ON SOME PROBLEMS CONNECTED WITH THE GALTON-TEST
by
E. CSAKI and I. VINCZE

Introduction

One of the oldest two-sample tests is that proposed by GALTON to DArwIN
(see [6]), without however knowing the distribution of his statistic. As far as
we know this distribution was determined for the first time in the work of
K. L. Cauv~xe and W. Ferrer [1]. Papers [2], [3], [4] and [5] are considering
the same problem and its generalization respectively. As the Galton-test does
not appear to be powerful, present paper aims at improving the test both by
modification of the Galton-statistic and by forming a pair of statistics. Our
considerations are closely connected with the method of N. V. Smirxov used
for the determination of limiting distribution of his two sample test [9]. In
this paper for equal sample-sizes some exact joint distributions are determined
by elementary methods and the corresponding limiting distributions are deter-
mined as well. We wish to consider statistical problems and the case of different
sample-sizes in a following paper.

Notations. Let us denote by &, &, ..., &, and n, 7, . . ., 1, samples
taken from populations with the common continuous distribution functions
F(x) and G(z) resp. Let us arrange these samples in order of magnitude:

) Haef= ..«
Ny R
We introduce further the union of these ordered samples:
O<<... <
and the random variables
g [F1 H a=¢
| =1, i &=,
The partial sum of the 9, -s is denoted by s; i. e.
si=Hh+9h+...+9,8=0, t=0,1,2,...,2n.
Under the assumption F(x) = G(z) each array (1?1, By, « « » By,) of the

n(41) -s and n (—1) -s has the same probability (Zn . Each array corres-

n
ponds to a random path starting at and returning after 2n steps to the origin.
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Each path has the same probability. If the points (¢, s;) are represented in the
plane and each of them is connected with the next one, then we obtain the
usual illustrative figure of the paths. We shall denote by
E,, a path from (0, 0) to (2n, 0),
T; a point of the path, where either (s,_;=—1,5=0,s,,=+1)
or (s;{;=-4+1, s;=0, s;;,; = —1) occurs, and we join to these
points 74 = (0,0), T,, = (2n, 0).
T* a point of the path, where either

(si—l:k_l’ si:k’ Si+1=k+1): or (S[_1:k+1, Si:k, Si+1:k—1>

holds.

We shall call in the following the points 7'; and 7% intersection
points.

E., an E,,path containing exactly /41 7; points; with other
words an E} -path has [ waves (halfwaves),

Eg! an E,,-path having !+1 7, points and 2g steps above
the axis.

El, . an E, -path having /4 1 T'F points,

Eg! an E! ,-path having 2g steps above the height #,

H% a path starting at the origin and reaching for the first time
the height £ at the m-th step,

N(A4) the number of 4 paths or points

2n

i

e.g. N(E,,) = (an') or for an

Bl e N(T,-).) .

§ 1. The Galton statistic and the number of waves

1. We shall give two proofs for the following

Theorem 1.1

2il
(2) N(Eéu) = 7

2n

b= 122y s swullis
n—1

First proof. As it is known the number of X, paths, going throughout
under or above the axis, is

1 2 m)
m-4-1\m '
In consequence of this the number of E, -paths with intersection points
TO‘ T2a1’ T2(m—!—az)’ Sl T?(a1+a2+--'+al—])’ T2(a1+az+---+al) (al + Uy + 2L e + Q=
=mn, a; = 1) is equal to
9 1 2a,) 1 (2d, 1 (2 .
a;+1\la; Ja,4 11| a, o4+1 \a

The factor 2 is due to the possibilities of starting in either positive or negative
direction.
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Hence we have

N(By) =2 ! -(2%]..,_1_(2%).
kT S o T |y a+1 |

1=

Let us denote the generating function of the N(Eb,)-s by F,(v), i.e.
(3) Fy(v) = 2 N(Byy) 0.
n=

Let us introduce further the notation for the known generating function

. 1 [2a 1—})1—4v
W TR O s
~a+lla 2v
As it is easy to see the relation
| — SES \ 21
Fi(v) = 2[f0)] = 20" u;—ﬂ’
v

holds. One of the authors [8] has determined the following generating function

l - 1—|/1—@2’
L+ ( 20 ]

©

2

7=0

214 25
7

from which the relation
Fl(v)=22[2l_"—27)Lvi+l:22£( 2n )’U"
=3 J L+ A —

may be obtained, giving the proof of our theorem 1.1.
Second proof. There holds the following
Lemma.

N(B;,) =2 N(H3,).
For the known relation (see eg. Feller [7] p. 71)

l

N(HE) =

2n
n—1

the proof of the lemma gives us the proof of theorem 1.1 too.

