ON SYSTEMS OF EQUATIONS CONTAINING ONLY ONE NONLINEAR
EQUATION

by
Btra HAJTMAN
§ 1. Introduction

The systems to be considered here consist of several linear equations
and of one equation of higher degree. Our purpose is to find conditions of
solvability and the number of solutions, and to give an explicit formula for
the solutions. This is achieved by giving explicitly an equation in one unknown
the knowledge of whose roots reduces the given system to a linear system.
We call this equation ,,the eliminant of the system’. We are giving this
eliminant in terms of symbolic determinants. Such ones were applied in
elimination theory first by CrLeBscE who generalized (in his paper [3]) the
use of symbols introduced by AroxmOLD [1].

Our method is — essentially — the application of PoissoN’s one [6]
to this special system. It seems this has more advantages here than any other
method. Namely, the known methods (those of B&zouT, CaAYyLEY, KRONECKER,
ete.) give us procedures of constructing the eliminant, but do not give for
it an explicit formula, which we can do here without any difficulty. Our method
enables us to discuss certain properties of the solutions such as the number
of the different roots, the multiplicity of the roots, the rank of the system
of equations. We are able to establish explicit relations between eliminants
belonging to different unknowns. Among the eliminants of the classical
theory such relations can be found only after the application of Liouville’s
transformation (see e. g. Nerro [5] §§ 359, 387. Bd. IL.) which is rather
inconvenient. Our method has the practical advantage that we may restrict
ourselves to determining a preassigned unknown if we are interested in only
one unknown.

The greatest part of this paper deals with systems in which the number
of independent equations is equal to that of the unknowns. The general case
will be considered in the last section. We devote a separate section to the
behaviour of the solutions and that of the eliminants under linear transfor-
mation.

Similar systems have been dealt with by CreBscH [2], but he has
considered only systems in which the number of equations is greater than
that of unknowns and he has discussed merely the existence of a common root.

G. FrEUD was so kind as to raise the question dealt with in this paper
and he proposed to choose this way of solving. In the preparation of this

paper I have got many helps from Prof. L. Fucas too. Iam very much obliged
to both of them.
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§ 2. The solution of the system of equations

Let us consider a system of » equations in n unknowns, where n — 1
equations are linear and one equation is of degree k>1. The coefficients of
the system of equations are supposed to be elements of a field F of charac-
teristic 0 or some prime p >k. The (n—1) x n rectangular matrix 9% of
the coetficients of the linear equations is assumed to be of rank n—1. We are
looking for the solutions of this system.

Writing the equation of degree k in the usuxl way in homogeneous
and symmetric form, we have the following system of equations:

n
W a0y =, (=121,
j:
n n n
(2) > Gt 6Dt Biten + =10,
iy=0 ;=0 75=0
(2a) e = 1

where a,;, b;, cii,...i, €F, the c;,.. i, are independent of the permutation of
their mdl(eq and’ the matrix la;;] =¥ is of rank » —1.

Two types of determinants are needed in what follows. We obtain the
determinant 4; from A by omitting the column of index j and prefixing the
sign (—1)L.T he other, A4Y may be derived from A; by putting the elements
b; (the right members of the linear equations) in pla(o of the column of index

{. Then obuously AP = — AP, Tt is useful to agree to put 4y = 0; — AY =
A(()) — A A(]) = 0.

l\(wt \\o “Ilt(‘ the coefficients ¢;;, . ; as the product of the symbols

Bjyy Gigs » .+ 5 Gl 08 Fymbols ¢ (7_0 0 , m) may be regaldod as

indeterminates over ¥ which permute among themselws but it is to be
emphasized that we shall consider only formulas in which every term contains
no ¢; or the product of exactly & symbols.

The equation (2) may be written as

nﬂ k
(3) ( = %

The explicit construction of the solution of the systems above depends
on the following lemma:

Lemma. If {&, &, ...,&,} is a solution of the system (1)—(2), then
S, satisfies the equation

(4) (Px, — R)¥=0 G=1,2,...,n),

where P and R; are symbolic determinants defined by

Cq Cy ces Cpy | C1 s wiGpag —Cy Ciyq oo Cp

|

(D1 Y3 - Qg Ian v i by @y ...y,
P =l ; Ri: .
(;)) A(III"ll a, 12 Q1| (ln—ll ¥l Y an L=, bn~l an#li': 8 A an—ln
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The equations (4) will be called the eliminants of the system (1)—(2).

