ON A DENSITY THEOREM OF YU. V. LINNIK
by
P. TURAN
§ L

1. Let 4 be positive integer, ¥ runs over the characters belonging to
the moduls 4, w = o + it and L(w, y) the L-function belonging to y, (I, 4) = 1
and P(4, ) the least prime =/ mod 4. Yu. V. Linyig has proved in 1944
the important theorem!

(1.1.1) P(4,l) < Aa

where ¢; and later ¢,, ¢y, . . . stand in § I for positive numerical constants. One
of his two main tools in his proof for (1.1.1) is the following theorem.?

If 2 < A=< 1}6 log A and N(X, A) stands for the number of zeros of all

L(w, %)'s mod A in the domain

A et
(1.1.2) ey ok =
log 4 log 4
then for A > c, the inequality
(1.1.3) N4, 4) < es?

holds.

The aim of this note is to offer an alternative, rather short proof for
this theorem. More exactly we shall prove the following theorem.

Denoting by N(4, A, t,) the number of the zeros of all L-functions mod
4 in the domain

e}.

(1.1.4) T Y -8 2
' lOgA logA

we have for |ty < VA and suitable ¢y, cq, ¢, and

(1.1.5) 0< A= ¢log4

1 For a detailed exposition of LINNIK’s very powerful proof in simplified form due
to K. A. Roposskiy, see the book of K. PRACHAR: Primzahlverteilung. (Springer, 1957)
in particular p. 330—370.

2 The theorem (1.1.2) —(1.1.3) is identical with theorem 2.1 on p. 331. of PRACHAR’S
book and for the proof (after some preparations in § I of Chapter VII.) see p. 331 — 348
of this book.
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166 TURAN

for A > cy the inequality
(1.1.6) N (A, 4,5) < ¢4 652 .

2. Our proof (though we made no attempt to squeeze out possibly small
values) gives possibility to find not too large explicit values for ¢,, ¢4 and ¢,
(which have a significance in finding a possibly small value for the important
constant ¢;). Let namely a,, a,, a; be the following three constants (whose

numerical values can be evaluated by well-known arguments.?
I. For (!, 4) =1 and « = 4% we have

def @

1241 S A e
(1.2.1) ) — 2 (n)<a1¢(A)

n= lmodA

(Brun’s method, in the simplified form of A. SELBERG gives for a, a value

< 4)
II. If 0 < 6 £ 1, then the number of zeros of each single L(w, y) in

the square
0
1—8Zo< 1, |t—t1|§~é— (¢, real)

is at most
{1295 1 + a,6log {A(1+ |t,])} -
(ay can be chosen about %).

III. The parallelogramm

(1.2.3) %

- log 4

can contain at most one simple zero of IT L(w, y). (If such a p-zero (,,Siegel-

=1 It =< 1

I
IA

L

x
zero'’) exists and L(p, z*) = 0, then we shall call x* an ,exceptional”

character).
Further let @ be the smallest positive integer satisfying the following

inequalities:

5
(1.2.4a) w=et, (1.2.4e) w = = '
. a3
: 3 P
(1.2.4b) » = 8—— : (1.2.4f) o = 36 a2
1
(1.2.4¢) 8e(w+1[— <[ ] (1.2.49) »z -
as

4G,y @
(L24d) 8%lge®) 1 94m) 12 (36w)2a,e te

Vo h

3 Kllican be found in PrACHAR’s book, for I. see p. 44, for II. see p. 331, for III.
see p. 118. 120 and 122.
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Then we assert that with this w

1 6 5
(1.2.5) Ch=—, By == —; ¢; =(0?+ 1)

2 w2 s

can be chosen in (1.1.5) resp. (1.1.6).
3. For the sake of orientation I remark that for

log log 4 §l§%logA.