As one half of the E} -paths is starting in the positive direction and the
other half in the negative one, we may consider the paths with s; = 41
only. A one to one transformation of these paths into the H3-paths will be

T*
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given. This happens in the follovung way: Figure 1 shows a possible domain
within which such (£}, | s1 = - 1) path must proceed. As it is seen each path
is divided by the points 7'; into [ sections.

é A A

4, 7-2/';
7

N— > &

Figure 1.

Let us reflect the positive parts of the path (the positive waves) around
the axis (see figure 2).

Figure 2.
Here we have for each ¢ =1, 2a; + 1, 2(a; + ) + 1,. .8 =—1.

Let us omit these first steps of each of the / sectlons and let us ]om to the end
of each section a positive step. Figure 3 shows the domain containing the
graph of a path after the mentioned modifications. Thus we obtained a HZ,
path.

2/
e ———4
2n

Figure 3.
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The connection between a HZ, and the correspondmg (Bl |8,=+1)
is given by the relation that the points where H%, reaches the height 2i for
the first time correspond to the 7'; points of E (z =1, 2,...1). This con-

struction may be carried out in the 0ppos1te dlrectlon as well and thus the proof
of our lemma is given.

2. Let the random variable 4 be the number of wavesin the case of two
samples defined in the above section. Then our theorem 1.1 gives imediately
the following

Theorem 1.1°. Under the null hypothesis

2n ]
2l \n—1
— _— e— = )
(5) P(A =1 3 lzn ’ =12, 5 T
n
or
2n — 1]
n—1
= =L = = g ——r
PA<l)=1—2 2n} , 1=12,...,n
n
For the limiting distribution we have
(6) lim P(A< y)2n)=1—e2", y=0.
n-—»oo

As it can be seen the random variable 4 is equal to the number of inter-
sections the two empirical distribution functions. We wish to mention that a
similar problem was considered by MimaArLEvicH [4] but his definition of
intersection is not equal to ours and he obtains different results.

3. Let us consider now the Galton-statistic. Let us denote it by 7,
thus y is equal to the number of &*-s exceedlng the corresponding 7#(i =
=1,2,...,n) and y may be 0,1, ..., n (see the array in (1) of section 1.)
As it is known 2y equals the “time” spent by the point walking randomly
on the straight line above 0. The relation

P(y:g): 3 g—_—0,1,2,...,n.

is well known.

For the comparison of the two samples, i. e. for deciding whether the
hypothesis F(x) = G(x) holds, or not we suggest the test based on the joint
distribution of the pair of statistics (y; 2). In order to determine this distribu-
tion we prove the following
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Theorem 1.2. T'he number of E§!-paths is equal to

N(Eg) =
3 2¢ 2n —2¢g
. /) 4 it L s 5
2¢g(n g)(g—-)(n—g——) if 1 is even
2 2 2<l<2g<2—1
=4 2—1 ( 2g [ 2n—2¢g +/ 2g 2n—2g
sgn—o|[,_1+1 ( S (_l:_l S ERY i
¢ 2 = 2 4 2 . 2
(7) iflisodd, 1 —1<2g9<2n—1+1

Proof. Using our above notations let be the ordinate of the 7', points
0, 20y 206 & @)y 200+ o+ <. o Gy 2yt gt e @)=
=2n. Ifs,=+1, theng= a; + a3+ a5+ ... must hold. Hence for the
number of Ef! paths starting in the positive direction we have

1 2a I 2a
®) b i e
a; + 1o a,+1 1o
where 2* means summation for oy + a3+ ... =g, ag+ 04+ ... =n—g
and 0; > 1,71=1,2,.. .1 In the same way we have for the number of E§;!

paths starting in negative direction

o S L el T

a,+ 1
where now the summation holds for a; + o34+ ... =n—¢, ay+ a4+ ... =
e=gand a2 1, =112 4 L
N(E§! equals the sum of the above two expressions (8) and (9).
Formula (8) may be written in the form

a4 a,

1 l2 04 il 204 "
A(S’) e et al + 1 al Og + 1 Og
x el 3 el ]
agtagt...=n—g 51 + 1 Oy ] Oy + 1 Ay !

and expression (9) equals

2 1 (Qal] 1 [2a3 ”
\(9’) ax+a’+.“‘:n_g al + i{ (08 dg + 1 g
" 1 2a2)>_ 1 2(14)'“).
u’+a‘+“'=ga2—{—1 oy Jag+11a,
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1 L
Ifnowlis even, then we have for the first factor in (8') the value — N (Egg)
2

1
and for the second %N (Eg(n_g)\ But the same holds — in inverted order —

for the factors in (9). These give the statement of our theorem 1.2 for even /.
If 7 is odd, then we have for the two factors in (8'),

