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§ 1. Introduction 

The fundamental problem. In paper [ 1 ] A . R É N Y I solved the following 
problem. Let us place a t random on the interval (0, ж) successively uni t inter-
vals, the left endpoints uniformly distributed on the interval (0, x — 1), bu t 
discarded if the new interval intersects with one of the previous intervals. 
The procedure comes to an end when no more " f ree interval" longer t han 
unity remains. M{x) denotes the expectation of the number of unit intervals 
thus placed. M(x) satisfies the functional equation 

X 

(1) MiX + 1) = — j Mit) dt + 1 ix > 0) 
x J 

0 
and the initial condition 

(2) M(x) = 0 for ж ^ 1. 

I t is proved t h a t 

(3) lim = Г exp ( - 2 Г 1 ~ du) dz . 
X^+OO X J \ J U 

о 0 
The f undamental idea of this paper. The model described above is a very 

special case of the random space filling. There are various ways of generali-
zation by modification of the placing procedure. This paper deals with gene-
ralizations in direction of Monte Carlo methods resulting in procedures for 
obtaining the approximative value of integrals of t ype 

со 2 
(4) I {g) = j exp ( j ' giu) du) dz. 

ô ö 
Before a specified discussion we wish to mention in the following section two 
general Monte Carlo methods applied for the evaluation of integrals (see [2], 
[3], [4]). 

Two general methods, a) A general Monte Carlo method applied for 
evaluating is as follows. We wish to evaluate the integral 

(5) I = j" Цх) dx 
D„ 

3 3 ! ) 
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where Dn is a domain in n-space and ж is a vector. Let £ he a random vector 
variable with density function f(x), 

(6) J f(x) dx= \ , 
Dn 

( f ( x ) Si 0 (x £ Dn), and equality can hold only for h(x)= 0); letxv x2, ..., xN 
he independent observations concerning the values of ft Then the random 
variable 

(7) S = 

N ^ i f(xj) 

is an unbiassed estimator of I , i. e. 

(8) E (S)= [ ^ f ( x ) d x = I , 
J /(ж) 

On 
and 

(9) D W = i J 
Dn 

/(ж) dx. 

b) An o ther method is the following: I t can he assumed without loss of 
generality t h a t 0 A h(x) ^ R. Let us define two random variables £ and у 
uniformly distr ibuted on Dn and (0, R), respectively. Let ( f t , yx), (ft,q2)  
(£дг, yN) be independent pairs of observations concerning the values (ft y) 
and Sj a set of random variables defined by 

(10) ft= 

Then the random variable 

= { h Í f 0 = 1,2 
t o , if A ( f t ) > f t 

Âmes A , N 

(11) S = У a. 
x и ' 

is an unbiassed estimator of I and 

(12) D 2 { S ) = I ( R m c s D n - I ) 
N 

Several Monte Carlo techniques applied for evaluating integrals are 
simple modifications of these methods. 

Natural models. The grea t advantage of the methods mentioned above 
is their general applicability, i. e. theoretically almost every integral can be 
evaluated by these methods. Considering the goodness of these methods 
their great generality is not always iavourabie; it seems tha t the probabilistic 
models are related to the operation of integration but not the nature of the 
particular integrals considered. We shall call such models artificial models ; 
while models having a close connection with the nature of the problem will 
be called natural models. The field of applicability of the natura l models is in 
general smaller than that of the artificial ones, but the natural models (if 
their application is possible) come up to the non-probabilistic approximative 
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methods in such cases too, where the application of artificial models is obviously 
unfavourable. In this paper a class of natural models is connected to a class 
G of functions; by realization of these models estimates for the integrals 
I{g} are obtained. Integrals of this type occur e. g. in the solution of Riccati 
differential equations (see [5]). 

In applying artificial models or numerical integration as well the sub-
stitution in the integrand cannot be avoided; if the integrand is a complicated 
function (e. g. it consists of a large number of terms) this circumstance causes 
difficulties. These difficulties can be eliminated by applying natural models. 