LINNIK's estimation (1.1.2)—(1.1.3) is easy* and the same holds in the whole

range 2 < 1 < —z—log A about the proof of the inequality
(1.3.1) N(A,4) Zes*log 4 ;

the principal difficulty lies in eliminating the logarithmic factor in (1.3.1)
for the range a; < 1 < log log 4. My proof of the theorem (1.1.5)—(1.1.6)
will turn out to be essentially an application of my second main theorem in
the following special form.>

If m is a positive integer,

(1.3.2) max |(z;| = 1
J=1,h

and n < Ny, then for a suitable integer v, with

(1.3.3) m+1<yn<m+N,

we have

(1.3.4) |2+ 2%+ +zvx|2(_. P
o S R, R L

The paper apart from this is self-contained. The only new feature
(compared to other applications of this theorem) is, apart from the unu-

4 For a very short and simple proof see my paper »Uber die Wurzeln der Dirich-
letschen L.-Functionen.« Acta Scient. Szeged T. 10 (1943) 3—4 p. 188—201 (manuscr.
received 27. Aug. 1941).

5 See my book: Eine neue Methode in der Analysis und deren Anwendungen Akadé-
miai Kiadd, Budapest, 1953; a completely rewritten English edition will appear among
the Interscience Tracts. As to this sharper form of the theorem see our paper with
Vera T. Sés “On some new theorems in the theory of diophantine approximations.”
Acta Math. Hung. T. 6 (1955) 3—4, p. 241—254.
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sual choice of some parameters, an estimation of the quantity |R(n)| (see
lemma 1) which was dispensable in the previous applications.®

Theorem (1.1.2)—(1.1.3) enables one to prove (1.1.1) for at least the
half of the progressions mod 4 and also to prove (1.1.1) for all progressions
mod 4 with a ,small” ¢, under the supposition that there is no exceptional
character mod 4 in the sense of III. (which as well-known is generally the case,
apart from a ,,very few”’ A’s). We shall not treat these here. In the case when
an exceptional character exists mod 4, the situation is met by Linnik’s second
theorem (theorem 3.1. in PracHAR's book). I think that also this theorem
can be proved along the lines of this paper.

As we shall show in 9. of § II the theorem (1.1.4)—(1.1.5)—(1.1.6) can
be quickly deduced from the following.

Theorem. For o satisfying (1.2.4), A>cq, for

(1.3.5) | g ]

2w’

and |ty | =< Al the total-number of zeros of all L-functions belonging to modulus
A in the square

(1.3.6) y20%1, It — 24 :

fIA

cannot exceed
(1.3.7) 4 Ael0—y)

Since in the proof we want to make dependent ¢, ¢4 and ¢, upon the
quantities a,, a, and a,, we shall make the distinction in the constants denoting

by by, by, ... positive numerical constants with values independent of a,,
a,, ag and by dy, d,, . . . constants depending only upon a,, a, and ag (and w).
§ II.

1. Now we shall prove the formulated theorem (1.3.5)—1.3.6)—(1.3.7).
Fixing @ according to (1.2.4) let f be an arbitrary positive number satisfying

(2.1.1)

(which has a sense for 4>d,) and fixed. Then we define

(21.2) p :[Kﬂ‘-‘_’]u 28) .

) ._“ The useful kernel K,(w) in (2.1.6) and the quantity R(n) appeared for the first
time in my paper “On the so-called density-hypothesis in the theory of zeta-function
of Riemann.” Acta Arith. 4 (1958) 1. 31 —56.
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Owing to (1.2.2) the number of zeros of each single L(w, y) in the square

(2.1.3) 1_1§o_s_1, |t—t1|§~2—
A A

with |4, | < 4 is for 4>d, at most

{2.14) 1—{—a2—logA(1+A)<2+ 2logA

The integer % should be restricted at present only by
(2.1.5) oN=<EkZ(w+1)N

then we have evidently £>98. Let further

def WV e p= def

(2.1.6) Kw) = ——m— K (w) = K(Aw) ,
2w
turther for n=1; 2. :u:
def
(2.1.7) R(n) = —— JK K g=wlogn gy
77”
(2)
and
def | _Kk(,_logxy

(2.1.8) gola) = %e 5(2 kA )

2. As to R(n) we shall need the

Lemma I. We have for n = e3*A or n <Z k4
(2.2.1) Rn) =0,

further for ekA < n < e3kA

i
2.2.2 IR(n Is*vgn n) .
( ) | ()_A P Jo(n)