1 . 1+1

1 (2 1 (2 1 (2 o
alJ ( a3J % &) 4—1( % — ~N(E2g2 )
aroae gt 1laJag+11as o+ 11 a 2
and
1 (2a 1 (2a i Dy
( 2) : 4) . ) = Ly (e ).
PN e SO +1llayJa;+ 1\ o, o1+ 1la_, 2

We have analogous expressions for the factors in (9’) and thus we obtained
the complete proof of our theorem 1.2.
The distribution of the pair of random variables is given by

Theorem 1.2°. In the case F(x) = G(x)

2 5 X o W
.)1 ( . 29l 4t Zgl , if L is even
-”] 29in—@|g— 2 | ln—g—=
n 2 2,

(10) P(y=g, A== (27| [4g9(n —g) (g__l+1)( 1
2

2¢ - 2n—2¢ S
+( l—l\)( l+1)[ , if lis odd

n — —
g . |
here if g = 0, or n, then I = 1,
if1<g<n—1,thenl=2,3,..., min (29 + 1, 2n — 29 + 1)
and for the limiting distribution

y 2
; ; o 2 u? y 2D lu:v
(11) ’111:2 Py<zn, A<yl)2n)= Vﬂ ’ J [0l — o) e 20—V dudy.
00

As mentioned in the introduction the statistical questions of the test
based on the above statistics will be treated in a second paper. We shall prove
there that the test based on the statistic 1 is asymptotically consistent against all
continuous alternatives.

§ 2. Extension of the Galton statistic and the number of waves

1. In this paragraph the distinguished role of the height k = 0 i.e.
the horisontal axis is abolished and the situation of the random path relative
to the horisontal line of height £>0 is regarded. The number of intersections
and the length of time spent above this height will be considered.
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Theorem 2.1. The number of Eb, , -paths, is equal to
2n + 2
—k—1

k+l+1 0, W0 odd.
n—+ 1

Proof. We shall give a one to one transformation of the Ej,, -paths
into the H2kt2+2 paths. Let be 7, the first and 7, the last 7% point. (See
figure 4.)

(12) N(EL,,) = [

K = = =W

Figure 4.

Let us leave the section (0, r;) of the path unchanged. According to
the second proof of theorem 1.1, the section between »; and r, corresponds to
a path starting at the point (ry, k) and reaching after r,—r, steps for the first
time the height k 4 2/. Concerning the section between 7, and 2n let us first
alter the signs and then the direction, i.e. we replace #,,, ..., 8,, by —#,,,.... 9,
and let us attach this transformed section to the end of the previous
one (see figure 5).

Finally let us now insert both between #, and 4, ., and after #,, a
(4+1). Thus we obtain a H %’,‘,ﬁ%’“ -path. By revorsmg this procedure it may be
seen that this transformation is a one to one.

We wish to mention that by writing | k| instead of % the formula (12)
is valid in the case of negative k as well. From formula (12) there follows the
following

Theorem 2.1'. In the case F(x) = G(x) denoting by 7, + 1 the number of
T points and by » the maximal distance between the two empirical distri-
bution function

% = n-max(F,(z) — G, (r)) = max s
x) 0<i<2n
the relation
2n + 2 "
Pix >k A =1)= kﬂi,l ﬂ_k_l,, k>0, 1=1 odd.
n+1 2 Tl)
n

and for the limiting distribution

limP|-* ~a,

<yl =e2@ —e—2at+y* q >0, y = 0 holds.
n—o V VZn y] y
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L

e
~—

k+ 2¢

Zn

Figure 5.

]
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2. Let us regard now the modification of the Galton-statistic.
As mentioned above the Galton-statistic y is equal to the number of the
positive members of the array

& — M — T e S =0 cuua S~ 0

If one of the samples is removed in one direction the number y, of the positive
members of the array

oo — s S — 18 -+ &R — &

may be considered. It is easy to see that 2y, is equal to the “time’’ spent by the
point walking randomly on the straight line above the height k. MimALEVICH
has derived an equivalent problem to this [4] and obtained a result equivalent
to the following:

(13) P(”>k17k:g):(217,2(77
r=g

k

n—r

2n —2r
r+1\ln+k—r

n
3. We now prove the
Theorem 2.2.

(k+1)@E-1) [ 2¢ !
NEgy =T J¢ 1) ¥ X
e ig (g_l 1) (r—g)(n+1—7)

2

2(r—9)
z_l)

r——g—i2—

2n+2 — 27

)

X

n—r—k

where the summation is for 2n — 2k > 2r = max (29 + 1 —1, 21).

Proof. If 7, and r, denote the first and the last 7'® points, resp., the
section between r; and r, is an E$! -path starting in positive direction
where 27 =r, — ;.

The first section corresponds to a Hf'l-path, the last one to a
HEt, o -path.

