LIMITING DISTRIBUTIONS IN SIMPLE RANDOM SAMPLING
FROM A FINITE POPULATION

by
Jarostav HAJEK!

1. Introduction and summary

Sampling from a finite popuation may be considered as a random
experiment whose outcomes are subsets s of the set § ={1,2,...,N}; s
is called a sample and § is called a population. Denote an s consisting of %
elements by s, and the probability of s, by P(s,).

Simple random sampling of sample size n is defined by the following
probabilities P(s,):

N
B

=] "
] if k= mn [Simple random sampling of size n]
(L1)  P(sy) =

0 otherwise .

In this paper we shall make use of so called Poisson sampling defined
as follows:

n

(1.2)  P(s) = [z%lk (1 =

N—k
[Poisson sampling of mean size n].

Let us have a sequence v, ..., yy of real numbers, and put

(1.3) =2

i€sy

where s, is a simple random sample and > extends over all # contained in the
i€Sp
sample s,. Obviously & = &(s,)) is a random variable with finite mean value

n N
(1.4) N;
and variance
n N—n XN _— 1 N
1.5 Dé=— - >(y; —
02 N N 1,=| [ N% ]
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Let us consider an infinite sequence of simple random sampling experi-
ments, the »-th of which has the size n, and refers to a population of size N,
and with values y,,, .., ¥,n, Let &, be the random variable defined by (1.3)
corresponding to the »-th sampling experiment.

Now we ask about conditions concerning {y,;, n,, N,} under which

%

l 2
(1.6) imP{E, —E& <2VDE) = [ 7" a
L i V2n 2
or
lk
(L.7) lmpgzmzr?

or, generally, the distribution function of &, converges to a limiting distri-
bution law. We naturally suppose that n, — oo and N, — n, - oco.

In the following sections we shall give a complete solution of this prob-
lem, i. e. we shall indicate necessary and sufficient conditions. As for conver-
gence to the normal distribution law the necessary and sufficient condition
coincides with that one derived by Erpds and RENyI in the paper [1], as
could be expected.

2. The fundamental lemma

We shall show that the above problem can be completely reduced to
the same problem concerning sums of independent random variables.

First observe that Poisson sampling may be interpreted as simple
random sampling of size k, where % is a binomial random variable attaining

N (n)k n\N=F

the value k& with probability X’] 1 - L Actually, it suffices to
consult (1.1) and (1.2) and notice that

nkl n\N—k N,nkl n \N—7 (N—!

5 Gt (W[ N N [
Clearly EX = n and
(2.1) Ew—nﬁznp—zm

N

Now, it is easy to define an experiment producing simultaneously a
simple random sample s, and a Poisson sample s, such that s,cCs, if n <k,
and s,Ds, if n > k. This may be done as follows:

1° First we realize the binomial random variable % attaining the value
k with probability
K N—k

; 0<k<N.

AY
k

n
N

n

N

2° a) When k£ = n, then we select a simple random sample s, = s, which
is a simultaneous realization of both simple random sampling and Poisson
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sampling. b) When £ > n, then we select a simple random sample s,, which is
a realization of Poisson sampling; thereafter we select a simple random sample
s, of size n from s, (s, represents here a population), s, being a realization of
simplg random sampling. ¢) When k¥ < 7, then we select a simple random
sample s,, which is a realization of simple random sampling; thereafter we
select a simple random sample s, from s, (s, represents here a population),
8, being a realization of Poisson Qamphng

Put
(2.2) =%y — Y)=&—nY
and o
(2.3) 7* =3 —7)

€Sk

where (s, s,) are joined samples from the above experiments, s, representing
a simple random sample and s, a Poisson sample. The number of summands
equals constantly n in (2.2) and is a binomial random variable in (2.3). Clearly,
(2.4)

0 if k=n

sk S w—7) if k<n
[€Sy—Sk

S w—Y) if k>n
i€Sx—Sn

since either s, is a subset of s, or, conversely s, is a subset of s,.
Lemma 2.1. The following inequality holds true :

(2.5) E(n —7*)* gl//lq}.;l;_

Proof. If £ is fixed, then s, — s, or s, — s, represents a simple random
sample of size [k — n|. Consequently, in view of (1.5), we have