Since the integrand in (2.1.7) is an entire function tending to 0 sufficiently
quickly on every vertical line, Cauchy’s theorem gives

(2.2.3) R(n) = 1(w)* e—wlogn dw
2wy

(i)

Applying the binomial formula in (2.1.7) resp. (2.2.3) and the well-known
formulas
1 AW w
(2.2.4) NLARE | aof . 0, Tresp JA_ ¢ dw= 0,
2ni ) wh 2ne J wh
(2) (G))
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valid for 2 < resp. 1 = 0 we get (2.2.1) at once. To prove (2.2.2) we remark
that writing
log n

2.2.b 2 — =3, —] = 1
( ) oA e
we have from (2.1.7)

1 ~ eW — e~ W\k def
9.:9.6 RB(n) = e — — | dw=JdJ J
(2.26) m=5 | { = g

where .J, means the integral with |¢| < 4 and J, the rest. For the second
we have trivially

® — L3 k.
2Ll ik 1—k ,16 5
nA t nAk—1) 4AVk
4
For J, we have
o j"ﬂ _I% 2 %
—" ——— = = 2 :
(2:28) AL f (e* —e *p+simtt\?
mwA 92
0 Z + 412

Since, as easy to see,
L] e l 92 ®
(e* —e )< —e®,
{2 ( 90]‘

we get from (2.2.8)

-~

o k
S0 1 45 gin2{ \2
eka (940 » _4_) 1 + e sin21
(2.2.9) = r : dt .
T 14 B
6 o
Since for 0 <t < 4 we have
3 14
0ZL)sint £ ——, ie s ——,
30
further for —1 <94 < 4+ 1
4 1 H2. 42
_1_ — _L 92 — ,,,,.,19_‘*, > —— 16 92 >
45 30.16 30.45.16 30.45 30.45
i. e.
( 1 2 44
‘i_41_ﬁ2_ ¢ t2_0t =10
\l45  30.16 30.45.16 30.45
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we obtain
2 1) 2 2 4
sinztéf[(l— 2 )t2 . [1.}.0) 945J1_,0 )tz_t_l
\l" 30.16 30 45 |l 30.16 30/
i. e.
= 16 2
1+ e  #g5in2t < (1-}-—t2 (1———- ;
92 . 30
Putting it into (2.2.9) we obtain
Lo 5 ek kb
s 2)2 =3 o ke
bl | (1_’_] a<— [oa- 151 %
nA 30 wA nk A
This and (2.2.7) prove the lemma.
3. Let b be real and
def 1 04
(2.3.1) J(x,b) = —— | Kj(w)*— (w+ 14 1b,y) dw
271 L

)
Then we have the simple

Lemma II. We have independently of b
def
8=2|J(xbt<112a2.
x
We have namely from (2.1.7) and (2.2.1)

N A Ew)

nl+ib

(2.3.2) J(x, b) = x(n).

e“g-rze"“
Writing
ARYBn)n 20 = ¢,
shortly, we get
=2 2 onn4lny) x(ny) ,

VAR C U
where n; and n, run independently over [ek4, ¢3¢A]. Changing the order of
summations we obtain

2

A(n)

8 = pld) @) = Bm)| <
(LA)=1 ! ekd<p<ekd (LA)=1 ‘ek4Zp<ers
(233) n=I[mod 4 n=Imod 4
7 ¢(4) 2 Te(d) - 2
< A gofn)|” = | [ o asi)]’
A%k A2k (,d)=1 ‘¥4

(1,4)=1 \ek4<n<e3k4

n=Imod 4
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using (2.2.2) and (1.2.1). The last integral is

esdk

(2.3.4) = [9o(@) $1(@) 15 — [ Si(@)|gi() dw .

okA

One sees at once from (2.1.8) that the (non-negative) g,(x) assumes for x > 0
its only maximum at

5A
Xy= i (2_7) < ¢ka,
i.e. the expression in (2.3.4)
e3kA
eak
(2.3.5) — [90(@) $i@ s + [ 8i(a) lgo(@) | de .
ek4

