
ON SYSTEMS OF EQUATIONS CONTAINING ONLY ONE NONLINEAR 
EQUATION 

by 
BÉLA H A J T M A N 

§ 1. Introduction 
The systems to be considered here consist of several linear equations 

and of one equation of higher degree. Our purpose is to find conditions of 
solvability and the number of solutions, and to give an explicit formula for 
the solutions. This is achieved by giving explicitly an equation in one unknown 
the knowledge of whose roots reduces the given system to a linear system. 
We call this equation ,,the éliminant of the system". We are giving this 
éliminant in terms of symbolic determinants. Such ones were applied in 
elimination theory first by C L E B S C H who generalized (in his paper [ 3 ] ) the 
use of symbols introduced by A R O N H O L D [ 1 ] . 

Our method is — essentially —- the application of P O I S S O N ' S one [ 6 ] 
to this special system. I t seems this has more advantages here than any other 
method. Namely, the known methods (those of B É Z O U T , C A Y L E Y , K R O N E C K E R , 
etc.) give us procedures of constructing the éliminant, but do not give for 
it an explicit formula, which we can do here without any difficulty. Our method 
enables us to discuss certain properties of the solutions such as the number 
of the different roots, the multiplicity of the roots, the rank of the system 
of equations. We are able to establish explicit relations between éliminants 
belonging to different unknowns. Among the éliminants of the classical 
theory such relations can be found only after the application of Liouville's 
transformation (see e. g. N E T T O [ 5 ] §§ 3 5 9 , 3 8 7 . Bd. II.) which is rather 
inconvenient. Our method has the practical advantage that we may restrict 
ourselves to determining a preassigned unknown if we are interested in only 
one unknown. 

The greatest part of this paper deals with systems in which the number 
of independent equations is equal to tha t of the unknowns. The general case 
will be considered in the last section. We devote a separate section to the 
behaviour of the solutions and tha t of the éliminants under linear transfor-
mation. 

Similar systems have been dealt with by C L E B S C H [ 2 ] , bu t he has 
considered only systems in which the number of equations is greater than 
that of unknowns and he has discussed merely the existence of a common root. 

G . F R E U D was so kind as to raise the question dealt with in this paper 
and he proposed to choose this way of solving. In the preparation of this 
paper I have got many helps from Prof. L. F U C H S too. I am very much obliged 
to both of them. 
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§ 2. The solution of the system of equations 

Let us consider a system of n equations in n unknowns, where n — 1 
equations are linear and one equation is of degree k> 1. The coefficients of 
the system of equations are supposed to be elements of a field F of charac-
teristic 0 or some prime p > k . The (и—1) X n rectangular matrix 91 of 
the coefficients of the linear equations is assumed to be of rank n—1. We are 
looking for the solutions of this system. 

Writing the equation of degree к in the usual way in homogeneous 
and symmetric form, we have the following system of equations: 

(1) 
7 = i 

dijXj = 6, (г = 1 , ,n 

( 2 ) 

(2a) 

У 2 
, = 0 Í .=0 

у 

; * = o 

ci,ij. ..it Xi, Xit . . . Xik— 0 , 

x0 = 1 

where aijt bit c ; , / t h e c,lla.. .!(t are independent of the permutation of 
their indices and the matrix [ai}] = 91 is of rank n — 1. 

Two types of determinants are needed in what follows. We obtain the 
determinant Aj from 91 by omitting the column of index j and prefixing the 
sign ( — 1 The other, Af may be derived from Aj by putting the elements 
bj (the right members of the linear equations) in place of the column of index 
/. Then obviously Af = — A f . It is useful to agree to put A0 = 0 ; — Af = 
= Af' = Aj ; Ay --- 0. 

Next we write the coefficients c,iis ,t as the product of the symbols 
C(1, c,s, . .., cik. These symbols CJ(J = 0, 1, . . . , n) may be regarded as 
indeterminates over F which permute among themselves, bu t it is to be 
emphasized that we shall consider only formulas in which every term contains 
no Cj or the product of exactly к symbols. 

The equation (2) may be written as 

( 3 ) 
7 = 0 

CJ XJ\ = 0 . 