(2.6)

k—n| N k—m =g
i =] —_ * I = - 2
k} = D{n — n*k} = Z —Y)e<

N

_S_Ik_n‘%Z(?/i*?)z-

i=1

The inequality (2.6) together with (2.1) obtains that

(27)  E{m—n* 2}<E!/»—n|—2<y, P

< ver=art S w2 S
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In a similar way we could derive

(2.8) D77*=n‘1—;);72~1(?/i—1’)2.
=

We shall prefer however, to prove (2.8) by the following consideration: Any
sampling experiment consists of N dichotomous experiments, the ¢-th of
which has the following two possible outcomes: including the element ¢ in
the sample s and not including the element ¢ in the sample s. If all these
experiments are mutually independent and the probability of including the

element ¢ equals constantly %, 1 <7 < N, we easily see that one gets

Poisson sampling, i. e. that each sample s, has the probability (1.2). This
fact implies that #* may be judged as a sum of N independent random variables,

(2.9) n* =
where

y,—Y  with probability 2737 (if 7 €5,)

0 with probability 1 — :L (if 168 —s,).
Clearly
== =Y n
2.11 D{=ly—YrP—-|1—— 1=i= N
(211) i 1<i<h)

which proves (2.8).

Combining (2.7) and (2.8) we obviously obtain the inequality (2.5) which
was to be proved.

Let us consider a sequence of experiments of the above kind (i. e. pro-
ducing joined simple random and Poisson samples) and denote by 7, and
7% the random variables (2.2) and (2.3) referring to the »-th experiment.
From Lemma 2.1 it follows that

= k)2
(2.12) oA Ta g e
v—e Dy \N, — n,—> 0.

Remark 2.1. The relation (2.12) implies that, provided n, - oo and
N, — n, — oo, the limiting variances and distributions of random variables
A,+ B, n, and 4,4 B, n} exist under the same conditions, and if exist,
are the same. The random variable 7*, however, is a sum of independent
addends (2.10), so that when studying the limiting distributions of 4, + B, n¥,
we may simple apply the well-known theory of summation of independent
random variables. See [3].
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3. Convergence to the normal distribution

We shall prove that the condition derived by ErDGs-RENyYI in [1]
is not only sufficient but also necessary provided that 7, — oo and N, — n,, — co.

Theorem 3.1. Let S,. be the subset of elements of S, = {1, ..., N,} on
which the inequality

(3.1) | Y — ?v‘ =i VD—E:

holds ; let D&, denote the variance (1.5) referring to the v-th experiment. Suppose
that n, — co and N, — n, — oo.

Then the random variable &, defined by (1.3) has asymplotically normal
distribution with parameters (E &,, D &,) if and only if

62; (yvi i Yv)2
(3.2) lim =2 —— =0 for any 7> 0
Lo 2 (yyi — Yo)?
i€eSy
Ny
where 2 denotes the same summation as 2

i€Sy i=1

Proof. In view of Remark 2.1, it suffices to establish sufficient and
necessary conditions for asymptotical normality of the random variable »*
defined by (2.9), namely with parameters (0, D 7} ). Notice that E ¥ =0,
since

N N
- n o
(3.3) Bk — EE’,,-: Eﬁ(yiﬁY)zo.
i=1 i=1

First suppose that the random variables {,; = {; defined by (2.10) are infi-
nitesimal, i. e. that

(3.4)

In view of (2.11), (3.4) is equivalent to

max (y,; — ?v)z

(3.5) lim SISt —=—0.

S 2‘ (yvi = Yv)z

i=1

The condition (3.5) is clearly much weaker than the condition (3.2); it is usually
called the Noether condition.