Since in the range of integration we have, using (2.1.5), (2.1.4) and (1.2.4b)
the inequality

logx 2 k4 =2 wNA >w8a,logd = 3log4,

Brux’s estimation (1.2.1) is applicable and hence the expression in (2.3.5)is

k4 oskA
& AL o | ) dze = [go(@) 8,(@) 1 — 2 ( wg! (@) do =
= l0oe) S{@ + ) J olgio) de = [oa(e) S5 — ) 94
i - S _M il s | j ) d kA ﬂ_ kA
Ag(,(w)( (@) (p(A)J +W])e“ o) do < Go(e) 2 ok4 <+

a, kA r =

2
+ @(4)
0

k
st < (14 AV5ak <i§1—AVI?.
<P(A)( ) @(4)

Putting it into (2.3.3) lemma 1l follows.
4. It follows from lemma II that with the 5 in (2.1.1) the inequality
B
(2.4.1) |y, )| = 11agy 4 2

holds for all ¥’s mod 4, with the exception of 4% ,,bad’ characters at most
(which may depend upon b.). Putting, if necessary, the principal character,
and the (perhaps existing) ,exceptional”’ character among the ,bad” ones,
their number is

(2.4.2) A8 4 2

at most. Since as well-known

i1 1 .
f(_ Ly ””‘] ié by log(4(1 + [t)))
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and from the definition of K,(w) in the left half-plane the inequality

5 A Ao
AR R o3
(2.4.3) | Ky(w)| = e 2
2wAd A)o2 42

follows, we have

l; (w+1+ib,x)dw1<

b 1

. K. (w)

{2:rtij e
(=3

—gkA
e

(3 +a+o

dt.

N

P
<+ J log (A(1 + [¢]))-
2n

Owing to (2.1.5), (2.1.4), (1.2.4b), for
—4<b< 4

the right-side expression in (2.4.4) is

log 4

9 )

A4

< b,

hence a routine application of Cauchy’s integral theorem to the integral
defining J(yx, b) leads from (2.4.1) to the

Lemma IIL. For A>d, for each ,b-good” characters mod A (i. e. with
exception of (AF + 2) characters at most, depending perhaps upon b) we have

L B
(2.4.5) | 3 Ky(0— 1 — ib)*| < 124,47 2,
0
where o runs over the zeros of the respective L(w, y) in the strip 0 < o<<1.

5. We define
2j

2.5.1 ;= 3 j=0,+1,...,4+4
( ) Sy (7 - - + 4)
and the squares
2 ; 1
EEE D - cg=1, t—a)f < ,
w? A w? A

Then we assert the crucial

Lemma IV. Fiving any of the a.;’s in (2.5.1) none of the L(w, x)'s belonging
to an ,,a;-good” character can vanish in the square D; of (2.5.2), if Ai=rdg,

Suppose this would be false for j = j,, and for an L(w, y') belonging to
an ,,a;-good”” character z’, o' being a zero of L(w, ') in D;,. In order to
derive a contradiction out of this assumption we start from the inequality
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(2.4.5) with y = 3" and b = o;,. We consider first the contribution of the
o’s with

2.5.3 Tme = 2o
(2.5.3) ez s il
We cover this part of the critical strip by the squares
[ L NP R SR [ )
A A
(2.54) P,:

270 270 ""f‘l
+*< T L L =208 o
w? A w? A A

The absolute value of each term belonging to P,, cannot exceed owing to
(2.4.3) the quantity
ke

vy ke 2

and the number of terms owing to (1.2.2) (applying it a bit roughly with

g1 . g
62#7’ t‘:w:fzijL 4
cannot exceed
1
I ol PPN | L +i§_)'
2 g g Y 1 ]

Hence this contribution is for 4>d,

1
v+~]
A—1 o kp .
s S Je 2 2 1
= v*e 2 [14a,” ]104110(1*0 )S
__0_2 (+2A @At lngl 1+ b= &
u=0 »=2
log A a, )2 &
o D e - i ) Lo | v~*log (1 +4 4+ <
= + a, i i A v=Ez g1+ 4 49
[1+2a210g/] 2k
The same holds for the contribution of the p ’s with
Imp < e :
w*d A

hence the total contribution of the o ’s with

(2.5.5)
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does not exceed

log 4 ok

(2.5.6) 4 (1 4 2a,

6. Next we consider the contribution of the zeros with
4 2
2.6.1 DS el 1 —-x, I | P
(26.1) <os1-3. lt—aplz2

We cover this part of the critical strip by the parallelogramms

p+1
A

7 2

(2.6.2) Q.: 1-— §a<1—.:4_, 1t—aj(,|§z—.