Proof. By Cramer’s rule we obtain from the equations (1):
(6) ;A =a,4; + AP.

This equation is valid also in the cases ¢ = j, ¢ = 0, j = 0.

In order to verify the lemma, let us multiply the equation (3) by the & th
power of A; and substitute (6). It is enough to perform the calculation for
a single factor. We obtain

A Jojzy= Doje;A;— AP) = Pr, — R

= =0

for, denoting by X7 the sum from which the index 7 is omitted, we have

n n
,gchj:jgchj:P’
(7)

n n
ch A}"’: 2 A‘” + ¢4 A“’ T AP = 216 A(z)_~ cod; = R;.
j=0 =1 i=1
This proves the lemma.

We shall call the unknown «; (and also the index j) singular if 4; = 0.
For nonsingular unknowns we can state also the converse of the lemma

above:

Theorem 1. Let x; be a nonsingular unknown. To every root x; = &; of
the eliminant

(8) (Pz, — R) =0

there exists one and only one solution {&, &, ..., &,} of the system (1)—(2)
which may be got by the formulas (6) and in this way every solution of (1)—(2)
can be oblained.

(Thus the solution of (1)—(2) can be got by solving first (8) and then
using (6)).

Since A4, 4 0, the values &; got from (6) obviously satisfy the system
(1), whatever & may be (Cramerq rule!). If we substitute them into (2), it
seems immediately that they satisty this too provided that &; is a root of
the equation (8). And this is what we wished to prove.

By the consideration of the equation (6) it will be seen at once that (4)
for singular unknowns is not suitable to solve the system of equations: to
each of them (6) gives only one value. (If there exist more solutions than
one then the singular unknowns have the same value in each one.) However,
the equation (4) is often not adequate to the determination of this single
value. Concerning this case we may state:

Theorem 2. Let x, be a singular unknown. If P* =0, the equation (4)
for x; has a single root. with multiplicity k. If P¥ =0, then every coefficient
of the polynomial (Pxy— R)* is equal to zero.

10*
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Proof. Let z, and x, be nonsingular unknowns. From (6) we have
. .,

A, 4,
since A; = 0. Multiply the first equation of (7) by &, to get:

9) £

I n
(10) PESZZCjAjfszzch}S)zRS.
j=0 j=0

Hence (4) has the form
(Pg,~— BY = (Pg, — PEN =PHg, — &) =10,

which completes the proof.t

§ 3. Properties of the eliminants and the solutions

The eliminants for nonsingular unknowns are suitable not only for
getting the solutions, but also for establishing certain properties of them,
e. g. the number of solutions, the multiplicity of a solution. Starting with
a fixed nonsingular unknown z;, it is evident that the number of all solutions
is equal to the effective degree g; of the eliminant for z;, unless the eliminant
vanishes identically (and so g; is undefined). Let a root £; of this eliminant
have the multiplicity y;, then — according to the usual definition (e. g. see
NetrTO [5] § 349. Bd.Il.) — we say the multiplicity of the solution {&;,§,...,&,}
(belonging to & by (6)) in the system (1)—(2) is u;.

However, — as it is clear from the proof of Theorem 1 — there cannot
be made any distinction between the different nonsingular unknowns.? Indeed,
we shall prove that g; is characteristic for the system itself, i. e. for every
nonsingular index its value is independent of the index. (Consequently, the
index ¢ may be omitted.) It will also be proved that in the eliminants for
nonsingular unknowns the multiplicities y; of the elements & of a fixed
solution {&;, &, ..., &,} are equal. Both of these assertions follow immediately
from the next theorem.

Theorem 3. Let x, and x, be nonsingular unknowns. If (by (6)) we apply
the linear transformation

Ar A;r)
11 T,=—2
( ) r At t + At

k
to the eliminant belonging to x, and then multiply by [%) , we obtain the
eliminant belonging to w,. '

1Since & is the root of the (k — 1)st derivative of (4), we have
Pk-1 R
=T
(if P*¥ # 0). By (10), this is the same value as that got by (9).

