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Introduction 
In this paper we will only consider non-directed graphs which do not 

contain loops and where two vertices are connected by a t most one edge1 

(see 11] and [7]). We permit isolated points and we do not exclude the empty 
graph i. e. the graph without vertices and edges. n(G) and v(G) denotes the 
number of vertices respectively of edges of the graph G. G' c. G denotes 
that G' is a subgraph of G. (If G' с G and G' ф G, we write G'e.G.) 

We shall say that the vertices Pv . . . , Pk(k ^ l)2 represent the edges 
ev . . . , e.(j 1) of G if every edge e,(l ф i ф j) contains a t least one the 
points Ph( 1 h ^ 1c). If the vertices Plt . . . , Pk represent all edges of G 
we call R = {I\, . . . , Pk) a representing system of G and say that R represents 
G. We denote by y(G) the minimal number of vertices representing every 
edge of G (i. e. we can find y(G) vertices in such a way tha t every edge of 
Gcontaints at least one of these vertices, hut there do not exist y(G)—1 ver-
tices with this property). If G has no edge, then by definition y(G) — 0. 
The chief object of this paper will he to give various estimations from 
above of p(G). 

In § 1 we shall obtain estimates for p(G) in terms of л (G), v(G) and other 
characteristic data of G. One of our results (Theorem (1.7)) which will he an 
easy consequence of a result of T U K Á N states that 

y(G) ф 2 — , if v(G) > 0 . 

2 

In § 2, 3 and 4 we shall estimate p(G) in terms of y(G') where G' runs 
through certain subgraphs of G. Our principal results are: 

If p(G') ^ p for all G' с G with n{G') ^ 2p + 2, then p(G) ф p. (Theo-
rem (3.5)). 

1 Eve ry edge "con ta ins" exactly two vertices, which a re "connected" by it. 
2 Numbers which are denoted by letters are always assumed to be non negative 

integers. 
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Let h 2, p>p0(h). Assume that n(G) A 2p—h + 3 and that G has 
un isolated vertices, further assume that for every G' с G with л-{G') A p -f- h 
we have y(G') ф p. Then y(G) A 2p—h (Theorem (2.2)). 

In general the above results are best possible. 
In § 5 we generalise our problems to „multidimensional graphs". Instead 

of graphs we consider sets of î-tuples (к 2) and study the minimal number 
of elements which represent each of our given ^-tuples. 

§ I-

(1.1) First of all we need some definitions and notations. 
G will always denote a graph, and if in the following it is not explicitely 

indicated to which graph some symbols and notations belong, we a1 ways 
assume that they refer to t h e graph denoted by G. 

a{M) will always denote the number of elements of the finite set M. 
We shall denote by PQ the edge connecting the vertices P and Q. The 

graph which consists of the vertices P and Q and the edge PQ will also be 
called an edge. The graph which consists of the vertices Pv P2, P3 and the 
edges PXP2, P'jy P3P1 will be called a triangle and will be denoted by PXP2P3. 

If F is a vertex of G, then we call the number of edges of G which 
a re incident to P the valency of P (in G). 

If any two vertices of G are connected by an edge G will lie called com-
plete. The graph consisting of one point will be called complete too. 

If G is complete and n(G) = n we shall call G a complete n graph. 
Assume t h a t G has a t least two vertices. The complementary graph G of 

G is defined as follows: G has the same vertices as G and two vertices of G 
are connected if and only if they are not connected in G. 

For the definition of path and circuit see [7] (path = Weg, circuit = 
= Kreis). 

A graph G — having a t least two vertices — is said to be connected if 
a n y two of its vertices are on a path of G. The graph having one vertex is 
called connected. 

The components of (the non empty) G are its maximal connected sub-
graphs. 

Denote b y S the set of vertices of G. Let M с S. We denote by [ i¥] 
t h e subgraph of G whose vertices are the elements of M and whose edges 
a r e all the edges of G which have both vertices in M. 

If M с S and N с. S t hen we call the edges one vertex of which is in 
M and the other in N the M N-edges. 

[M, A] denotes the subgraph of G whose vertices are the elements of 
M (J N and whose edges are the ilfA-edges of G. 

G is even if there is an M and N for which M\jN=S, M f]N= 0 and 
[ДГ, N] = G. 