We wish to remark we regard the results of this paper only as f i rs t 
steps in this direction and our fur ther investigations will aim a t finding other 
types of random space filling models connected to certain problems of analysis 
(solution of differential equations, integral equations, etc.). 

§ 2. A simple model 

In this paragraph the procedure applied by A. R É N Y I is adapted to a 
simple modification and generalization of Iiis model. Our model (in a special 
ease) does not differ from the fundamental model in its limiting properties 
and it is convenient for theoretical and numerical computations. 

Let aq, x2, • • •, xN, . . . be observations of a random variable £ uniformly 
distributed on the interval (0, x) and let us place in these points weights in 
accordance with the following rules: 

1° In the point aq we pu t a weight w(x) (where w(x) statisfies conditions 
to be determined later); the argument denotes the length of the "free interval" 
containing the point aq. 

2° We establish a "prohibitive interval" with the endpoints aq — a, 
aq + b, where a and b are positive numbers. 

3° We "mul t ip ly the free intervals" (0, aq — a) and (aq + b, x) by the 
positive constants <q and c2, respectively, in the sense tha t all weights (deter-
mined by the values of the function w(x)) falling subsequently into these 
intervals must be multiplied by these constants. 

4° The point x2 is discarded if it falls into the prohibitive interval; 
otherwise it is placed. 

5° If the point x2 is placed we put in x2 a weight the value of which 
depends on the length of the free interval containing x2. 

6° A second prohibitive interval is established with the endpoints 
x2 —-a, x2 + b. 

7° We multiply the two new free intervals by c, and c2, respectively 
(i. e. the new intervals are multiplied by one of the values cf, <q c2, cf). Evi-
dently where a new prohibitive interval intersects with one of the endpoints 
of the interval (0, x) or with one of the previous prohibitive intervals no new 
free interval comes to exist. 

8° If the point x3 falls into one of the prohibitive intervals it is discarded; 
otherwise it is placed, and so on. 

9° The procedure comes to an end when the interval (0, x) contains 
no more free intervals. 

This method of the random space filling will be called strategy A. 
The sum of the weights pu t thus on the interval (0, x) is a random 

variable; let us denote its expectation by m(x). Considering t h a t the points 
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are uniformly distributed on every free interval, it is easily shown tha t m(x) 
satisfies the functional equation 

X X 

(13) m(x) = C-A ( m(t — a) dt + Г m(x — t — b) dt + w(x) (ж > 0) 
x J ж J 

о 0 
and the initial condition 

(14) m(x) — 0 for x g 0. 

In the following we are giving a limiting relation for the quotient т(ж)/ж. 
Let be in (13) 

(15) w(x) = xn (n > 0). 

In the following only the properties tha t w(x) is a positive function 

(0 < ж < + oo) and t h a t the Laplace-transform of — ( x w ( x ) ) exists, are 
dx 

utilized. 
Multiplying (13) by ж and taking derivatives we obtain 

(16) те(ж) + xm'(x) = Cj m(x — a) + c2 m(x — b) + (n + 1)ж". 

Multiplying (16) by e - s x and integrating with respect to ж from 0 to oo: 
CO CO 

j m(x) e~sx dx -f- J xm'(x)e~sxdx = 
о о 

(17) 
Г f Г(п + 2) 

= с, m(x — a) e - s x dx + c2 m(x — b) e~sx dx H . 
J J + 1 

0 0 
Introducing the Laplace transform 

со 
(18) <p(s) = j m(x)e~sxdx (Re s > 0) 

о 
equation (17) obtains t he form 

+ ф ) l i T ' l + K > . e ~ l S + + = 0 (19) <p'(s) . , , , 

S SN 

In our fu r ther considerations the following three lemmas are applied: 

Lennna 1. 
(20) lim <p(s) = 0, 

S—+ oo 

where cp(s) is defined by (18). 