The explicit construction of the solution of the systems above depends 
on the following lemma: 

Lemma. If (Iq, |2, . . . , £„} is a solution of the system (1)—(2), then 
I,- satisfies the equation 

( 4 ) ( P x , - B ^ = 0 

where P and R, are symbolic determinants defined by 

(г = 1 , 2 , . . . , » ) • 

P = 

( 5 ) 

. . . cn  

. . . aln 

n —11 " ( 1 - 1 2 • • a n 

R.= 
a i l 

• • • L - i 

• • • « n - i W lli+l 

• • • c„ 

. . . a , 

^ ( 1 - 1 « ( ! - l l + l • • • «(!" 1,1 
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The equations (4) will be called the éliminants of the system (1)—(2). 
Proof. By Cramer's rule we obtain from the equations (1): 

(6) xj A, = x, Aj + A</>. 

This equation is valid also in the eases г = j, i = 0, j ----- 0. 
In order to verify the lemma, let us multiply the equation (3) by the к t h 

power of A, and substitute (6). I t is enough to perform the calculation for 
a single factor. We obtain 

n n 
A, 2 С jX: = 2 , с Ax, A j — A)") = Fx, — R,, 

7 = 0 7 = 0 

for, denoting hy E' the sum from which the index i is omitted, we have 

n n 
2 c, A: = 2 Cj A, = P, 

7 = 0 j : 

2 cj Af + c 0 Af + c, A? = J " ' cj Af - c 0 A, = R, . 
7 = i 7 = 1 

This proves the lemma. 
We shall call the unknown x, (and also the index j) singular if Aj = 0. 

For nonsingular unknowns we can state also the converse of the lemma 
above: 

Theorem 1. Let x, be a nonsingular unknown. To every root x, = of 
the éliminant 

(8) (Pxt - R,)k = 0 
there exists one and only one solution |2, . . . , |n} of the system (1)—(2) 
which may be got by the formulas (6) and in this way every solution of (l)—(2) 
can be obtained. 

(Thus the solution of (1)—(2) can be got hy solving first (8) and then 
using (6)). 

Since A, =f= 0, the values I,- got from (6) obviously satisfy the system 
(1), whatever may be (Cramer's rule!). If we substitute them into (2), it 
seems immediately tha t they satisfy this too provided that I,- is a root of 
the equation (8). And this is what we wished to prove. 

By the consideration of the equation (6) it will he seen a t once that (4) 
for singular unknowns is not suitable to solve the system of equations: to 
each of them (6) gives only one value. (If there exist more solutions than 
one then the singular unknowns have the same value in each one.) However, 
the equation (4) is often not adequate to the determination of this single 
value. Concerning this case we may state: 

Theorem 2. Let xs be a singular unknown. If Pk =/= 0, the equation (4) 
for xs has a single root with multiplicity k. If Pk = 0, then every coefficient 
of the polynomial (Pxs — Rs)k is equal to zero. 

( 7 ) 

"V л (Л . 

10* 
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Proof. Let x and xr be nonsingular unknowns. From (6) we have p 
A (S) Л (S) 

since As — 0. Multiply the first equation of (7) by £s to get: 

(10) P f , = 2 с J A J is = У сJ Af = Rs. 
j=0 7=0 

Hence (4) has the form 

(.Pxs - Rs)k = (Pxs - P Sa)k = Pk(xs - £,)* = 0 , 

which completes the proof.1 

§ 3. Properties of the éliminants and the solutions 

The éliminants for nonsingular unknowns are suitable not only for 
getting the solutions, bu t also for establishing certain properties of them, 
e. g. the number of solutions, the multiplicity of a solution. Starting with 
a fixed nonsingular unknown xt, it is evident that the number of all solutions 
is equal to the effective degree gi of the éliminant for xt, unless the éliminant 
vanishes identically (and so g( is undefined). Let a root of this éliminant 
have the multiplicity yq, then — according to the usual definition (e. g. see 
N E T T O [5] § 349. Bd. I L ) — w e say the multiplicity of the solution { | 1 ; | 2 . . . 
(belonging to I, by (6)) in the system (1) —(2) is /q. 