Provided that (3.4) holds, the necessary and sufficient condition for
asymptotical normality of #% with parameters (0, D %) is given by the Linde-

berg condition. Since the random variables {,; — E {,; take on values
M (1 . ] Y - =7 ™ with respective probabilities e
i N, NG

n
and 1 — —~ we have

4AVy
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- !
Dnggj f 2*dP{l, — By <) =
|x|>7) Dnx
2 2 ol
-2 S e — T+ -3 (5] 3 o= T
(36) =— il B =
ny ny v
sl e (i — Y,
Nvl N, 2 i
Ny S N, e
(1__ Z(yvi_ Yv) +_2(yvi_‘ Yv)
o N” i€Cor N'iigB,,,
D i — Y
€Sy

where C,, and B,, are subsets of elements of S, on which

(3-7) Cw: |yvi = Yv! > TL ( ?/v: - Yv)2
v V €Sy

and

n n -
(3.8) g =Tl 22 > V v (1 %) SNy, — T

‘V A ¥ Z\ V' IeSy
respectively. In view of (1.5), we see that
o e e L
(N‘u—"lv)2 ; e

From (3.9) it follows that (3.2) is equivalent to the condition that the first
member of (3.6) converges to 0, i. e. to the fulfilment of the Lindeberg condi-
tion for n}.

Thus it remains to prove that 7} cannot have a limiting normal distri-
bution with parameters (E 7%, D), if (3.5) does not hold.

We may suppose without any loss of generality that n, < — 7\ and

(3.10) [ — Tl 2 [Bhe— Y| 2 .. - 2 |y, — ¥,
If (3.5) is not satisfied, then there exist an & == 0 such that

(3.11) O et SRS

L5 l Z(yvi— Y

for some subsequence of indices ». Taking a new subsequence from this sub-
sequence, we may assume that

(3.12) g g T
v N, 2

For simplicity let us introduce no new symbols for denoting the subsequences.
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Now the relations (3.11) and (3.12) mean that the distribution function
of the random variable

Yn— Y, with probabi]ity&
& B2 2 (Y _?v)z Ay
3.13 =1 — N, N, 6,
T T
0 with probability 1 — 2
N,

converges to a distribution function which has a jump 1 — ¢ at the point 0

and, if ¢ > 0, a jump ¢ at the point — . Let us discuss each of the cases

Ve(1 —e)

¢=0 and ¢ > 0 separately.

If ¢ = 0 the variance of (3.13) does not converge to the variance of
the limiting distribution. Actually, (3.13) has the limiting variance &2 while
the limiting distribution is degenerated to the single point 0 so that it has
the variance 0. Hence if there existed a limiting distribution of the statistic

Ny
W

Svi
* -
M [ i=2

VDt yDut YDy

(3.13)

it would have a variance smaller than 1. Consequently, 7# cannot have asymp-
totically normal distribution with parameters (0, D 7%).
If ¢ > 0, the distribution of (3.12) converges to a distribution concent-

rated in the points 0 and —(—lev~) . If (3.13) had asymptotically normal distri-
c(l—c¢
bution, this distribution could be decomposed in a convolution of two dist-
ributions one of which is not normal. This is, however, not possible, in
view of the well-known theorem by H. CRAMER.
The theorem is completely proved. .

Remark 3.1. In paper [2] there is proved that, provided we have a fixed
double sequence {N,, 7,;}, the Lindeberg condition (3.2) is fulfilled for any
gequence {n,}, such that n, — oo and N, — n, — oo, if and only if the relation

g(yvi == Yv)z
(3.14) il et et e ff
Lty 128 (?/v: T Yv)2

holds for any sequence {s,,} such that s,,C8, and

(3.15) B =

P> »
where 7, denotes the number of elements in s,,.

9 A Matematikai Kutaté Intézet Kozleményei V. A/3.
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Remark 3.2. According to a theorem by CramEgr, ([5] p. 105.) a vector
(&1, - -+, &ym) has a m-dimensional normal limit distribution with parameters

m
{E &,;, Cov (&), &wn), b, j =1, ..., m} if any linear combination > A; &y has
=1
a one-dimensional normal limit distribution with respective pa;'ameters. Let
&,j be given by (1.3) where y; = y,;;, where » labels the experiment and
j the variable. Suppose that the sequences {y,ji, ny, Ny}, § =1, ..., m, fulfil
the condition (3.2) and that the multiple correlation coefficients p,; between
&,y and {&,j ' 5~ 7} are uniformly bounded from 1, i. e. that

(3.16) lim sup ¢j; <1 Rl s

P>

m
Then any sequence I 2‘2,- Ypjis Ty N,,], where 2; are arbitrary constants,

Jj=1
fulfils the condition (3.2) and hence the random vector (§,,, . . ., &,,,) has asymp-
totically normal m-dimendional distribution with respective parameters.
Actually, we have

m
(3.17) D jgllj&,,} = 12:;}:1 1—e3)2 D¢,

and

i =
Z ;Lj(?/vji [ ij)

=

(3.18) <m max 4|y, — ¥y,;].
Isjsm

The rest follows by easy computations.

