < € < 4+ <o), f > 0 and

(24) lim &f Fe—sxd ax)=0;
s~+0
then
(25) ' PG
—+e 2f  T(f+1)

Lemma 3. The function m(z) satisfying (13) and (14) is monotonically
increasing (0 < & < + oo) for the weight function (15).

Proof. Let us arrange the numbers a, 2a, 3a, ..., b, 2b, 3b, ... according
to their order of magnitude and denote the elements of the ordered set (discard-
ing the duplicates) by 0 < a¥ < a% < a% < .... It follows from (13)—(16)

x—a xfb
xm'(x) = ¢, |m(x —a) — L J m(t) dt] + ¢, [m(x— b) — ] j m(t) (It] + na".
& @
(26) 0 0
From (14) and (26) it follows that
(27) mi(z) =0 for O0O<z<af-:

Equality holds only for » =0.) Assuming that

(28) mi(x) =0 for 0<z<a} (k=152 50
(and so m(z) is monotonically increasing in this interval), it is shown that
(29) m'(x) >0 for af <z <afy,.

Namely if f(x) is a monotonically increasing function in the interval (0, z,)
then for all values of 0 < z < z,

(30) fla) — L [1yae=o,
& .
0
and as
(31) PR TIRr . J B Sl ) i D J mit)dt
@ xrx— a
0 0

(a=a or a=b, a<xvZaf-ta),
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considering (26) the statement of the lemma holds. By an analogous induction
the monotony of the function m(x) can be proved in case of more complica-
ted models as well.

Solving the equation (19) under the initial condition (20) we obtain

© 4

T(n+2)J‘ exp Jcle_a“ _{.._Cze—~bu _(n+2) du dz'

(32) P(s) = BT p

S s

Applying Lemma 2 (and Lemma 3) with a(x) =m(z), f =n + 1, and con-
sidering that

(33) § e=sxdmia) = s g(s),
0
we obtain
-] 2
—au —bu __
(34) ff, :fexptjcle ik Uit e o) 35 ) R
X>tow T ; ; u

Obviously only the case ¢, + ¢, =n + 2 deserves attention as other-
wise the value of the integral in (34) equals either 0 or +4 oo. This model is
advisable only for integer values of n, as otherwise a modification given in
§ 3 is more suitable for computations.

Connection between the functions M(x) and m(z). Let us consider the
special case of

(35) o =b—6f—c3=1 and n =0;

thus the value of m(z) is equal to the expectation of the number of points
placed and we denote it by m(z). Substituting in (34) we obtain the expression

9 J l—e¢t s
u

0

dz .

(36) lim ) — Jexp
X—+ o x
0
The function M (z)/z in [1] converges to the same limit.

This fact and the circumstance that RENYT's placing procedure is similar
to strategy A in the case of (35) (namely the restriction, that the unit intervals
must not intersect with one another, means in our terminology for the left
endpoints of the subsequent unit intervals the extension of each of the unit
prohibitive intervals already placed with a further unit to the left), suggest a
close connection between the functions M(x) and m, (x). Indeed the
following lemma is true:

Lemma 4. The function my(z) is identically equal to M (x + 1).
Proof. It follows from the initial conditions (2) and (14) that
37) myx)=M(@x+1)=0 for <0
and obviously both functions satisfy the following equations:
(38) my(x) =M@x + 1) =1 for 0=z =< 1.
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Let us suppose that the statement of the lemma holds for all * < x, — 1-
From this assumption it follows that

X

X
(39) EJ M(t)dtng myt —1)dt for @ < a,,
x X

0 0
and thus considering (1), (13), (15) and (35)

(40) M@ + 1) = my(z) tor T < x,.
The proof is completed by induction.

§ 3. Some further examples

In this paragraph some tricks are described by the aid of which the
value of 7{g} can be evaluated for various g € G. The according models are
modifications of Model 1. The index » of the function m,(z) characterizes the
model in question. We remark that per definitionem

(41) my(x) =0. for <0 and for all ».

Analogous lemmas to Lemma 1 and Lemma 3 can be obtained by simple
modifications of the proofs.

The models described below must be considered only as illustrative
simple examples; further models can be obtained by the combination of these
and the introduction of new tricks in the placing procedure. In practice if an
integral similar to one of those occuring in the known models is given the
problem arises how to find a model corresponding to this integral.