Let P £ S. G—P denotes the graph which we obtain by omitting from 
G the vertex P and all the edges incident to P. 

The vertices Pv . . . , PÁj> 1) of G are called independent (in G) if no 
t w o of them are connected b y an edge (in G). One vertex is always called 
independent. y(G) denotes t he maximal number of the independent vertices 
of G. If G is empty, then b y definition Ji(G) = 0. 
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The edges ex ( />1) are called independent if they have no com-
mon vertex. One edge is always called independent. The maximum number 
of the independent edges of G is denoted by e(G). If G has no edges we have 
by definition e(G) = 0. 

We shall call G к-fold connected ( 7 ^ 1 ) if in case 7 = 1 G is connected 
and for 7 > 1 if n(G) ^ 7 + 1 and G remains connected after the omission 
of any 7—1 of its vertices (and all the edges incident to them). 

(1.2) I t follows from our definitions tha t if 6+ . . . , Gj (/ + 1) are the 
components of G then if <p = jr, v, p, ~p or £ 

<P(G) = 2<P(Gi). i= 1 

(1.3) It is easy to see that (see [6], p. 134.) 

(1) p(G)+Ji(G)=n(G). 

If G is non empty then p{G) 1, equality here holds if and only if 
G is complete. From this remark and (I) we obtain 

(1.4) If G is non empty then pIG) л (G) — 1. Equality holds if and only 
if G is complete. 

If we make special assumptions about G we can improve the above 
estimation. Thus the following trivial inequalities hold: 

(1.5) If G is even p(G) ^ — nIG). 

If we assume tha t G does not contain a triangle (or a complete 7-graph 
(7>3)) then the problem of giving a sharp upper bound for p(G) in terms of 
n(G) is difficult and will not he discussed in this paper. Because of (1.3) (1) 
this is really R A M S A Y ' S problem ([8], [5]). 

(1.6) p(G) fL v(G) is trivial. Equality holds if and only if no two edges 
of G have a common vertex. 

We can obtain non trivial upper estimates of p(G) using both n(G) 
and v(G). 

Theorem (1.7). Assume that G has edges. Then 

^ 2 , (0 ) »(Cf) 
_ 2v(G)+n(G) 

or in other words: p(G) is less than or equal to the harmonic mean between 

— n(G) and v(G). Equality holds if and only if G is a complete graph, or if each 

component of G is a complete graph each of which has the same number of vertices. 
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Proof. Our theorem is an easy consequence of a result of T I J R Á N . T Ú R Á N 

proved ([9], p. 26.) that if n(G) = n and G does not contain a complete 
( j + l)-graph but contain a complete /-graph, then 

О) v(G) ^ I 1 (n2 — r2) + 
2/ 

where n = jt + r (0 ^ r<j). If r = 0 equality occurs if and only if G (G is 
the complement of G) has / components and each of them are complete 
/graphs3 . 

Applying this theorem we obtain 

(2) "(G) Í / - 1 
2 / 

- (n2 — r2) + I = (n — r) (n — / + r) 
j ~~ 2 / 

where n(G) = n, y(G) = / and n = jt + r (0 5 r<j). Further if r = 0 
equality occurs if and only if all components of G are complete /g raphs . 

Let y(G) = k. By (1.3) / = n — k, thus from (2) 

(n -r)(k + r) 
( 3 ) v(G) > 

2(n — k) 

From 0 < r < n — к we have k < n — r < n. Thus 

(4) (n -r)(k + r)> nk , 

equality only if r = 0. From (3) and (4) we obtain, assuming that v(G) = 
= m > 0 

9 
к < — 

2 1 
n m 

Equality can hold only if we have equality both in (4) and in (2). This com-
pletes our proof since every graph G with л(G) > 2 is the complementary graph 
of a certain graph. 

( 1 ) 

From (1.7) we easily obtain 

Theorem (1.8) 

P(G) ^ MG) + "(G) 
3 

Equality holds if and only if G is empty or if the components of G are edges and 
triangles. 

Proof. If G is empty the. theorem is trivial, henceforth we shall assume 
л ( 6 г ) > 0 . It follows from (1.2) that it will suffice to prove our theorem for 

3 T Ú R Á N gave also in the case r > 0 the necessary and sufficient condition for 
equali ty in (1). 
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connected graphs and that equality can hold for G only if it holds for every 
component of G. 