Remark 3.3. If ™ is bounded from 0 and 1, i. e.
v

(3.19) 0<8<%<1—£ v = w,)
v

then the Lindeberg condition (3.2) reduces to the Noether condition (3.5).
Really, if (3.5) and (3.19) are satisfied, then the subset 8. is empty for all
sufficiently large » so that (3.2) clearly holds. If (3.5) is not satisfied, (3.2)
does not hold in any case.

4. Convergence to the Poisson distribution

Using the same method as in Section 3, the following theorem will be
proved:

1
Theorem 4.1. Suppose that n, — oo, n, < EN,,, and

(4.1) lim E§ = limD& =4>0.

Yoo V-

Then the relation (1.7) is fulfilled if and only if, first

(4.2) m 2 _

P> v
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and, second,

(4.3) lim " S yi=0 for any 7 > 0.
V= Ny jyp—1]>7
Proof. First assume that the infinitesimality condition (3.5) holds. If
(4.2) does not hold, then, in view of Remark 3.3, the limiting distribution
may be only normal. Consequently, the condition (4.2) is necessary. Now ¥,
has limiting Poisson distribution if and only if

Ny .
(4.4) lim ¥ J 22dP{,,—EC, <a}=0.
V= i1
|x—1|>7

We may write, as in (3.6),

Ny ~ 2 o
S| aape—EL, <a)= = {1—% T =T
(45) Tt ! n
. i
s ( 1- 2] (B s, T
v i€Byr

where C), and B,, are subsets of elements of 8, on which

| = n
Ch: | —Y — 2l —1|>
(4.6) " | (Y ») N, ’ T
and
’ ‘ v nV E
(4'7) B,,.,Z == (yvi = Yv) = >T.
! N,
In view of (4.1), it holds that
(4.8) lim 2. 23/,,, = lim n,Y, =4, ie. limY,=0
V- [V, i1 VP> V>
and
(4.9) T | T T
pores NIy
Concequently, in accordence with (4.2),

Ny
S | #ar—ELi<a)
lim i e =1,

P> n, 2
o3 Yvi

o
Nv |ymi—1|>7

which proves the equivalency of conditions (4.3) and (4.4).

As for the case when the condition (3.5) is not fulfilled, we could prove,
as in the proof of Theorem 3.1 that the limiting distribution cannot preserve
variance.

9*
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Remark 4.1. If the sampling were done with replacement (i. e. as n
independent drawings of one element) we would get just the conditions (4.2)
and (4.3) for asymptotic Poisson distribution of the sum of selected values.
This coincidence is clearly caused by the fact that the difference between with

and without replacement sampling becomes negligible if %—»O :

)
5. Other cases
Developing the basic idea further, we get
Theorem. 5.1. Suppose that
(6.1) lim E§ =u
Y+
and
(5.2) lim D&, =o0?
V— oo
and consider an infinitely divisible law — distinct from normal law — with
mean value p, variance o* and cumulant — generating function
(5.3) ipt + J (€' — 1 — itu) deK(u).
u
Then the distribution of &, converges to the law given by (5.3) if and only if
n
5.4 i
(5.4) g 0
and
(5.5) lim 22 3 g2 — K(u)

V= LVy yu<u

in all continuity points of K(u).

Proof. The same as of Theorem 4.1.
6. Conclusions

If ™ does not converge to 0, normal limiting distribution is possible,

g
namely under conditions established in Theorem 3.1. We can also get a limit-
ing distribution formed as a convolution of a normal distribution and some
two-points distributions.