Proof. I t can be seen by simple considerations t h a t there exists a constant 
К depending on a and b only so t h a t the number of points resulting from 
strategy A is not greater then Kx + 1; thus 

(21 ) m(x) L(x) (K x + l)xn 
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where 

(22) Дж) = (max (<+с2 ,1 ))«*+'. 

From (21) considering (18) 

(23) <P(s)<& § L(x) (К x + 1) x" e~sx dx, 
о 

and from this fact the s ta tement of the lemma follows. 
Lemma 2. (See [6] Theorem 108 a n d [1].) If a(x) is a monotonically 

increasing function (0 < ж < + oo), ß > 0 and 

(24) lim s" f e-sx d a(x) = С, 
s — + 0 о 

then 
.г. v 1. «(ж) С 25 hm - E J — . 

xß r(ß +1) 

Lemma 3. The function m(x) satisfying (13) and (14) is monotonically 
increasing (0 < ж < -f- oo) for the weight function (15). 

Proof. Le t us arrange the numbers a, 2a, 3a, . .., b, 2b, 3b, ... according 
to their order of magnitude and denote t h e elements of t he ordered set (discard-
ing the duplicates) by 0 < a\ < a\ < a% < . . . . I t follows from (13)—(16) 

x—a x—b 

m(x — a) m(t) dt + c2 m(x —b) m(t) dt + nxn . 
ж J J I ж I 

о 

xm'(x) = 

(26 ) 

From (14) a n d (26) it follows that 

(27) m'(x) ^ 0 for 0 < ж ^ a* . 

Equality holds only for n = 0.) Assuming that 

(28) m'(x)^ 0 for 0 <x£af (Jc = 1, 2, . . . ), 

(and so m(x) is monotonically increasing in this interval), it is shown t h a t 
(29) m'(x) > 0 for < x й a*k+1. 

Namely if /(ж) is a monotonically increasing function in the interval (0, ж0) 
then for all values of 0 < ж < ж0 

X 

(30) / ( ж ) - 1 \f(t)dt^{>, 
X J 

0 
and as 

X—a X—a 
1 Г 1 Г 

(31) m(x—a) m{t)dt > m(x — a) I m(t)dt 
x J x— a J 

о о 
(a = a or a = b, a < ж a ) , 
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considering (26) t he statement of the lemma holds. By an analogous induction 
t h e monotony of the function m(x) can be proved in case of more complica-
ted models as well. 

Solving the equation (19) under the initial condition (20) we obtain 

, ч Г In + 2) Г I Г с, e~au + с, e-»u - (n + 2) , <32) ф ) = y
s J 2 I exp 4 _T J L _ d u dz. 

Applying Lemma 2 (and Lemma 3) with a(x) =m(x), ß = n + 1, and con-
sidering tha t 

oo 

(33) f e~sx d m(x) = s ф ) , 
о 

we obtain 

m(x) Г I f cx e~au + c2 e~bu - (n + 2) 
(34) lim ^ = Г exp ( f ^ ± £ i d u 

X-+=° XN+1 J { J И 

dz. 

Obviously only the case cx + c2 = n + 2 deserves a t ten t ion as other-
wise the value of the integral in (34) equals either 0 or + oo. This model is 
advisable only for integer values of n, as otherwise a modification given in 
§ 3 is more suitable for computations. 

Connection between the functions M(x) and m(x). Le t us consider t h e 
special case of 

(35) a = b = cx = c2 = 1 and n = 0; 

t hus the value of m(x) is equal to the expectation of the number of points 
placed and we denote it by m0(x). Substituting in (34) we obta in the expression 

(36) lim Щ{Х}- = Г exp ( - 2 f 1 — du 
JC-+» x J \ J 

,—u 
dz. 

и 

The function M(x)jx in [1] converges to the same limit. 
This fact and the circumstance that R É N Y I ' S placing procedure is similar 

t o strategy A in the case of (35) (namely the restriction, t h a t t h e unit intervals 
mus t not intersect with one another , means in our terminology for the lef t 
endpoints of the subsequent un i t intervals t h e extension of each of the un i t 
prohibitive intervals already placed with a fu r the r unit to t h e left), suggest a 
close connection between t h e functions M(x) and m0 (x). Indeed t h e 
following lemma is true: 

Lemma 4. The function m0(x) is identically equal to M (x + 1). 