(b=4,5...,4—1)

The absolute value of each term belonging to ¢, cannot exceed owing to
(2.4.3) the quantity

g4 1

and the number of ter ms owing to (1.2.2) (applying it with ¢ = e by = ajy

cannot exceed

14 a, log 4 + log log 4.

2

pE1f
4 |

Hence the contribution of the @,-parallelogramms is at most

w1 log 4
A

pet1
A

270 || .
1 — | <1 2
+wA‘I 14 2a,

ku

(2.6.3) ,u"‘e_7[1 + 2a, 4k,

==

log4 14 3a,

From (2.4.5), (2.5.6) and (2.6.3) we get for 4>d;
log 4

B
(2.64) |3 K(e—1—1bt<12a,4 24 5(1 -+ S,

B

£

where the summation refers to the p’s in

(2.6.5) s —m L, [F—apls

hk|w

With ¢ ’s in D;, we can write (2.6.4) in the form

= ) e Y YK
1ol (Bt

= (Kl(e' — | —Emg
logA) -

B
(2.6.6) <12q,4 2 —}—5[1—{-2&2
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Since in the domain

2
——=<0<0, It < s
w2 w2
we have the estimation
4% k ; 5k
32 1 4 ax 9 \k _ 5k
|K(w”‘Ze ot l—l— ———i—,,, Se o || le=—=—] e "",
3! (w2 5! |w? w?
i. e. for
et B g a4
w? A w2 A
4k
| B Fze @
we have

and hence from (2.6.6)

‘2 ( m/“)l iélZal

1007 —1—za

2 ew'
[2 B A

P k
5
with the summation indicated in (2.6.5).

7. We want to apply to the remaining sum the theorem (1.3.2)—(1.3.3)—
(1.3.4) with

(2.7.1) m = [oN]

and

. Ele—1—i0;)

! Kl(Q'—l_iajo)

Owing to (2.1.4) and (2.6.5) we may choose

(2.7.2) W, =N;

then the interval m + 1 < < m + N, is obviously contained in oN < x _<_
(2.6

< (w + 1) N and thus we may choose as k£ the », in (1.3.3). Then 7)
assumes the form

=

3

N _8 A
<124, 4 Zew +(%—{—a210g

1
(8e(w+1)
_8 6N
<12q,4 2¢° +

A

A o\N
%+a21°f1 ){8e(w+ 1) (;] }

1 logdy [ 2}V
iy
or

5 9
1<12¢,4 2 (8¢ T% (04 )N +
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or owing to (1.2.4c)

_E 1 A 2 No'ls
(2.7.3) 1<12q,4 2(96@)N+( g N (__
A4 i3
Using (2.1.4) it would follow
8(1, ,/‘l A
£ 8(13 @ 0og
1< (9e)212a,024 2+ A B )_|_l1+ log 4 |
2 A 3

further from (2.1.2) using the abbreviation g log A4 = &

1 9a,log %ew 3 L
E(— = = 2 —8log ; a,wt &
1<(@e212q,02e 27 Va )+ Syl TR
[
(274) 2 —_—— ,wl/.nf
< (36w)2ae +[ e Vazée 3 :
w

taking in account (1.2.4d). Owing of the definition of & and (2.1.1) and (1.2.4e)
we have

(2.7.5) fz 2otz 4)

and hence using this, (1.2.4f) and (1.2.4g)

2@, o £ & _ faewi)? s

+Vw g 4

putting it into (2.7.4)

£ [ 5
< a . a,as 5
1 bast PO S PR

< (36w)2a e ‘4 e aot < (360)ae B +e 2

which contradicts to (1.2.4h). This proves lemma IV.