Ifn—f converges to 0, the variance preserving limiting distribution may

be only ir;’finitely divisible. The conditions for this are the same as if the
sampling were carried out with replacement.

(Ro_cvived May 7, 1960.)
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NPEJEJBHBIE PACHPEJEJIEHUS MPU MPOCTOM CIAYUAHHOH
BbIBOPKE W3 KOHEUHOW COBOKYINHOCTH

J. HAJEK

Pe3iome

B craTbe BeposTHOCTHASI BBIOOPKA M3 KOHEUHOH COBOKYIHOCTH paccmaTpu-
BaeTCsl KaK clyyaiiHblil onbiT, mpu KoTopom u3 MHoectBa S ={1,2,..., N}
BbIOMpaeTCs MOAMH03KeCTBO 8, s C 8. MHO)KecTBO S M ciyyaiinoe MoJAMHOMKECTBO §
HasblBAeM COOTBETCTBEHHO OCHOBHOM COBOKYNHOCTEH M BBIOOPOUHON COBOKYITHO-
creil. O0603HAayuM § COCTaBJIsIIOLLEE U3 K 3JIEMEHTOB uepe3 §, U BEPOSTHOCTb S
uepe3 P(s).

[Tpu npocroit ciyuyaiinoil BbiOopke (0e3 Bo3BpallleHUs1), 00beMa 1, MbI
nmeem
—1

ZV
n

wa k=n

(1.1) P(sk)zj
l 0 s ksEn.

B cratbu mokasbiBaeTcs, uTo 3ajgaya o INpeesIbHbIX paclpefesleHUsIX Mpu
npejanonoxennyn (1.1) cBomurest K Toi »Ke 3ajaue Npu NpeuloyKeHnu

n\k

AT

N—k
(1.2) P(s,) = e ﬁ} s 0< k< N.

A?

BepositHocTHy0 BBIOOPKY ¢ BeposTHocTsIMM (1.2) Ha3biBaeM IMyaccoHOBCKOH Bbk
0opKoii. I1y BHIOOPKY BO3MOXKHO NMOHMMATh, BO NepPBBIX, KaK NMPOCTYIO CIyyaii-
HYI0 BBIOOPKY o0bema k, 1pu ueM £ ecTb ciiyyaliHasi BeJMunHa ¢ OMHOMHUAJILHBIM

N) (n)\k n \N—*
3aKOHOM paclipejieIeHUsl C BepOSTHOCTSIMU L = = , U1 BO BTOPBIX,

N
KaK N He3aBUCHMBIX OINBITOB TaKHuX, 4To IpHU 1~-TOM OTIBITE 3JIEMEHT ¢ BKJIIOUEH BO

n
BblﬁOpOIXHy}O COBOKynHOCTb C BEPOATHOCTBIO ? 1 He BKJIIOYEH C BE€POSATHOCTBIO
n P &
e,
N
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Ilyctb ¥y, - - ., Yy — BELIECTBEHHbIE UKCJIA; TI0JIO)KUM
¥l S
= = Yi
N
U aaliee
(2.2) n= S —7Y)
1€Sy
U
(2.3) n*= Sy, —Y),

{37

rje S, U S, NPEeACTaBJISAIT COOTBETCTBEHHO pe3yJbTaT MPOCTON CIy4yaiHOH BbI,
OopKM M IyacCoHOBCKOM BeiOOpKHU. B map. 2 nokaseiBaercsi, 4To BBIOOPKH (8, §;)
BO3MOYKHO OCYLIECTBUTb COBPEMEHHO TaKumM 00pa3oM, 4To S, C 8, ecin n < k,
USO8, ecnd n =k, u

*)2
(2.5) Etn — 7+ gvbr;*,
D »* 'n N—n
rae E(-) obosnavaer cpegnwor u D(-) mucnepcuio.