However, — as it is clear from the proof of Theorem 1 — there cannot 
be made any distinction between the different nonsingular unknowns.2 Indeed, 
we shall prove that gt is characteristic for the system itself, i. e. for every 
nonsingular index its value is independent of the index. (Consequently, the 
index i may be omitted.) I t will also be proved tha t in the éliminants for 
nonsingular unknowns the multiplicities /q of the elements of a fixed 
solution | 2 , . . . , !„} are equal. Both of these assertions follow immediately 
from the next theorem. 

Theorem 3. Let xr and x, be nonsingular unknowns. If (by (6'J) we apply 
the linear transformation 

A A ' r ) 

( 1 1 ) = + 
At At 

to the éliminant belonging to xr and then multiply by 

éliminant belonging to xt. 

A к 
, we obtain the 

1 Since | s is the root of the (k — l )s t derivative of (4), we have 

P"-1 Rs 
Pk 

(if P k Ф 0). By (10), this is the same value as tha t got by (9). 
2 The conditions required at the s t a r t of our discussion guarantee the existence 

of only one nonsingular unknown. 
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Thus the éliminants belonging to nonsingular unknowns differ essentially 
only by a linear transformation. 

Proof. Clearly, it is enough to show tha t (11) implies 

Ar(Pxt - R,) = At(Pxr - Rr). 

First we shall verify the relation 

(12) AtRr = A ' f P + ArRt. 

Using (7), the coefficient of Cj in (12) is: 
А, Af = At xr Aj — A, Xj Ar = 

= Af Aj + Ar xt Aj - Ar Xj At = Af A} + Ar Af 

where we have applied (6) again and again. This proves (12). Now by (11) 
and (12) 

At(Pxr - Rr) = P(xt Ar - A f ) - AtRr = 

= ArPx, - ( A f P + A f P + ArRt) = Ar(Pxt - R,) 

which completes the proof. 
Corollary 1. The éliminants (4) for nonsingular indices are of the same 

effective degree g. 
Corollary 2. If {Ij, i2' • • • > f t ) ' s a solution of (1)—(2), then for every 

nonsingular index i the multiplicity of in the ith éliminant is independent of i.3 

For singular indices the effective degree of the éliminants is equal to 
g if and only if g = к, — otherwise the éliminants are identically zero. Similarly, 
the multiplicity of a root of some singular éliminant is either к or undefined, — 
as we have seen. 

We discuss the case, when g > 0 is not true, separately. If g = 0 (i. e. 
among the coefficients of (8) only Rf is different from zero), the system 
(1)—(2) is inconsistent. If every coefficient vanishes (g is undefined), our 
system has infinitely many solutions (it is indeterminated). 

Our system is of rank n or n — 1. In K R O N E C K E R ' S terminology [ 4 ] , 
a system of equations in n unknowns is of rank n — j if its solutions form a 
/-dimensional manifold. In our case, if g > 0, the rank is n, while if g is 
undefined, it is n—1 and not lower, because the system (1) is of rank n—l . 4 

The éliminant determines too, of course, what extension of the field 
F is needed in computing the solutions. The extension needed in the calculation 
of the roots of the éliminants will obviously contain the whole solutions, since 
the equations (6) are linear. Because of Theorem 3, however, it is also t rue 
that the extension of the field needed in solving will be the same one for every 

3 This s ta tement follows f r o m a theorem of the classical theory too. That asser t s 
(see e. g. N E T T O [ 5 ] § 4 0 3 . Bd. II . ) tha t the multiplicity of a solution is equal to t h e 
product of the multiplicities occurring in the respective equations of the system. (We 
shall use this theorem in the four th section.) However, our Corollary 2 shows t h a t t h e 
éliminant (8) is equivalent t o those defined in the classical theory . 

4 We note t h a t the values got for the singular unknowns form always a 0-dimensio-
lial manifold therefore the r ank of the indeterminated system will not in general be 
so-called pure rank. 
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nonsingular unknown, and we cannot narrow this field by seeking some 
more suitable éliminant. Accordingly, if one of the éliminants of some system 
(1)—(2) is not solvable by radicals (in the cases к ^ 5), then none o f t h e 
others for nonsingular unknowns may be solved so. 