8. Consider now an arbitrary of our D;’s in (2.5.2). Owing to lemma
1V, (2.4.2) and (1.2.2) the total-number of /eros of all L-functions mod 4 in
D, is at most

A+ ofi4a, 21 ’4[1 21 vk} 2[ 5“2)
(+>l+a2szog( +w2Alj (e + £

281 ~E 717 £ o)
( ) <(65+2)[1+%)<(e5+ 2)9“”<23(]+w’) :245(‘"“,,,-),
[0}

using also (2.1.2), (2.5.1) and (1.2.4f). Since from (2.1.2)

2 2
e 5

w2d o

B,

12 A Matematikai Kutaté Intézet Kozleményei VI, 1--2.
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the estimation (2.8.1) holds a fortiori for the number of zeros of all L-functions
mod 4 in each square

(2.8.2) ]——2—5[)’§a§_], |t_-._‘§
w2 1 I

This is proved under the restriction (2.1.1); if

as (U5I2

0L §= ]
_ﬂ_2logA

then the square (2.8.2) is obviously contained in the parallelogramm (1.2.3)
i. e. the estimation (2.8.1) holds trivially. Since the square in our theorem
can be covered for 4>d; by two squares at most, both of the form (2.8.2)
with

5

SN [P
p g =¥
the theorem (1.3.5)—(1.3.6)—(1.3.7) is proved.

9. Finally we shall deduce from (1.3.5—1.3.6)—1.3.7) the theorem of
LINNIK in the form (1.1.4)—(1.1.5)—1.1.6). We may suppose

1
T
2 w2

log 4

in (1.1.4) owing to (1.2.3). We can cover the parallelogramm (1.1.4) by
s

e

211 + |—

P+

J squares of the form (1.3.6) with

N
log 4

and |t, | < 4. Hence by the theorem (1.3.5)—(1.3.6)—(1.3.7) the total-

number of zeros in (1.1.4) cannot exceed
A 5

A 5 5 5
2[1+-e;)4e“’”’< (l+lj4%ewl. < E_e(w’-i-l)i._
e as

Q. e. d.

(Received October 25, 1960.)
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0 TEOPEME IIJIOTHOCTH 1. B. IMHHHUKA

P. TURAN
Pe3lome

B 1944-om rony 10. B. JlunHuk J0Kasaj, 4To CYILECTBYeT TaKOe I10JI0-
YKUTeJIbHOE TOCTOsIHHOe uuciio b, urto eciu (k, [) = 1, Toraa cyuiecTsyer InpocToe
uncao p = I (mod k) Taxoe, uTo p < k?; IT0 J0KA3aTeILCTBO ObLIO YNPOLIEHHO
K. A. Pogocckru. TPYAHOCTb B I0Ka3aTeJbCTBE 3TOH TJIYOOKOH TeopemMbl Coc-
TOMT B JI0Ka3aTeJbCTBe JBYX JPYIMX TeOpeM, IepBOil M3 KOTOPBIX SABJISIETCS
Teopema IUIOTHOCTU yKa3aHHAsi B 3arosioBKe. B Hacrosiueil cratbhe paercs B
camom ce0e II0JIHOE, OTJIMUHOE OT ITIePBOHAYAJILHOTO, J0Ka3aTeJbCTBO ITOM
Teopembl Ha ocHoBaHuM Teopemnl (1.3.2) — (1.3.3) — (1.3.4) aBropa, sBIsiIO-
meifcss TarK)Ke MCTOUHMKOM MHOIMX JPYIUX pe3yJbTaTOB TeOpuM 4Yuces, ¢
NOJAPOOHOCTSAMU  CIeNAI0IUMU  BO3MOYKHBIM 3((eKTUBHOE OnpejeieHne BCTP-
eualoIMXCcsl Tam cyuwecTBeHHbIX mocTosinHbix (1. (1.2.4)). HepmaBno S.
KNAPOWSKI yjajiocb Ha OCHOBAaHMM OTOr'0 JI0Ka3aTeJIbCTBA HaWTH TaKKe
JI0Ka3aTesIbCTBO BTOPOH YIOMSIHYTOI Teopembl.
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