Tenepb paccMOTpUM MOCITIeI0BATENBHOCTD {¥y, My, NVy}y_1 OCHOBHBIX COBO-
KymHocreil obbema N, co 3HaueHUsIMU y,; (¢ = 1, ..., NV,), IPOCTHIX CIyYyaHHbIX
BbIOOpeK 00bema 7, M CONPOBOXKAAWLIMX MX IyacCOHOBCKMX BblOopeK. Eciu
IpeJIoI0yKuM, 4yTo n, —> oo U N, — n, —>oo, U 0003HAUUM yepe3 7, U 7% ciy-
yaiiable BeJMUnHbI (2.2) 1 (2.3) OoTHOCsIIMECS K »-TOMY YJleHy Halleii mocenosa-
TeJIbHOCTH, TO U3 (2.5) cieayer, uto

__ p¥k\2
(2.12) fim e el
VY- D’I]*

3Hayut, npeJesbHble JUCIEPCUU M paclpejiesleHUsl CydyaiHbIX BeJMuuH A, +
+ By, u 4, + B,n% (4,, B, — nmoGue TNOCTOSIHHbIE) CYILECTBYIOT NPH Tex
Ke YCJIOBUSIX, M €CJIM OHM CyLIEeCTBYIOT, TO OHU COBNAJAIOT, ApYT ¢ aApyrom. Ho
eslyyaiiHasi BemuuHa 7% paBHsieTcst cymme N He 3aBUCHMBIX CITyYaiiHbIX BeJIMUMH

Cl)' shivy CN)

N
(29) 77* = ‘Ci
i=1
OIIpeJleJIeHHbIX TaK, uTo
(2.10) C_(?/i—Y ecium  7E€s,
. i
| 0 ecnu 14,

Taxum 06pa3om Mbl CBeJIM 3a1auy O MpejieIbHOM pacrpe/ieleH|H Ci1yyaiHoii Besu-
YMHBI 7 K TOH »Ke camoif 3alaue 0 CymMMe He3aBHCHMBIX claraembix 7*. B pesyib-
TaTe MPUMEHEHMsI JTOr0 NpocToro (axra, MOJyyaloTCs CleyHLiHe TeOpeMbl:

Teopema 3.1. ITycms S,, — noomnoncecmeo mioncecmea S, = {1, ..., N,}
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cocmosujee u3 3/1eMeHIN08 0na Komopblx umeem

(3-1) vai_le>TVD—77v-

ITpeonosoncum umo n,— oo u N, — n, — oo,
ITomom cayyaiinasa seauquna (2.2) umeem npedesbHoe HOpMabHOe pacnpe-
oesenue ¢ napamempamu (En,, Dn,) moeoa u moasko mozoa, ecau

2 (yvi = Yv)2

(3.2) lim €0 npu ecakom T > 0.
T S — )t
i=1

HocrarouHoctb ycnoBusi (3.2) Oba B MepBble J0KazaHa JAPYTMM MeTO0M
B pabote [1].

1 .
Teopema 4.1 [1pedanooncum, 4mo m, — oo, n, < EAV u

(4.1) lim E(3 9,,)=1lim D(¥ 9,)=4> 0.

PRl iEsy i€y,

ITomom coomHoweHue

(L.7) lim D 3 gy =k} =

P> o0 iESnv

lk
k!

uMeem Mecmo moe2oa u MoabKo Mmoeoa, ecau

(4.2) lim ™ =0
Y-+ v
u
(4.3) lim 2. > i =0 npu ecakom T > 0.

Y0 N,; [ypi—1|>7

Teopema 5.1 [Ipeoanosoncum umo

(5.1) lim E( S'y,) =p
=200 i€sy,,

u

(5.2) lim D( 3 yy,) = 0*
o s

u paccmampum 6GecKoHeuHO-0eAUMbLI 3AKOH, OMAUYHBLIL 0M HOPMAALHO0 U UME0-
wuii cpedHwio u, Oucnepcuto 6% u ao2apugm xapakmepucmudeckoil @yHKyuU

(5.3) Tut + J (eft* — 1 — dtu) éd K(u).

—00
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9mo pacnpedeeniie I64eMest NpedeAbHYIM OAR CAYHALUHOL 6eAUHUHbL X' Y, M020a

U moJabko mozoa, ecau i€sy,
vew N,
u
ar o
(5.5) lim 2 3 42 = K(u)

V> ZVV Ypi<<u

80 6cex mouxax HenpepbigHocmu K(u).
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