Henceforth we shall assume that G is connected. Pu t JI(G) = 7?, 
v(G) = m. 

For n = 1 (1) clearly holds with the sign < . Thus we can assume m>. 1. 
From (1.7) we have 

(2) MO) á . 
2 m+ n 

equality holds if and only if G is complete. For positive m and n the inequality 
2mn/(2m + n) <L (те + n)/3 is equivalent to 

(3) ü ^ (m — n) (2 m, — n) . 

Therefore if те ^ тг, (1) is implied hy (2) and (3), further we can deduce t ha t 
equality holds if and only if те = n and G is a complete и-graph. But this is 
possible only if n = 3. 

If те <7i, then since G is connected, те = n — 1 and G is is a tree (see 
[7], p. 51.). Since every tree is even, we have by (1.5) 

p(G) 

For n > 2 we have (m + 7i)/3 = (2n — l)/3 > 1/(2эт), equality only for n = 2. 
This proves (1) for m <n and shows that equality holds if and only if G consits 
of a single edge. This completes the proof of our theorem. 

(1.9) Next we estimate p{G) in terms of e(0). 

Assume v{G) ^ 1 and let Px P[ Ps P's(s = e(G) ^ l) be a maximal 
system of independent edges of G. Clearly the vertices Pv . . . , Ps, P{, . . . , P's 
represent the edges of G. On the other hand we clearly need a t least s vertices 
for the representation of the edges of G. Thus we obtain the following trivial 
inequality 

(1.10) e(G) ^ y(G) ^ 2 e(G) . 

(1.10) trivially holds for v(G) = 0 too. 

The following theorem which we will often use is due to K Ö N I G ([7], 
p. 233.). 

( 1 . 1 1 ) ( K Ö N I G ) . For even graphs p(G) = e(G). 

For the upper bound in (1.10) we have the following 

Theorem (1.12). fi(G) = 2 e(G) holds if and only if G is empty or each 
component G, of G is complete and л (G,) is odd. 

Proof. The sufficiency of the above conditions is evident. To prove 
the necessity observe that because of (1.2) it will be sufficient to show tha t 
for a connected G satisfying n(G) > 2, y(G) = 2 e(G) holds only if G is complete 
and я(G) - 2 e(G) + 1. This immediately follows from (1.4) and from the 
following 
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Theorem (1.13). Let G be k-fold connected (k > 1). Assume n(G)> 2e(G) + 1, 
then к ii e(G) and 

fi(G)<2e(G) - k. 

The above bound for p{G) is best possible. 

Our proof of theorem (1.13) uses the theory of alternating paths. The 
proof can be deduced easily from the properties of alternating paths stated 
in § 4 of [4]. We do not give the details of the proof. 

We remark that one can give a simple proof of (1.12) without using 
(1.13). 

The following example shows that the bound 2 e(G)—k in theorem (1.13) 
is best possible: Let G0 be a complete &-graph and G, a complete (2a, + 1)-
graph (k > 1, a, ^ 0, i — 1, . . . , I, l>k -f- 1). The graphs G0 and G, have 
no common vertex. The vertices of G are the vertices of G0 and those of the 
G, (г = 1, . . . , I), the edges of G are the edges of G0, the edges of G, (г = 1, 
. . . ,1) , and every edge which connects a vertex of G0 with a vertex of G, 
(1 < г < I). We have 

/ i 
s(G) = k+2:a'' =k+ 2 2 a,-, 

i=i i=i 
i 

n{G) =k+ (2a,- + 1) = I — к + 2s(G) > 2e(G) + 1. 
i= 1 

G is &-fold connected, /i(G) = 2 e(G) — k. Observe tha t in our example n{G) 
can be made arbitrarily large for given e(G). 

Remark. If G satisfies jr(G)>3 e(G) — 2 (e(G) ^ 1) and is connected 
then we can prove 

(1) p(G)^2e(G)—d 

where d is the minimum of the valency of the vertices of G. If G is fc-fold con-
nected and ;T(G)>1, then clearly d ^ k, thus (1) is a sharpening of (1.13). 
The proof of (1) is similar to that of (1.13) and will be suppressed. 

Finally we obtain bounds for p(G) in terms of e(G), v(G) and л (G). 