Proof. I t follows from t h e initial conditions (2) and (14) tha t 

(37) то0(ж) = M(x + 1 ) = 0 for x £ 0 

a n d obviously bo th functions satisfy the following equations: 

(38) m0(x) = M(x + 1) = 1 for 0 < x V 1. 
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Let us suppose tha t t he statement of the lemma holds for all x x0 — 1: 
F r o m this assumption it follows tha t 

X X 

(39) — I M(t)dt = - j m0(t — l)dt for x ^ x 0 , 
x J x J 

о о 

and thus considering (1), (13), (15) and (35) 

(40) M(x + 1) — m0(x) tor x ^ ж0. 

The proof is completed by induction. 

§ 3. Some further examples 

In this paragraph some tricks are described by the aid of which the 
value of I {g} can be evaluated for various g £ G. The according models are 
modifications of Model 1. The index v of the function mv(x) characterizes the 
model in question. We remark tha t per definitionem 

(41) mv(x) = 0 . for x <0 and for all v. 

Analogous lemmas to Lemma 1 and Lemma 3 can be obtained by simple 
modifications of the proofs. 

The models described below mus t be considered only as illustrative 
simple examples; fur ther models can be obtained by the combination of these 
and the introduction of new tricks in the placing procedure. In practice if an 
integral similar to one of those occuring in the known models is given the 
problem arises how to f ind a model corresponding to this integral. 

A simple modification of Model 1. The model described in § 2 is appli-
cable by a simple modification to evaluate /{gf}, where 

2 cf e~a>u — (n + 2) 
gf{u) =J— , aj, cf > 0 (j=1, 2, ... ,r) and 2 cf = n + 2. 

U j=\ 
(42) 

In this case (if we denote by t the place of the f irst point) we consider the 
intervals (0, t—ax), (0, t — a2), ..., (0 , t — ar) as free intervals, multiplied 
by cf, cf, . . . , c* respectively (instead of considering the intervals (0, t -— a), 
(t -f- b, x) multiplied by cx and c2, resp.). Denoting by m\(x) the expectation 
of the sum of weights placed in this way we obtain the equation 

i r 

(43) m*(x) = V cf s , i 
x f r { 

m*(t - a f ) dt + xn (x > 0). 

Making use of the method described in § 2 we obtain f rom (43) 

(44) lim П ^ = 1 { д f } . 
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We wish to remark t h a t applying the weight-function 

(45) w(x) = xn~a (0 g.ag.n) , 

t h e result is modif ied in the fo rm 
CO I 

mAi X) С 
(46) lim ' = z" exp g*(u)du dz. 

X-+00 
о о 

Mixed strategy of placing. I f in t h e f u n c t i o n 

, ч с, e~au + c„ e~bu — у , 
(47) SAM = 1 — K + c« = y ) 

и 

1 < у < 2 holds the evaluat ion of /{gq} by the aid of s t rategy A meets theo-
retical and pract ical difficulties as the weight-function x" (— 1 < n < 0) has 
a singularity in 0. 

The problem can he s imply solved however by introducing a new stra-
tegy of placing called s t ra tegy B. 

Strategy В consists of t h e following rules: 
1° In a " f ree interval" (0, x) a point t is placed a t random. Thus t h e 

interval (0, x) is divided in to two parts. 
2° The intervals (0, t) a n d (t, x) are multiplied by the positive constant 

c0 (in the sense mentioned in § 2). 
Evidently strategy В canno t be applied alone hu t the mixed strategy 

(48) C = p A + gB 

( i . e . every move of strategy С represents ei ther a move according to strategy 
A or the application of s t ra tegy В with probabilities p and q = 1 — p, resp.) 
is suitable for our purpose. 