2 The conditions required at the start of our discussion guarantee the existence
of only one nonsingular unknown.
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Thus the eliminants belonging to nonsingular unknowns differ essentially
only by a linear transformation.

Proof. Clearly, it is enough to show that (11) implies
A, (Px; — R) = A,(Px, — R,).
First we shall verify the relation
(12) A B = AVP 1 4.8, .
Using (7), the coefficient of ¢; in (12) is:
A AP =A,0,4;— Ad,0;4, =
=APA;+ A, 0, A;j— Az, A= AP A;4- A, AP

where we have applied (6) again and again. This proves (12). Now by (11)
and (12)
APz, — R,) =Pz, A, — A®) — A, R, =

= A,Px,— (APP + AP+ A, R)= A,(Px, — R)
which completes the proof.

Corollary 1. T'he eliminants (4) for nonsingular indices are of the same
effective degree g.

Corollary 2. If {&,, &, ..., &,} is a solution of (1)—(2), then for every
nonsingular index i the multiplicity of &; in the ith eliminant is independent of ©.2

For singular indices the effective degree of the eliminants is equal to
g ifand only if ¢ = k, — otherwise the eliminants are identically zero. Similarly,
the multiplicity of a root of some singular eliminant is either 4 or undefined, —
as we have seen.

We discuss the case, when ¢ > 0 is not true, separately. It ¢ = 0 (i. e.
among the coefficients of (8) only RF is different from zero), the system
(1)=—(2) is inconsistent. If every coefficient vanishes (¢ is undefined), our
system has infinitely many solutions (it is indeterminated).

Our system is of rank n or » — 1. In KRONECKER's terminology [4],
a system of equations in » unknowns is of rank n — j if its solutions form a
j-dimensional manifold. In our case, if ¢ > 0, the rank is =, while if g is
undefined, it is n—1 and not lower, because the system (1) is of rank n—1.4

The eliminant determines too, of course, what extension of the field
F is needed in computing the solutions. The extension needed in the calculation
of the roots of the eliminants will obviously contain the whole solutions, since
the equations (6) are linear. Because of Theorem 3, however, it is also true
that the extension of the field needed in solving will be the same one for every

3 This statement follows from a theorem of the classical theory too. That asserts
(see e. g. NeTTO [5] § 403. Bd. II.) that the multiplicity of a solution is equal to the
product of the multiplicities occurring in the respective equations of the system. (We
shall use this theorem in the fourth section.) However, our Corollary 2 shows that the
eliminant (8) is equivalent to those defined in the classical theory.

4 We note that the values got for the singular unknowns form always a 0-dimensio-
nal manifold therefore the rank of the indeterminated system will not in general be
so-called pure rank.
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nonsingular unknown, and we cannot narrow this field by seeking some
more suitable eliminant. Accordingly, if one of the eliminants of some system
(1)—(2) is not solvable by radicals (in the cases k¥ = 5), then none of the
others for nonsingular unknowns may be solved so.

§ 4. Linear transformations

We shall use the following notations. The determinant of the matrix
[74] of the linear transformation

n
(13) a'[=2‘t,-jyj We=1,8;..0 8
j=

will be denoted by 7. We suppose that 7' = 0. Furthermore let [o;;] be the
matrix of the inverse transformation of (13):

(14) Y= 2 oy (6=1,2...,m).

Then o;; = T';; T-', where T is the so-called cofactor of 7 in T.

It 'we apply the transformation (13) to the system (1)—(2), we get a
similar system of equations with unknowns y,. The new system has again
eliminants, etc. We keep the same notations for the new system with adding
asterisks.

Next we discuss the behaviour of the eliminants under a linear trans-
formation.

Theorem 4. For the leading coefficient of the transformed eliminant we
have

JPk o JARTIR

Proof. Let us apply the transformation (13) to the equation (3), after
we have extended the matrix [7;;] by the elements 7,y =1, 7y, = 7,y = 0
(&; =1, 2y .5 m). We have

n

n n
Zfij?/jzz 201’71'1‘)!/]-
0 =0 \i=o

n
i
=0 J=

1

Hence [7;;] transforms the vector (cq, ¢y, ..., ¢;,) into (c}, cf, ..., cf).
Therefore, the symbols ¢; are transformed in the same manner as the coefficients
@;;. Consequently,

JERd— i 1A
proving the theorem.