Theorem (1.14) 

(1) 

(2) p(G) < e(G) + + ^ -
2 4 

Remarks. These bounds are best possible. For (1) we see this by con-
sidering a graph whose components are edges and triangles, and it is not 
difficult to see that this is the only case of equality. 

For (2) the situation is more complicated. The only connected graphs 
(with r (G)>0) known to us for which there is equality in (2) are: 1.) an edge, 
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2.) a triangle, 3.) a complete 4-graph, 4.) two triangles connected by an edge. 
I t is possible tha t there are no other cases. Clearly if all the components of 
G are the above ones then G satisfies (2) with the sign of equality. 

Proof. We use induction for v(G). (1) and (2) are trivial if v(G) gL 1. 
Let m> 1 and assume that (1) and (2) holds for every G* satisfying v(G*)<m. 
In what follows assume t h a t G is an arbitrary graph for which v(G) = m. 
We are going to show tha t (1) and (2) holds for G too. 

We clearly can assume tha t G has no isolated points. If G is not con-
nected, let its components be Glt . . . , ( j (j gg 2). Clearly i>((?,) < m (i = 1, 
. . . , / ) . Thus by our induction hypothesis and (1.2) it follows that G satisfies 

(1) and (2). 
Henceforth we shall assume that G is connected. 
Assume first that G has a vertex P of valency 1 and let PQ be the 

edge incident to P. There clearly exists another edge incident to Q say QQ' 
(Q' =j= P). Omit the edge QQ' from G, and denote the graph thus obtained 
by G'. Let It be a representing system of G' with a(R) — (i(Gj. Clearly It 
contains P or Q, hence we can assume Q^R. But then R is a representing system 
of G too, thus y (G) = fi(Gj. A simple argument further shows thate(G') = e(G) 
(i. e. if a set of independent edges of G contains QQ', we can replace QQ' by 
QP and obtain a set of independent edges of Gj. From this and from n(Gj = 
= л (G), v(Gj — v(G) — 1 and from the induction hypothesis we obtain (1) 
a n d (2). 

Henceforth we are going to assume tha t the valency of every vertex 
of G is > 2. 

If x(G) — 2e(G) = 0, then (2) clearly implies (1). Next we show tha t 
(2) implies (1) also if л (G) — 2 e(G) = j> 0. Let P, P\ (i = 1, . . . , s; s = e(G)) 
be a maximal system of independent edges of G. Further put N = {Px, . . . , 
Ps, p ; , . . . , P's}, N = iS—N (S denotes the set of vertices of G), [N] = G'. 
By our assumptions 

( 3 ) 1 ^ e(G) ^ v(Gj < v(G) . 

The vertices of N are independent (in G) and all of them have valency 2. 
Thus we have 

v(G) ^ v(Gj + 2 j 
and hence 

( 4 ) L < < vJ9Lz-JW 
2 4 _ 4 

which shows tha t (2) implies (1). 
Thus it will suffice to prove (2). 
Assume for the time being that л(С) — 2 e(G) = j> 0 and let us use 

our above notations. Clearly if R is a representing system of G' then R\jN 
represent all edges of G, thus y(G) ^ y(Gj + j. Further clearly e(Gj = e(G) 
and л (G) = Tr(G') + j. These equalities together with (3) and (4) imply (2) 
by the induction hypothesis. 

Henceforth we can assume л (G) = 2 e(G). 
Assume first that G contains a path with the edges P,P2, P2P3, P3P4 . 

where P2 and P 3 have valency 2 in G. Let G' = ( G — P j — P3. If G contains 
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the edge PXP4 put G" = G', if not G" is obtained from G' by adding the edge 
PXP4 to it. i t is easy to see tha t 
(5) n(G") = n(G) - 2, v(G") A v(G) - 2, e(G") = e(G) - 1, p(G") = p(G) — 1. 

(5) and our induction hypothesis implies (2). 
Henceforth assume t h a t G does not contain a pa th of the above type. 
Let P, P'i (i = 1, . . . , s; s = e(G)) be a maximal system of independent 

edges of G. By our assumptions the valency of both P, and P\(i = 1, . . . , s) 
are greater than one and by our last assumption they can not both he two. 
Thus without loss of generality we can assume tha t the valency of Pi is 
^ 3 (i = 1, . . . , s). Assume tha t for some г(1 Ai A s) t he sum of the valen-
cies of P, and P] is greater than 5. P u t G* = (G — P,) — P| . Thus 

(6) n(G*) = л (G) - 2, v(G*) A v(G) — 5, e(G*) == e(G) — 1, y(G*)^y(G) — 2 . 