Thus

2nk 2 N H!r{:%—l rz—rl"sl =+ 1) N(Hg;'l—*lrzﬁ-l) =

2n—2r—k

=N DT NHEL)NEG, sy = + 1) N(HE Ly, 10) =
() n=k

2n—2r—k
[ Egl,s;=+1) Z‘ N(HERL) N (HE 2,_,1“)] =

Ty=t

29 2(7__9) 2n——27—kk+ 1
i
r_g(g_l—l—hl)(r_g_l—l Ek r1+1
2

=
>F

n=
2

&
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" r+1 k41 2n —2r —-r; 4+ 1
(T1+k+1)2n—2r——r1—i—1(2n—27—71+k+1 ’
2 2

but using the method of generating functions it can be seen that

b b L i+l ) E+4+1 ( 2n — 2r —ry 4 1 )_

~ r+1 r1+k+1 gy e B g - 1 | B0 — B — rl+k+1
2 2
k41 (2n—2r+2)
n—r4+1\n—r—Ek ’
proving our Theorem 2.2.

Theorem 2.2°. In the case F(x)= G(x) for the random wvariables x, },
and vy, the joint distribution law

1
2n
n

P >ky.=¢,4.=1) = N(Eﬁ,1 A

holds and we have the joint limiting distribution
— > a; — = < yy ] =
V n V

2 (u+2au)’

agO,ng,Oézél.

lim P

n—»o

Proof. For the finite distribution we refer to the expression (14).

In order to obtain the limiting distribution the following notations are
introduced

k l

o~ —— 8o il Lo
V2n V2n 5
@ =020 San >0
from which follow
9 . 1 1
dy ~—( is odd!),dz~ —,dw~ —.
Vn n n

Further we have

I+1 1 y,— 1 y

—_— - — 2 ~ — —— 27‘—— 3

: 2],ZV9 ; w—_V( 9)
k~ V2(n —r)
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From these relations and by using the well known asymptotic formulae
we obtain the relation

lim P 1:>a,y§l—"_'<y+dy,z>&< +d2’-
n-= |[/2n 2n
1
9 2 y? [y 20,
S e _ﬂj e __1__ — (2(w—z) ) d
7m0 ) [w—2) (@ —w)h’ g

Applying for the variable w under the integral the transformation

1 —w ot
1—y 148
it follows that
2 y2a 22(1—2) ]—z J _ 40‘41_},".
.n~ 23/2(1 _z) e dtdydz .

0

The integral can be evaluated with the aid of the known formula

© ©

ol e 1 Aie.a V2bx
‘ ooy 2b == = R
tllee Edt — Jt%e dt = 7

0 0
and we obtain the limiting density function corresponding to our statement in

theorem 2.2°.
Ay 14

lim P —r_>a yS:<J+dy,zs kwz4dzl =
2Pl Y
_2_ 2 + zay _ (y+2a2)?
_— P —2a? 22(1—2)
[z(l 7" ¢ 2% e dydz .

Integration in respect of z from 0 to y leads to the relation
P (—f: >a,y=< L <y+ dy) = 4(a + y) 3—2(a+y)“dy
V2n ~V2n

corresponding to our theorem 2,1’, and in respect of y from 0 to oo to

2a*

~:—_>a 2s—<z+dz V J — e lugy,
V [u(l — )P *

which is the limiting form of the distribution (13) of MIBALEVICH.

(Received July 27, 1960.)
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0 HEKOTOPBIX NMPOBJIEMAX CBSI3AHHbIX C KPUTEPUEM
TF'AJIbTOHA

E. CSAKI u I. VINCZE

Pestome
B pabore paccmarpuBaercs ciyuaiiHoe OJy)KiaHue 110 JIMHUM, TJe OJIyK-

" 1
Jlapmasicsd JyacTaha «laraeT» eIuHuny BIIepex UK Hasa/l ¢ BEpPOATHOCTbIO E Hu

BEPHETCA IocJie 2n WAroB B UCXO0/IHOe ToJioyenue. [TycTh o6o3Hauaet 2y, 4ucio
IaroB, ITI0CJIe KOTOPHIX KOOpJAMHATA IOJIOKEHHUs dacTUlbl 0oJbile ueM & (yo —
kputepuit 'anbrona), u A, + 1 uuciio mepexojoB B Touxe k. Onpesessirorcst
pacrpejeseHsi, COBMeCTHOe pacrpejejieHe ¥ COOTBeTCTBYIOILMe MpefiesIbHble
pacrpejiesieHusi cayyallHbIX BeJIMUMH ), M A, ITU pacrpe/iesieHdst MOTyT ObITh
KCI0JIb30BAHBI ISt KOHCTPYMPOBAHUS KPUTEPUEB ISl CPABHEHUsI JIBYX BBIOOPOK.
— HcenenoBanus cBsizanbl ¢ pabotamu CmupHosa [9], FHEnEHKO U Muxanesuua

(2], [3), [4] [5])
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