A simple modification of Model 1. The model described in § 2 is appli-
cable by a simple modification to evaluate 7{g¥}, where

L
Sefew—(n+2) :
j=1 -, @pcf>0(j=1,2,...,7) and gcj:n+2.

gi(u) =
(42)

In this case (if we denote by ¢ the place of the first point) we consider the
intervals (0, t —a,), (0,t—ay), ..., (0,t—a,) as free intervals, multiplied
by c¥, ¢¥, ..., ¢f respectively (instead of considering the intervals (0, t — a),
(t + b, ) multiplied by ¢, and ¢,, resp.). Denoting by m*(x) the expectation
of the sum of weights placed in this way we obtain the equation

u

X
r

(43) m¥(x) = é Z cf J mi(t — af) dt + 2" (xz > 0).

j=1

Making use of the method described in § 2 we obtain from (43)

(44) iy PO gow

X—>+ xn+l
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We wish to remark that applying the weight-function
(45) wlx) = 22 (0= a<n),
the result is modified in the form

(46) lim el = jz“ exp fg’f(u)du dz.
0

Yot xn+l

Mized strategy of placing. If in the function

—au =k
cre %4 cye Y

u

(47) gq(u) =

(¢, +ca=19)

1 < y < 2 holds the evaluation of I{g,} by the aid of strategy A meets theo-
retical and practical difficulties as the weight-function 2" (— 1 < n < 0) has
a singularity in 0.

The problem can be simply solved however by introducing a new stra-
tegy of placing called strategy B.

Strategy B consists of the following rules:

1° In a “free interval” (0, x) a point ¢ is placed at random. Thus the
interval (0, 2) is divided into two parts.

2° The intervals (0, ¢) and (¢, ) are multiplied by the positive constant
¢y (in the sense mentioned in § 2).

Evidently strategy B cannot be applied alone but the mixed strategy

(48) C=pA+gB

(i. e. every move of strategy C represents either a move according to strategy
A or the application of strategy B with probabilities p and ¢ =1 — p, resp.)
is suitable for our purpose.
In this manner we obtain the equation (modification of (13))
X X

my(x) = ?-C;i J~ my(t) dt + %B J‘ml(t —a)dt + %’ J my(t — b) dt + pa"(@ > 0),
0

(49) 0 0
where
(50) =0, nt+2=cptcap+ 24¢

and m, (z) denotes the expectation of the sum of weights which can be placed
on the interval (0, z) according to strategy C. Using the method described
in § 2 we obtain from (49)

- 'z — —au __ —bu
(51) lim TLxl):pI{gl}:p fexp AyJ Ll L Y2 7 qu | dz,
x>+ gt " uw
0 0
where
G g
(52) ylz%, y2=27p, y=(c;+ec)p=n+2—2¢4q.
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We wish to remark that the value of I{g,} is equal to + o if ¥y < 1. This
fact can be shown integrating by parts.
In the special case (35) a modification of (36) follows from (51):

ml(m

(53) lim e exp ‘_2;; Jl

=

X—>+ o

This method is of advantage tor not integer values of ¥ since in this
case n can be chosen as an integer. Theoretically the placing procedure may
consists of an infinite number of moves; but this event has probability zero.
In practice the procedure always comes to an end as instead of intervals a
finite number of points is considered.

Case of small intervals. The value of m,(z) can be exactly computed
for 0 < @ < min (a, b) i. e. in this case by derivation of (49) and considering
(41) the linear differential equation

1—2
(54) mi@) + % my(@) — pln + 1"t =0

is obtained.
Solving (54) under condition (41)

p(n +1) o

55 SRR SO IR
(55) LT e e

(0 < 2 < min(a, b))

follows. Making use of this result the experimentation can be simplified
(see § 4).
Model 2. In this section a method is described for evaluating 7{g,},

Zd w—J e~ — (n + 2)

wr+1

(56) golu) =
where

(67) r a positive integer, n 2 7, a;,d; > 0(j=0,1, ... ,r),‘}irél go(w) finite.

For achieving our purpose we must introduce a new trick in the placing
procedure. If the first point falls in ¢ we consider the intervals (0, ¢ — a,),
(0,t — ay), (0,t —ay), ..., (0,t —a,) and multiply them by d, d,(x —1),
do(@ — 8)2/2), ..., d,(x — t)"/r!. In the following a branching procedure is
carried out so that instead of the interval (0, #) each of the intervals (0, { —a))
(j=0,1, ..., r) is considered.