(6) and our induction hypothesis proves (2). 
Thus finally we can assume tha t the valencies of the vertices P, are 

all 3 and the valencies of the vertices PJ are all 2(г = 1, . . . , s). But then 
P'i and P'j(i ф j, 1 A i A s, 1 A j A s) can not be connected by an edge, 
since otherwise G would contain the pa th with the edges P, P\, P\Pj, P) P. 
w here P\ and P) having valency 2 in G, bu t this contradicts our assumptions. 

Hence we see tha t the vertices Pt(i — 1, . . . , s) represent all edges 
of G, which clearly proves (2). 

Thus the proof of Theorem (1.14) is complete. 

§ 2. 
(2.1) e(G) A p is equivalent to the statement tha t fi(G') A p for every 

G' с G with v(G') Арф 1. Thus the tr ivial relation p(G) A 2e(G) can be 
restated in the following form: 

Assume tha t for every G' с G with v(G') A p + 1 we have p(G') A p. 
Then y(G) A 2p. 

It is now a natural question to ask: what can be said about g(G) if for 
every G' с G with r(G') A q (q>p+ 1) y(G') A p? Here we prove 

Theorem (2.2). Let h 2. Then there exists a smallest integer p0(h) with 
the following properlies : If p>p0(h) and G is a graph with n(tí) > 2p — h ф 3 
which has no isolated points, and for every G' с G with v(G') A p ф h we have 
p(G') ^ p, then 

(1) y(G)A2p-h. 

Before proving our theorem we make some remarks. 

1.) 2p—h is best possible. To show this let Gx be a complete (2p—h)-
graph. The graph G2 is defined as follows: I ts vertices are the vertices of Gx, 
another vertex P, and the vertices of a set M (which may be empty, but 
which does not contain P and the vertices of Gx). The edges of G2 are the 
edges of Gx and every edge which connects P with a ver tex of Gx or M. I t is 
easy to see t h a t p(G2) = 2p—h. Now we show that for every G' с G2 (which 
does not contain an isolated vertex) satisfying v(G') А р ф h we have 
fi(G') A p. To see this observe that if G' does not contain P we have л (G') < 
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^ 2p—h and therefore by theorem (1.8) p(G') ^ p. If G' contains P then 
the number of the not isolated vertices of G' — P is not greater than 2p—h, 
v(G'—P) + A —1. Thus from theorem (1.8) p(G'-P) ^ p— 1 or p(G') ^ p 
which completes the proof. 

We remark that in our example 2e(G2) equals one of the values 2p—h, 
lp—h -f- 1, 2p—h + 2. This is not an accident, since if 2e(G) 2p—h, then 
because p(G) 2e(G) (1) trivially holds, equality only if 2e(G) = 2p—h. 
Further a simple modification of our proof of Theorem (2.2) shows tha t if 
2e(G)>2p—h-{-2 we can improve p(G) ^ 2p—h to p(G)<2p — l where / 
tends to infinity with p but is of much lower order than p, we can give only 
very rough estimates for I = l(p, h). 

2.) In (2.3) we shall show that if p is not "sufficiently large" compared 
to h then (1) does not always hold. More precisely we shall show t h a t if с is 
an arbitrary constant and A>A0(c) then p0(h)>ch. 

3.) If A = 2 our proof could be simplified considerably, and we can 
show p0(2) = 2. 

Proof, of (2.2). ( I ) According to a well known theorem of R A M S A Y ) 

(see [8] and [5]) to every к there exists a cp(k) so that every G with л [G) ^ <p(k) 
either contains a complete A-graph or G has к independent points (i. e. p(G) > k). 
Clearly <p(k) > k. 

We are going to show that 

(2) p0(h) <h + <p(<p(2 h+ 4)) . 

Clearly 

(3) h + <p(cp(2h + á)) > З А + 4. 

Our proof will he indirect. We are going to show that the following 
conditions lead to a contradiction: 

(4) G has no isolated point. 

(5) A ^ 2. 