§ 4. Linear transformations 

We shall use the following notations. The determinant of the matrix 
[T,j] of the linear transformation 

n 
(13) 2 Уj ( < = 1 , 2 , . . . ,») 

J=1 

will be denoted by T. We suppose tha t T ф 0. Furthermore let [ffy] he the 
matrix of the inverse transformation of (13): 

n 

(14) yl = У ou Xj (i = l,2, . . . , n). 

Then 
Ojj — T j i T L where Ту,- is the so-called cofactor of ту, in T. 
If we apply the transformation (13) to the system (1)—(2), we get a 

similar system of equations with unknowns yt. The new system has again 
éliminants, etc. We keep the same notations for the new system with adding 
asterisks. 

Next we discuss the behaviour of the éliminants under a linear trans-
formation. 

Theorem 4. For the leading coefficient of the transformed éliminant we 
have 

p*k pk pk 
Proof. Let us apply the transformation (13) to the equation (3), after 

we have extended the matrix [r,y] by the elements r 0 0 = 1, r 0 ; = t i 0 = 0 
(i, 7 = 1 , 2, . . . , n). We have 

2 et 2 rij Vi = 2 \ 2 Ci ту 
i = 0 j=о j=о u = o Vi-

el Hence [ту] transforms the vector (c0, cv . . ., cn) into (сЦ, c*, • • 
Therefore, the symbols Cj are transformed in the same manner as the coefficients 
atj. Consequently, 

P* = PT, 
proving the theorem. 

Theorem 5. For the effective degrees we have 

9* = 9 • 

Proof. In view of the factorization theory of matrices (e. g. see W E L L -
S T E I N [ 7 ] ) one can interpret every nonsingular linear transformation as a 
finite sequence of the elementary transformations of the following types: 

a) interchange of two unknowns; 
b) multiplication of one of the unknowns by some element с ф 0 (с£F)\ 
c) addition of a certain unknown to an other one. 
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If we consider in detail the change of the éliminant uder these elementary 
transformations, we obtain tha t the equation (8) either remains unchanged 
or will be one of the forms 

с ( P y , - R ) k = о , 

( P y , - i f > R j ) k = о 

I t is easy to see that in both cases the effective degree remains the same as 
the original was. (Unless yi will be singular.) Q. e. d. 

By the theorem mentioned in the third footnote a solution of (1)—(2) 
has the same multiplicity у in the system (1)—(2) as in the equation (2). 
This у is — by definition — the multiplicity of the Ith element of the solution 
in the ith éliminant, where г is any nonsingular index. The usual definition 
of multiple roots of some equation in several unknowns is the following (e. g. 
N E T T O [5] § 351. Bd. IL): a root {1^ |2 , . . . , | n } of an equation in n unknowns 
has the multiplicity у if the equation may he written as a homogeneous 
polynomial of degree у of the factors ( x j — | ) . (In general the coefficients 
of this one will he, of course, polynomials in n unknowns.) 

Let {lu | 2 , . . . , !„} he a /i-tuple solution of (1)—(2). Denote by 
( j = 1 ,2 , . . . , n) the values obtained from the transformation (14) by the 
substitution Xj = I j. Writing (2) in the mentioned polynomial form of (Xj — ly) 
and carrying out in this form the transformation (13), we shall see that the 
array {%, rj2, . . . , yn} is a root of the equation (2)* which has at least the 
multiplicity y, or, since the same holds for the inverse transformation, it 
has exactly the multiplicity y. Thus we have proved the following: 

Theorem 6. Applying the transformation (14) to the y-tuple solution 
{LU |2, . . . , !„} of the system (l)—(2), the arising array {Щ, ÍJ2, . . . , щп) 
will again be an exactly y-tuple solution of the system of equations transformed 
by (IS). 

§ 5. The general case 

We have solved the system (1)—(2) imposing strong restrictions upon 
the number of equations and the rank of the matrix of coefficients. Consider 
now the general case. 

n 

(15) a,jXj = b, (i = 1, 2, . . . , m), 
i'=i 

n n n 

( 1 6 ) J? 2 • • • 2* c i , i . . . . h x u x i , . . . » / » = о , 
í , = 0 í , = 0 í*=0 

( 1 6 a ) x 0 = 1 . 

where the coefficients are taken from a field F (which is of characteristic 0 
or a prime greater t h a n / ) . The values of the coefficients are invariant 
under taking any permutation of the indices. 