Theorem 5. For the effective degrees we have

g*=g.

Proof. In view of the factorization theory of matrices (e.g. see WELL-
STEIN [7]) one can interpret every nonsingular linear transformation as a
finite sequence of the elementary transformations of the following types:

a) interchange of two unknowns;

b) multiplication of one of the unknowns by some element ¢=0 (¢ € F);

c¢) addition of a certain unknown to an other one.
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If we consider in detail the change of the eliminant uder these elementary
transformations, we obtain that the equation (8) either remains unchanged
or will be one of the forms

¢ (Py,—R) =0,

(Py; — B, B)k=0

It is easy to see that in both cases the effective degree remains the same as
the original was. (Unless g; will be singular.) Q. e. d.

By the theorem mentioned in the third footnote a solution of (1)—(2)
has the same multiplicity u in the system (1)—(2) as in the equation (2).
This wis — by definition — the multiplicity of the ¢th element of the solution
in the ¢th eliminant, where ¢ is any nonsingular index. The usual definition
of multiple roots of some equation in several unknowns is the following (e. g
NerTo [5] § 351. Bd. I.): a root {&, &,, ..., &,} of an equation in » unknowns
has the multiplicity u if the equation may be written as a homogeneous
polynomial of degree u of the factors (rj—s ). (In general the coefficients
of this one will be, of course, polynomials in » unknowns.)

Let {&, &, ..., &} be a u-tuple solution of (1)—(2). Denote by 7;
Clie= 1525 2 ¢ 55 ) the values obtained from the transformation (14) by the
substitution x; = &;. Writing (2) in the mentioned polynomial form of (z; ==yl
and carrying out in this form the transformation (13), we shall see that thC
array {my, 7, ..., 1,}is a root of the equation (2)* which has at least the
multiplicity u, or, since the same holds for the inverse transformation, it
has exactly the multiplicity w. Thus we have proved the following:

Theorem 6. Applying the transformation (14) to the u-tuple solution
{&1, &, ..., &,} of the system (1)—(2), the arising array {ty, Mg ..+ Np}
will again be an exactly p-tuple solution of the system of equations transformed
by (13).

§ 5. The general case

We have solved the system (1)—(2) imposing strong restrictions upon
the number of equations and the rank of the matrix of coefficients. Consider
now the general case.

(15) ya,,xj b, t=1,2...,m),
n n n

(16) 2 200,'1,',_,”','}:;)’},"1‘,'2.._.’l‘,ik:O,

(16a) oy =1,

where the coefficients are taken from a field F (which is of characteristic 0
or a prime greater than k). The values of the coefficients ¢;;, ; are invariant
under taking any permutation of the indices.

For the solvability of our system a trivial necessary condition is that
the system consisting of its linear equations be solvable, i. e. the rank of the
matrix of the linear system be equal to that of the augmented matrix. Then
choose a maximal independent system of linear equations and suppose that
(15) denotes already this, that is, the matrix A, of cofficients of (15) is
of rank m.
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We shall distinguish three cases: m<n—1, m =n—1 and m = n.
The second one was dealt with above in detail, now we scetch how to treat
the others.

Consider first the case m<n—1. By hypothesis every solution (if exists)
contains parameters, so the rank of the system is a priori lower than n. Now,
introduce the indeterminates b,, 1, b,, 15, - . ., b,—; as parameters and add to
the system (15) the equations

(17) xjm+l = bm+1’ zjm e bm+2’ FCROR xfn = bn-—l’
where j;, Ja, - .., j, denotes a permutation of 1, 2, ..., », such that %,
has a nonvanishing minor composed of its columns j;, jo, ..., jpy1- Let f

denote the number of different systems which may be got from (15)—(16)
by permuting the indices. It is easily seen this f varies in the interval

n

m -+ 1

(n—m)=f=

according to the number of nonvanishing m-rowed minors of %,,.

Now, choose a fixed permutation of indices and add (17) to the equations
(15); it is immediately seen that the conditions required in § 2 are fulfilled.
Hence the system of equations can be solved in the same way as there. The
only difference is that the first m of &,, b,, ..., b,_; are constant, but the
other n—m—1 are indeterminates over F.

The results of sections 2 and 3 remain valid also in this case. Obviously,
the results of § 4 are valid only for linear transformations leaving invariant
the linear subspace of the unknowns and that of the parameters.