(6) p>h + <p(<p(2h + 4)). 

(7) л (G) > 2p-h + 3. 

(8) If G' с G and v(G') ^ p + h then p(G') ^ p 

(9) p(G)>2p-h. 

Let G satisfy the above conditions and put 

n(G) = n, e(G) = s. 

It is easy to deduce from our conditions and (3) tha t for every A 2 

p > II, n > 21, p(G) ^ 19, s ^ 9. 

From (8) it follows tha t s ^ p. Let 

p = s + a. 
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Clearly a >. 0. (9) implies because of y(G) g 2s that 

(10) 2 a g h - \ . 

I n the most important cases we will obtain the contradiction by showing 
t h a t G contains a subgraph G' whose components are triangles and edges 
and for which v(G') g p + h and y(G') = p + 1 (these facts contradict (8)). 
Assume that such a G' has x -f- y components, x triangles and y edges. 

Clearly 

v(G') = 3x + y g p + h and y(G') = 2x + y = p + 1. 

Thus 

(11) x g h — 1 . 

Conversely if (11) is satisfied then because of (3) and 2x + y = p + 1 we 
obtain y> 0. G' further clearly satisfies 

x + У â= s • 
Thus from y = p + 1 — 2x 

x a + 1. 

(From (5) and (10) a + 1 ^ A—1.) 
In the following we will only use the G' for which x and y takes on the 

following values: 

(12) I n c a s e 2a g h — 3 x = 2a + 2, y = s— (За + 3). 

(13) I n c a s e 2a g. h —2 x = 2a + 1, y = s—(3a + 1). 

(14) x = 2 a, y = s—(3a—1). 

(15) x = a + 1, y = s —(a + 1). 

(II) Let e, = PjP'i (i = 1 , . . . , « ) he a maximal system of independent 
edges. These edges will he considered fixed during the rest of the proof. Let 

M ={P1,..., Ps}, M' = {P[, P's}, N = M DM', Ge = [N]. 

N = S—N (S is the set of vertices of G.) 

If N is non empty (i. e. n>2s), then put 

Ж = {Qu . . . , Q„_2s}. 

From the fact that s = e(G) it trivially follows tha t 

(16) the vertices of N are independent, 

(17) the edges P^ and P'k Qj (Pk £ M, P'k£M', i ф j, {Qt, Qi} ç N) can not 
both occur in G, 

(18) if P,Qk a n d PjQ, are in G (i ф j, кф1, {F,-, Pf + M, {Qk, Q,} ç N), 
then P'iP'j is not in G. 
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From (4) and (16) we obtain 

(19) every vertex of N is incident to A7 A7-edges. 

From (17) and (18) it follows that 

(20) if both Pt and P\( 1 к i <L s) are incident to an AW-edge then PtP't 

and these two AW-edges form a triangle (this means t h a t there can he 
only one AW-edge incident to Pt and P'j). 

(Ill) We prove that 

(21) ß(Ge) ^ 2h— 3a—2 . 

If N is empty then Gs = G, n — 2s and because of (9) 

(22) 71(0.) = n—g(G) 5 2 s - ( 2 p - h + 1) = A—2a—1. 

In this case from (22), (5) and (10) follows (21). 
For the rest of (III) we assume that N is non empty. Pu t G0 = [А7, A7]. 

G0 is an even graph which, because of (19), is non empty. Thus by the theorem 
( 1 . 1 1 ) o f K Ö N I G 

(23) g(G0) = e(G0). 

Let e'v . . . , еЦ«0 = e(G0)) ke a maximal system of independent edges 
of G0. By (17) we can assume t h a t 

е- = Pi Qt (г = 1, . . . , s a). 
Put M[= {P'x, ... , P'So}. By (18) the vertices of M'x are independent 

and because (20) if P\ £ M[ then the only vertex of N with which P\ can he 
connected by an edge is Qt. Denote by M'2 the vertices of M[ which are 
connected with the corresponding Q, and put a(il/2) = t. 

Assume t XA a + 1, without loss of generality we have M'2= {P[, . . . , P\}. 
Let 4- = Pi P'i Qßi = 1 , . . . , * ) . Then the triangles A,{i = 1, . . . , а + 1) 
and the edges e a + 2 , . . . , es form a subgraph G' of G whose existence because 
of (15) contradicts (8). 