In this manner we obta in the equation (modification of (13)) 
X X X 

m1(x) = 2 ( mx(i) dt + ( mx(i -a)dt + °^) Г mx(t - b) dt + pxn(x > 0 ) , 
0C I 0C J 0C J 

(49) 0 0 0  

where 

(50) й ^ О , n A 2 = Cxp + c2p + 2c0q 

a n d mx (x) denotes the expecta t ion of the sum of weights which can be placed 
on the interval (0, x) according to strategy C. Using the method described 
in § 2 we obta in from (49) 

m i ( * ) _ „ T , „ x _ „ f _ у Г 1 - У1Гаи ~ !h R - b u
 d u 

J и 
0 

dz, (51) lim -±-A=pI{gl} = p e x p 
X-+» XNRL J 

0 
where 

(52) y i = ~ f ~ ' y 2 = C J ~ ' У = ( с 1 + с*)Р = п + * - 2 с » < 1 -
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We wish t o remark t h a t the value of I{gx) is equal to + oo if y g 1. This 
fact can be shown integrating by par t s . 

In t he special case (35) a modification of (36) follows from (51): 

(53) 
,. mx(x) I ( Г 1 - е - " lim —^ : = p j exp — 2 p 

и 
dz. 

This method is of advantage for not integer values of у since in this 
case n can be chosen as an integer. Theoretically t he placing procedure may 
consists of an infinite number of moves; but this event has probabili ty zero. 
In practice the procedure always comes to an end as instead of intervals a 
finite number of points is considered. 

Case of small intervals. The value of mx(x) can be exactly computed 
for 0 < x g min (a, b) i. e. in this case by derivation of (49) and considering 
(41) the linear differential equation 

(54) m[(x) + -1-- 2 C°q mx(x) — p(n + 1) ж" 1 = 0 

is obtained. 
Solving (54) under condition (41) 

(55) mx(x) = — Р ( - П ^ 1 ) +1 (о < ж ^ min (a, b)) 
n — 2 c0 q + 1 

follows. Making use of this result t he experimentation can be simplified 
(see § 4). 

Model 2. In this section a method is described for evaluating 1{д2}, 

У dj ur-J e~a'u — (n + 2) 
(56) g.Áu) = j - — 

тег+1 

where 

(57) r a positive integer, n > . r , a j , d j > 0 ( j = 0 ,1 , . . . , r) , lim g2(u) finite. 
u—0 

For achieving our purpose we mus t introduce a new trick in t he placing 
procedure. If the first poin t falls in t we consider the intervals (0, t — a0), 
(0, t — ax), (0, t — a2), . . ., (0, t — ar) a n d multiply them by d0, dx(x — t), 
d2( x — Z)2/2!, . . . , dr(x — t)r/r\. In the following a branching procedure is 
carried out so that instead of the interval (0, ж) each of the intervals (0, t — ay) 
( j = 0, 1, . . ., r) is considered. 

Applying the weight-function 

(58) w(x) = ж" (те r ) 
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and denoting by m2(x) the expectation of the sum of weights thus placed in 
t h e interval (0, x) we obtain 

(59) m2(x) = — V d-L (' (x - t)' m2(t — aj) dt + xn (ж > 0 ) . 
ж p i Я J 

Deriving r t imes and making use of the method described in § 2 we obtain 

(60) lim ^ = /{£7,}. 

Model 3. Le t be 

( 6 ! ) д з { и ) = ( " + 2) ko e ~" u + ki e~ a u + ka e~b u ~ + 2) 

u( 1 — k0e~du) 

where 

(62) n 0, a, b, d, Jc0, kv k2 > 0, k0 < l, lim g3(u) f ini te. 
u-»0 

For evaluating I{g3} a new trick must be introduced. Le t us define a 
strategy of placing D as follows: 

1° The free interval (0, x) is divided by t h e point x — d in to two parts . 
The interval (x — d, x) is discarded. 