For the solvability of our system a trivial necessary condition is tha t 
the system consisting of its linear equations he solvable, i. e. the rank of the 
matrix of the linear system he equal to tha t of the augmented matrix. Then 
choose a maximal independent system of linear equations and suppose tha t 
(15) denotes already this, t ha t is, the matrix Hmr of cofficients of (15) is 
of rank то. 
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We shall distinguish three cases: m<n— 1, m = n— 1 and m = п. 
The second one was dealt with above in detail, now we scetch how to treat 
the others. 

Consider first the case m < n — 1. By hypothesis every solution (if exists) 
contains parameters, so the rank of the system is a priori lower than n. Now, 
introduce the indeterminates bm+v bm+2, . . . , bn-x as parameters and add to 
the system (15) the equations 

( 1 7 ) Xjm+ш = ^ m + l > Xjm+1 = bm + 2, • • . , Х]я = Ь п - 1 > 

where jlt j2, . . . , / „ denotes a permutation of 1, 2, . . . , n, such tha t 2Imn 
has a non vanishing minor composed of its columns j2, . . . , jm+1. Let / 
denote the number of different systems which may be got from (15)—(16) 
by permuting the indices. I t is easily seen this / varies in the interval 

(n - m) ^ / ^ 
n 

[m + 1 

according to the number of nonvanishing m-rowed minors of 21mn. 
Now, choose a fixed permutation of indices and add (17) to the equations 

(15); it is immediately seen that the conditions required in § 2 are fulfilled. 
Hence the system of equations can be solved in the same way as there. The 
only difference is that the first m of blt b2, . . . , bn_x are constant, but the 
other n—m — 1 are indeterminates over F. 

The results of sections 2 and 3 remain valid also in this case. Obviously, 
the results of § 4 are valid only for linear transformations leaving invariant 
the linear subspace of the unknowns and that of the parameters. 

Now we make some remarks. 
Considering the matr ix of the system (15) enlarged by (17), one sees 

immediately that the parameters are always singular. 
Because of the special form of the matrix of the system of equations 

the determinant P defined by (5) equals 

S 

ch ci* 
a ljl ai]2 

® m / i ®m j, 

Jm + l 

... a l y m + l 

mjm 1 l 

= ( - 1F-P, 

where л is determinated by the chosen permutation of the unknowns. However, 
concerning the determinant Rt [i = jlt j2, . . . , jm+1) we get 

( - 1 )*Rt = T t - _ 2 b H 1 U f , 
j=m+2 

where Tit resp. U\b are obtained from S by interchanging the i th column 
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with the column (—c0, bv . . . , bm), resp. (cj, aXj, . . . , amj). Consequently, the 
éliminant (8) becomes 

Sxt - Tt + >' bj^ Up 
j=m+2 

к 
= 0. 

The determinants S, Tt, Up contain no longer parameter. 
Finally we discuss the case m = n. C L E B S C H [2] has explicitly given 

a product of symbolic determinants which vanishes if and only if there exists 
a solution. We give a further condition for the solvability: 

Theorem 7. Consider a system of equations in n unknowns consisting of 
one equation of degree к and n linear equations having a matrix 2Inn of coefficients 
of rank n. This system has a (necessarily single) solution if and only if the 
equation of degree к can be written as a polynomial (of degree k) of the linear 
equations of the system. 

Proof. I t is well-known that there exists at most one solution. The 
sufficiency of the condition is also trivial. 

In order to prove the necessity let us apply for simplicity's sake the 
linear transformation 

n 

( 1 8 ) 2 Ojj X j = yi (i = 1 , 2 , . . . , n ) , 

transforming the linear system into 
(19) y, = b, (»= 1,2, . . . , n) . 
The transformation can be extended also to the unknown x0 in the trivial 
way. So the unknowns increase with the „unknown" y0 = 1 and the linear 
system increases with a new equation of index 0 where b0 = 1. 

Apply the transformation (18) also to the equation (2). Obviously we 
shall get a polynomia 1 of degree к in the new unknowns yi : 

n n n 
( 2 0 ) 2 ' 2 • . • 2 Y i , . ik Vi, Vi. • • • У о = о , 

ú = o ó = o i*=0 

that is, the transformed equation is a polynomial of the left sides of the 
linear equations. 