Now we make some remarks.

Considering the matrix of the system (15) enlarged by (17), one sees
immediately that the parameters are always singular.

Because of the special form of the matrix of the system of equations
the determinant P defined by (5) equals

C;

C; . C

J1 Je Jma
aljl alh 5 aljm“
Bl = (— 1P,
| -
ia’mjx amj: sae a’mjmu

where 7 is determinated by the chosen permutation of the unknowns. However,
concerning the determinant R; (¢ =, 45, ..., jmy1) We get

n
(—1)*B;=T;— . 2 bj—l U({j)y

j=m+2

where T';, resp. U¥ are obtained from § by interchanging the i¢th column
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with the column (—c¢y, by, . . ., by,), resp. (¢;, @y, - . ., ;). Consequently, the
eliminant (8) becomes

k

Sx; —T; + 2 b s U =0,

j=m+2

The determinants S, 7', U’ contain no longer parameter.

Finally we discuss the case m = n. CrEBscH [2] has explicitly given
a product of symbolic determinants which vanishes if and only if there exists
a solution. We give a further condition for the solvability:

Theorem 7. Consider a system of equations in n unknowns consisting of
one equation of degree k and n linear equations having a matrix A, of coefficients
of rank n. This system has a (necessarily single) solution if and only if the
equation of degree k can be written as a polynomial (of degree k) of the limear
equations of the system.

Proof. It is well-known that there exists at most one solution. The
sufficiency of the condition is also trivial.

In order to prove the necessity let us apply for simplicity’s sake the
linear transformation
(18) :aljx =Y (2':1’2?--'!”):

j=1
transforming the linear system into
(19) ¥i=b; ¢t=12,...,n).

The transformation can be extended also to the unknown z, in the trivial
way. So the unknowns increase with the ,,unknown’ 7, = 1 and the linear
system increases with a new equation of index 0 where b, = 1.

Apply the transformation (18) also to the equation (2). Obviously we
shall get a polynomial of degree k& in the new unknowns y;:

v

(20) :‘ — thlz Ikyhylz oo Yy = 0’

i;=0 i,=0 ix=0

that is, the transformed equation is a polynomial of the left sides of the
linear equations.

Now, if the solution of the linear system (given by the Cramer’s rule)
satisfies also (2), then we have

n

(21) 2 2 271111 e iy biy o by, =0

i,=0 i,=0

To complete the proof it remained to show that (20) may be written
as a polynomial of the (y; — b;). This means that, applying the transformation

Yi =2+ b;,

no constant member remains in (20). Transforming we see that the constant
term is nothing else than the expression (21) — which vanishes. Q. e. d.

(Received October 10, 1960.)
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0 CUCTEMAX YPABHEHHH, COAEP)KALLUMX TOJIbKO 0 {HO
HEJIMHENHOE YPABHEHHUE

B. HAJTMAN
Pesiome

PacemoTpum  ciieyionlyto cuctemy ypaBHeHHMIt:

n
() jz @t = b; E=00 0,
n n
(=) oo D Ciy iy i T, ... T =0,
1=0 i=0 0
(2a) Ty=1,
rae a;, by, cii,...i, 3MeMeHTBl Tesa F (XapaKTepucTHKa KOTOporo O MM mpo-

CTOe 4ucsio, OoJibliee yeM k) M 3HayeHune KOIPOULUEHTOB ¢;;, . ; HE 3ABUCHUT OT
MepecTaHoBOK MX HMHJEKCOB. MiyTcst peuleHdsi 97O CUCTeMbl ypaBHeHMIH u
yCJ10BUSI €€ pa3peLiMmMoCTH.

B §2—4 paccmatpuBaercst ciayvyalt m = n — 1, TIpU IpeArosIOyKeHUH,
UTO paHr MaTpuLbl KoahpduumenToB A cucrembl JMHeHHbIX ypaBHeuuit (1) paBen
n — 1. OnpejenuTeseM, OTHOCAIIMMCS K HEU3BECTHOMY &;, Ha3blBaeTCsl MUHOP
maTpuupl 2, Mosyvaemblil BblUepKHBaHUeM ¢-0ro cTojbua. HeussectHoe curey-
AAPHO, €CIA COOTBETCTBYIOLMIT MHUHOP paBeH HYJIIO.