2° In the point x — d a weight xn is put . 
3° The interval (0, x — d) is multiplied b y the positive constant c0 (in 

t he sense mentioned in § 2). 
The expectation of the sum of weights (denoted by m3(x)) placed on 

the interval (0, x) by applying the mixed s t ra tegy 

(63) E = p A + g D 

satisfies the equation 
X X 

(64) m3(x) = c0 qm3(x — d)+Cl? I m3(t — a) dt + C'2 P- j m3(t — b)dt + x" 
X J X I 

0 0 (ж > 0 ) . 

From (64) in the manner mentioned before (choosing c0, c}, c2, p in such 
a way tha t c0 q = k0, c1p = kv c2p = k2) t he relation 

(65) lim ^ = 
x—xn+1 I — k0 

is obtained. 
Model 4. In this section a trick is shown by the aid of which the integral 

(66) I(v) = f exp(— vz + \ g(u)du)dz (v > 0) 
0 ô 

can be evaluated for g £ G. 
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Let us consider as an example the model described in § 2. Strategy A 
is modified in the following way: 

С ОС С ОС 1° The constants c4 and c2 are replaced by 1 and —-— , respectively, 
ОС ^ & ~f~ ^ 

where x denotes the length of the f ree interval divided by the point t, and 
v is a f ixed positive number. 

2° Le t be the weight-function 

(67) w(x) = ( n ^ O ) . 
X + V 

Then the expectation of the sum of weights placed on the interval (0, x) 
and denoted by т4(ж) satisfies the equation 

С Г С Г JJL+L 
(68) т4(ж) = -1— mt(t - a ) dt-\ f— m4(í - 6) dt H — (x > 0 ) . 

I + ® J x + v j x + v 
0 

F rom (68) 

(69) lim Ы Х ) = I(v) 

is obtained. 

§ 4. Some remarks and an experiment 

Some remarks concerning convergence and variance estimation. In § 3 
limiting relations are obtained concerning the functions mv(x). These theore-
tical results can be applied in the following way: a positive number x is fixed. 
On the interval (0, x) experiments are accomplished according to the pre-
scribed strategy. The mean value of t he sum of weights placed on the interval 
(0, x) is an estimator of mv(x). From this mean value and the according limiting 
relation an estimator of I{g) is obtained. 

Applying this method the results have two kinds ot errors, one of which 
originates from the fact t h a t a f ini te x is considered (instead of -+- oo); the 
other k ind of error is caused by t h e random fluctuat ion of experimental 
results. Theoretically t he experimentation on a very large interval is advan-
tageous b u t practically this is uncomfortable (the repeating of the experiments 
on a smaller interval is more advisable). 

In paper [1] results are found concerning the asymptotic behaviour 
of M(x) and the variance of the number of unit intervals placed on the interval 
(0, x). According to Lemma 4 these results are valid in case of our simplest 
example b u t for more complicated models the theoretical t rea tment seems 
to be a ra ther difficult problem. Experimental experiences give the impression 
that by the application of an interval of length x = 1000 or even x = 100 
(when the length of the prohibitive intervals is about unit) only a negligible 
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systematic error is caused as compared to the random fluctuations (unless 
t h e number of experiments is unreasonably large). 

An estimate of the variance is obtained f rom the experimental data, the 
value of which is biased due to variance reducing techniques. If in the result 
a n error of some percentages is admissible the application of the described 
Monte Carlo methods may be advantageous compared to numerical integ-
rat ion even in ease of rather simple integrals. 

Variance reducing techniques. There exist various techniques by the aid 
of which the amount of labour necessary to obtain a given accuracy can be 
reduced. We wish to mention below some of these techniques applicable in 
t h e case of random space filling. 

Systematic sampling. In a mixed strategy of placing 

(70) S = > > Ä 
k= 1 

r 
Pk>o>2Pk = i 

k= 1 

t h e strategy of the first move is not chosen a t random but determined syste-
matically so t h a t out of N experiments each strategy S/( (k = 1, 2, . . . , r) 
will occur about Npk times. 