Applying the weight-function

(58) w(x) = 2" (n>7)
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and denoting by my,(@) the expectation of the sum of weights thus placed in
the interval (0, ) we obtain

(59) my(z) = L 2’ (? J(x — tY my(t — a;)dt + 2" (x> 0).
z 3

Deriving r times and making use of the method described in § 2 we obtain

(60) L IAY

x>+ gntl

Model 3. Let be
(m+2)kge e + ke + kyeb" — (04 2)

61 u) =

(61) 20 e

where .

(62) n=0, a,b,d, ky, kb, ky>0, ky <1, lim gy(u) finite.
u—0

For evaluating /{g;} a new trick must be introduced. Let us define a
strategy of placing D as follows:

1° The free interval (0, z) is divided by the point # — d into two parts.
The interval (x — d, ) is discarded.

2° In the point # — d a weight 2" is put.

3° The interval (0, z — d) is multiplied by the positive constant ¢, (in
the sense mentioned in § 2).

The expectation of the sum of weights (denoted by mg(x)) placed on
the interval (0, ) by applying the mixed strategy

(63) E=pA4¢D
satisfies the equation

X X

(64) my(@) = ¢ gmy(x — d) + %ﬁ J my(t — a) dt + %ﬁ 'f my(t — b)dt + 2"

9 9 (x> 0).

From (64) in the manner mentioned before (choosing ¢, ¢,, ¢,, p in such
a way that coq =ky, ¢, p =¥k, cap =%,) the relation

(65) B ) I{g,}

x>+ gntl 1—k,

is obtained.
Model 4. In this section a trick is shown by the aid of which the integral

(66) I(v) = fo exp(— vz + _S'Z g(u) du)dz (v> 0)
0 0

can be evaluated for g € G.
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Let us consider as an example the model described in § 2. Strategy A
is modified in the following way:

1° The constants ¢, and ¢, are replaced by xc—li-xv and 2% respecti;/ely,

x4+
where & denotes the length of the free interval divided by the point ¢, and
v is a fixed positive number.

2° Let be the weight-function

ant1

x -+ v

(67) w(z) = (n.=0).

Then the expectation of the sum of weights placed on the interval (0, z)
and denoted by my(x) satisfies the equation

+1
ek (x> 0).

(—bydt+

(68) my(z) = j myt

From (68)

myz) _

(69) lim 2O

X+t I

is obtained.

§ 4. Some remarks and an experiment

Some remarks concerning convergence and variance estimation. In § 3
limiting relations are obtained concerning the functions m,(z). These theore-
tical results can be applied in the following way: a positive number z is fixed.
On the interval (0, x) experiments are accomplished according to the pre-
scribed strategy. The mean value of the sum of weights placed on the interval
(0, x) is an estimator of m,(z). From this mean value and the according limiting
relation an estimator of I{g} is obtained.

Applying this method the results have two kinds ot errors, one of which
originates from the fact that a tinite 2 is considered (instead of + oo); the
other kind of error is caused by the random fluctuation of experimental
results. Theoretically the experimentation on a very large interval is advan-
tageous but practically this is uncomfortable (the repeating of the experiments
on a smaller interval is more advisable). 4

In paper [1] results are found concerning the asymptotic behaviour
of M(x) and the variance of the number of unit intervals placed on the interval
(0, z). According to Lemma 4 these results are valid in case of our simplest
example but for more complicated models the theoretical treatment seems
to be a rather difficult problem. Experimental experiences give the impression
that by the application of an interval of length = 1000 or even z = 100
(when the length of the prohibitive intervals is about unit) only a negligible
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systematic error is caused as compared to the random fluctuations (unless
the number of experiments is unreasonably large).

An estimate of the variance is obtained from the experimental data, the
value of which is biased due to variance reducing techniques. If in the result
an error of some percentages is admissible the application of the described
Monte Carlo methods may be acdvantageous compared to numerical integ-
ration even in case of rather simple integrals.

Variance reducing techniques. There exist various techniques by the aid
of which the amount of labour necessary to obtain a given accuracy can be
reduced. We wish to mention below some of these techniques applicable in
the case of random space filling.

Systematic sampling. In a mixed strategy of placing
r i
(70) : S= ISk |P>0, P =1
k=1 k=1

the strategy of the first move is not chosen at random but determined syste-
matically so that out of N experiments each strategy S, (k =1,2,...,7)
will occur about Np, times.