Now, if the solution of the linear system (given by the Cramer's rule) 
satisfies also (2), then we have 

( 2 1 ) Ü . . . J Y i U . .ik b i , bu 0 . 
í,=o ia=o q=о 

To complete the proof it remained to show that (20) may be written 
as a polynomial of the (y, — ft,-). This means that , applying the transformation 

Vi = z, + bi, 

no constant member remains in (20). Transforming we see that the constant 
term is nothing else than the expression (21) — which vanishes. Q. e. d. 

(Received October 10, 1960.) 
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О СИСТЕМАХ У Р А В Н Е Н И Й , С О Д Е Р Ж А Щ И Х Т О Л Ь К О ОДНО 
Н Е Л И Н Е Й Н О Е У Р А В Н Е Н И Е 

В . H A J T M A N  

Резюме 

Рассмотрим следующую систему уравнений: 
п 

( 1 ) 2 a i j * j = bi (г = 1 ,2 m) , 
7 = 1 

n n n 
(2) 2 2 •• • 2chi,...ikXi, xi,... xik = о , 

i j = 0 i , = 0 i '*=0 

(Щ X 0 = \ , 

где a(j, b(, c ( l i i . . . i t элементы тела F (характеристика которого 0 или про-
стое число, большее чем к) и значение коэффициентов c, iIs... ljt не зависит от 
перестановок их индексов. Ищутся решения этой системы уравнений и 
условия её разрешимости. 

В § 2 — 4 рассматривается случай т = п — 1 , при предположении, 
что ранг матрицы коэффициентов 91 системы линейных уравнений (1) равен 
77 — 1. Определителем, относящимся к неизвестному xit называется минор 
матрицы 91, получаемый вычеркиванием г-ого столбца. Неизвестное сингу-
лярно, если соответствующий минор равен нулю. 

В § 2 находится решение. Важную роль играют следующие симво-
лические определители: 

Cl c 2 • c n G - C,-_1 - c 0 C i + l • c „ 

p = « 1 1 « 1 2 • • « 1 n « 1 1 • « l , i - l h « 1 , 1 + 1 • « 1 n 

an- 1,1 an-1,2 • • an-l,n « n - 1 , 1 • • « n - 1 , 1 - î K --1 « л - 1 , 1 + 1 • • an-l,n 

где символи с, определяются так: 

CI, CI, . . . CIT — CI,IГ... IT . 
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Теорема 1 утверждает, что, если неизвестное х, не сингулярно, то каж-
дому корню символического уравнения 

(3) (Рх, - R,)k = О 

соответствует одно (и только одно) решение системы уравнений (1) — (2), 
остальные элементы которого получается из простой системы линейных 
уравнений, и таким образом получаются все решения (1) — (2). Система 
уравнений (3) называется элиминантом. системы. 

Согласно теореме 2, если уравнение (3) записано для сингулярного 
неизвестного, то оно имеет единственный i-кратный корень при Рк ф О 
(и это значение принимает сингулярное неизвестное во всех решениях), 
если же Рк = 0, то все коэффициенты уравнения равны нулю. 

В § 3 исследуются свойства элиминантов и решений. Теорема 3 опре-
деляет соотношение между элиминантами, относящимися к несингулярным 
неизвестным; оказывается, что они —- не считая постоянных факторов -
отличаются друг от друга простым линейным преобразованием. Отсюда 
следует, что разрешимость, число решений, кратность отдельных решений 
однозначно определяется уже одним элиминантом (относительно несингу-
лярного неизвестного). 

В § 4 изучается поведение элиминантов и решений в случае линейного 
преобразования неизвестных. Теорема 4 занимается поведением коэффи-
циента Рк, теорема 5 — фактической степени элиминантов, наконец, теорема 
6 — кратности решений при преобразовании. 

В § 5 не ставится ни каких ограничений относительно m и ранга мат-
ицы 21. Сначала рассматривается случай, когда решение содержит пара-
метр. Этот случай сводится к рассмотренному в первых параграфах. Нако-
нец, рассматривается случай, когда ранг матрицы 21 равен п. Теорема 7 
дает необходимое и достаточное условие разрешимости в этом случае. 
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