Stratified sampling. The interval (0, ж) is divided into N equal parts. 
In the first move of /-th experiment ( / = 1 , 2 , . . . , N) the point t is placed 
a t random on the /- th subinterval. 

Use of expected values. Let be ж0 such a value tha t for every ж ^ ж0 a 
simple analytical term can be given for mv(x) (see e. g. (55)). The placing 
procedure consists now of two par ts : 

1° Reducing the length of the free intervals until the maximal length 
does not exceed ж0; 

2° On these small intervals instead of fur ther experimentation the 
exact values of mv(x) are considered. 

Result of an experiment. We wished to compare on an example the 
results obtained and the amount of labour involved in the Monte Carlo method 
and the numerical integration, respectively. Thus we determined the value 
of the integral 

(71) / „ = f e x p 
—u 

1,5 I — d u 
и 

dz 

in these two different ways. The according Monte Carlo method was based 
on the placing procedure resulting in (53) with p = 0,75. We wish to give a 
short description of the experimentation. 

The experiments were performed on an interval of length ж = 100. 
Six-digit random numbers were considered (we made use of the table of random 
numbers of [7]); The points xlt x2, • •., were marked out by the first four 
digits (from 00,00 to 99,99) while the last two digits were used to determine 
whether strategy A (from 00 to 74) or strategy В (from 75 to 99) should be 
applied. 
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On the small f ree intervals the technique of the "use of expected values" 
was applied. For th is model 

(72) mAx) = — - — í o < a ; ^ l , Á < : p 5 7 i 
2 p — 1 ( - 2 ~ 

holds. This follows f rom (55) considering (35) and (50) or directly f rom the 
equat ion 

(73) тДж) = p + 2 q mx(x) 

The mean value of the results of ten experiments gave for / „ the ap-
proximat ion 

(74) 1,362. 

The s tandard deviat ion of the experimental results was 

(75) a = 0,064 

with each obtained value in the in terval (/„ — 2cr, / „ + 2<r).The realization 
of one experiment required about t h i r t y minutes. 

By numerical integration we obtained the result 

(76) I 0 = 1,345 

(where the last digit is uncertain). The determination of this value by means 
of numerical computat ion required by far more efforts than tha t of t he Monte 
Carlo method described above. The simplicity of the placing procedures 
renders the methods described in th is paper suitable for machine work. 

The author is indebted to Prof . A. R É N Y I for his helpful suggestions 
and to I . P A L Á S T I for her valuable critical remarks. 

(Received April 29, 1960.) 
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3 5 2 b Á n k ö v i 

РАСЧЕТ ИНТЕГРАЛОВ МЕТОДОМ МОНТЕ-КАРЛО, ОСНОВАННЫМ 
НА ОДНОМЕРНОМ СЛУЧАЙНОМ ЗАПОЛНЕНИИ ПРОСТРАНСТВА 

G . B Á N K Ö V I 

Резюме 

В работе предлагается метод приближенного вычисления интегралов 
вида 

оо 2 
/{gí}= [ e x p ( J g(u)du)dz. 

b о 
Основная идея метода заключается в следующем: расположим на интер-

вале (0, х) точки и поместим в этих точках весы случайно, но соответ-
ственно некоторым правилам. При подходящем выборе этих правил, между 
моделью расположения и некоторой функцией g выполняется соотно-
шение вида 

и - т = п л . 
X' л+1 

где т(х) обозначает математическое ожидание суммы весов, помещенных 
на интервале (О, х). Оценка величины т(х) получается реализацией модели 
расположения. 

Модель, описанная в § 2, является модификацией и обобщением мо-
дели A. R É N Y I [ 1 ] . В § 3 автор описывает несколько моделей, с помощью 
которых интеграл 1{д) вычисляемый при функциях g разных типов. В § 4 
описывается расчет интеграла 

h = j exp 

о 

методом Монте-Карло. 

U J 1 — 
и 

du dz 
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