Stratified sampling. The interval (0, ) is divided into N equal parts.
In the first move of j-th experiment (j =1, 2, ..., N) the point ¢ is placed
at random on the j-th subinterval.

Use of expected values. Let be z, such a value that for every z < 2, a
simple analytical term can be given for my(x) (see e. g. (55)). The placing
procedure consists now of two parts:

1° Reducing the length of the free intervals until the maximal length
does not exceed z,;

2° On these small intervals instead of further experimentation the
exact values of m,(x) are considered.

Result of an experiment. We wished to compare on an example the
results obtained and the amount of labour involved in the Monte Carlo method
and the numerical integration, respectively. Thus we determined the value
of the integral

] z

(1) [ fexp(—l,5j

0 0

22 -
1—e 4

du

in these two different ways. The according Monte Carlo method was based
on the placing procedure resulting in (53) with p = 0,75. We wish to give a
short description of the experimentation.

The experiments were performed on an interval of length z = 100.
Six-digit random numbers were considered (we made use of the table of random
numbers of [7]); The points z;, @,, ..., were marked out by the first four
digits (from 00,00 to 99,99) while the last two digits were used to determine
whether strategy A (from 00 to 74) or strategy B (from 75 to 99) should be
applied.
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On the small free intervals the technique of the ‘‘use of expected values”
was applied. For this model

(72) my(x) = P__ (O<x§ 1,%<p§1]

2p—1

holds. This follows from (55) considering (35) and (50) or directly from the
equation

(73) m,(x) = p + 2 qgm,(x) [0<x§ 1,%<p§1,p+q=l

The mean value of the results of ten experiments gave for I, the ap-
proximation

(74) I,~1,362.
The standard deviation of the experimental results was
(75) o = 0,064

with each obtained value in the interval (/, — 20, I, + 20¢).The realization
of one experiment required about thirty minutes.
By numerical integration we obtained the result

(76) I, =1,345

(where the last digit is uncertain). The determination of this value by means
of numerical computation required by far more efforts than that of the Monte
Carlo method described above. The simplicity of the placing procedures
renders the methods described in this paper suitable for machine work.

The author is indebted to Prof. A. REnvyr for his helpful suggestions
and to I. ParAstr for her valuable critical remarks.

(Received April 29, 1960.)
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PACYET MHTEI'PAJIOB METOJIOM MOHTE-KAPJI0, 0OCHOBAHHbIM
HA OJJTHOMEPHOM CJIYYAWNHOM 3ANOJIHEHHUU NMPOCTPAHCTBA

G. BANKOVI
Pesome

B pabore npejpnaraercst meTo/l NpubJMIKEHHOT'0 BBIUKCIIEHKST HHTErPaioB
BUTIA

o 4
gy = | exp(| g(u)du)dz.
0 0

OcHoBHas HUJesa METo/JAa 3aKJII0UYaeTcCs B cneuylomeM: pacnonomuM Ha UHTEP-
Basie (0, ) TOUKM M TIOMECTMM B 3THX TOUKaX BECHl CJyyaiiHO, HO COOTBET-
CTBEHHO HCKOTOpblM ITpaBUJIam. FIpM MO IXO0/Is1eM BblﬁOpe ITUX IpaBull, Memny
MOJIENIbI0  PACTIOJIOMEHUSI U HeKOTOpoi (yHKLHMel ¢ BBHINOJHSIETCS COOTHO-
HIeHue BU/1a
. mx
lim ()
x>+ g1l

= I{g},

rae m(x) o0o3HauaeT MaTeMaTHMUYEeCKOe O)KM/aHMe CYMMbl BeCOB, ITOMEIEHHbIX
Ha unTepsae (0, ). OueHKa BeJMUMHBl m(Z) MOJIyyaeTcsl peajusaLiieil MojeJn
PacCIoJIOyKeH! 51.

Mozenb, onucannasi B § 2, sapisiercsi mojudurauueir u oboliieHrem mo-
e A. RExvyr [1]. B § 3 aBrop omucbiBaeT HeCKOJIbKO Mojlesiel, ¢ MOMOILb IO

KOTOpBIX uHTerpas I {g} Bbluncisiemblit npu GyHKUUSIX g pasHbIX TUNOB. B § 4
OIMCBHIBAETCS] pacyeT MHTErpasia
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