B § 2 Haxomurcs pewenue. BakHylo pojib MIpaloT clleylollde CHMBO-
JInYecKne OIpeseInTelu:

|
‘Cl Co Cn 51 a1 —Cy Ciga Cn

P =|0n G &, | \R, = ‘au @ia b @i, e |
.................. P S e I T L T L AT i
,an—l,l a/n—l,2 OO an—l,n; an—l,l i@ a’n—-l,i—l bn—l an—l,t’+1 LA an—-l,n [

rjie CUMBOJIK c¢; ONpeIeSIAITCA TaK:

Cr: Gy v w00 5= Gy, .05
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Teopema I yTBepy)K/1aeT, 4To, ec/ii HEU3BECTHOE &; He CUHTYISIPHO, TO KaX-
JIOMY KOPHIO CHMBOJMYECKOI0 YpaBHEHUS

(3) (Pz; — R)* =0

COOTBETCTBYET OJHO (M TOJIBKO O/IHO) pellleHue cucTeMbl ypaBHenuit (1) — (2),
OCTajibHble 3JIEMEHTBl KOTOPOr0 I0JydaeTcs M3 INPOCTOH CcHUCTeMbl JIMHEHHBIX
ypaBHeHM, M Takum oOpasom nosydarorcst Bce peuteHust (1) — (2). Cucrema
ypaBHeHuil (3) HasblBaeTCS IAUMUHAHIMOM CHCTEMBI.

CoryacHo Teopeme 2, ecyiu ypaBHeHHe (3) 3amucaHo Ul CHUHTYJISIPHOIO
HEU3BECTHOT'O, TO OHO HMeeT eJMHCTBeHHBI k-KpaTHbli KopeHb npu P =0
(1 3TO 3HAYeHMe TNPUHUMAET CUHIYJISIDHOE HEeU3BeCTHOE BO BCeX pelleHUsIX),
ecin ke P¥ =0, To Bce K0IQOUUUEHTHI ypaBHeHUS] paBHbI HYJIO.

B § 3 uccneayrorces cBoiicTBa 9JIMMUHAHTOB U peuleHuii. Teopema 3 ompe-
JleJIsieT COOTHOLIeHMEe MKy JIMMUHAHTAMM, OTHOCSILMMUCS K HECHHTYJISIPHBIM
HeU3BECTHBIM; OKAa3blBAETCSl, UTO OHM — HE CUYUTas MOCTOSIHHBIX (JAKTOPOB —
OTJIMYAIOTCST JIPYI OT Jpyra MNpocThIM JIMHeHHbIM npeoOpaszoBannem. OTciofa
cJe/lyeT, 4TO pPa3peliuMOCTb, YUCI0 pelleHUH, KpaTHOCTb OT/eJIbHBIX pelleHHit
0JHO3HAYHO OIIpeJeJIsieTcsl yyKe OJHUM IJIMMMHAHTOM (OTHOCUTEJBHO HECHHIY-
JIAPHOTO HEeU3BEeCTHOTO).

B § 4 usyuaercs nosejeHne 3JIMMAHAHTOB U pelleHUit B ciyyae JIMHEHHOro
npeofpa3oBaHusi HeusBecTHBIX. Teopema 4 3aHuMaeTcsi MoBejeHHEM KO3DHU-
uuenra Pk teopema 5 — (paKTHUeCKOIl cTeneHH 3IMMUHAHTOB, HaKOHELl, TeopeMa
6 — KpaTHOCTM pelleHUH TNpu NpeoOpasoBaAHUM.

B § 5 He cTaBuTCA HM KaKUX OrpAaHUUYEHMH OTHOCHUTEJILHO /11 U paHra mar-
sl . CHavasa paccmaTpuBaercs ciyyail, Korjga peuieHue cOAepyKUT Tapa-
MeTp. ITOT ciyyail CBOJUTCS K PACCMOTPEHHOMY B IlepBbIX naparpadax. Hako-
Hell, paccMaTpuBaeTcs cJyyaii, Korja panr marpuupl 2 paseH n. Teopema 7
JlaeT HeoOXOoJMMOe M [(OCTATOYHOE YCJOBME pa3peluMOCTH B 3TOM CJyuae.
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