Assume next t + a. The vertices of M3 = M[ — M2 are independent 
(assuming that M'z is non empty) and the only edges incident to them belong 
to Ge. Therefore the vertices of АД = M (J [M'—M'a) represent the edges of 
G. Thus 

g(G) ^ a(Nx) = 2s - (s0-t) ^ 2p - (a + e0). 
Thus from (9) 

(24) s0^h—a— 1. 

Let R0 respectively Re be a representing system of G0 respectively Ge 
having minimal number of elements. R0\jRs clearly represents G and thus 
by (23) s0+ y(Gs)> p(G). Thus from (9) and (24) we obtain y(Ge)^2p—2h + 
+ a + 2. Thus by (1.3) (1) we obtain (21). 

From now on the triangles 4 a n d ^he sets M'v M2 will not occur any 
more. Thus we will use these symbols and the symbols used for their vertices, 
for other purposes. 
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(IV) Now we shall show that both [31] and [31'] contain suitably 
related complete graphs having sufficiently many vertices. From (6) and 
(10) we have 

n([M]) = s><p(<p(2h + 4)). 

By jü([3t]) g ß(Gc) we have f rom (21) 

p([M])<2h + 3 g <p(2h + 4). 

Thus by R A M S A Y ' S theorem there is an Mx с ill so t h a t [31 x] is complete and 

я([Мх]) = cp(2h + 4). 
Let 

3IX = {Px Pu}, M[={P'V . . . , Pi] (u = <p{2h + 4)). 

By (21) y([M[])<2h + 4. Thus by n([M'x]) = <p{2h + 4) we obtain from 
R A M S A Y ' S theorem tha t there exists an M2 С M] so t h a t [3P2] is complete 
and Ti([31'2]) = 2h + 4. P u t 

м'2={Р[,... , p ; h + t } . 

(10) implies 3(a -f 2) < 2 h + 4. Thus since [ J f J a n d [M2] are complete, 
the triangles 

Лi = P 3 i - 3 P 3 i - X P 3 i , A't = P'3i-2P'3i-iP'3i (г = 1, . . . , a + 2) 
are all subgraphs of G. 

By (10) 2a < h — 1. Now we distinguish three cases, 2a g h — 3, 2a = 
= A—2 and 2a = A —1. 

(V) Assume 2a g h — 3. Then the pairs of triangles ( Д-, А\) (г'= 1, . . . , a+1 ) 
and the edges e3a+4, . . . , es form a subgraph of G which by (12) contra-
dicts (8). 

(VI) Assume next 2a = A—2. By (7) n ^ 2s + 1, thus N is non empty. 
By (19) there are W - e d g e s . Now the following s ta tement holds: 

(25) Any two vertices of N which are no t incident to W - e d g e s are connec-
ted by an edge. 

For if two such vertices would no t be connected, the other vertices 
of N would represent the edges of G. Thus n g 2s—2 = 2p—h, which contra-
dicts (9). Thus (25) is proved. 

Assume first that there is a j (1 j g s) so tha t both Pj and P] are 
incident to W - e d g e s . By (20) the vertices of these VV-edges which are in N 
must coincide. Denote this common vertex by (Д. Consider the triagles (A,, A]) 
(i = 1, . . . , a + 2) defined in (IV). We can find a of these pairs in such a 
way that none of them should have a common vertex with ey-. These pairs 
of triangles together with the triangle P j P] Qx and together with all the 
edges et (1 g. i g. s, i ф j) which have no common vertex with our a triangle-
pairs form a subgraph of G whose existence by (13) contradicts (8). 

For the rest of part (VI) we can assume tha t no ver tex of 31' is connected 
(by an edge) to a vertex of N. Thus we obtain by (25) t h a t [31'] is a complete 
graph. No we prove the following s ta tement : 
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(26) Assume tha t G contains an edge PjQi (1 ^ j < s, Q,£N), assume further 
к ф /(1 к f i s), then the edge PjPk is not in G. 
If (26) would be false, then since [M1] is complete the triangle P']PkP'k 

is a subgraph of G. From the triangle-pairs (Ait A\) (i = 1, . . . , a + 2) we 
can again find a of them so tha t none of them have a common vertex with 
ej or ek. These triangles together with the triangle Р)РкР'к, the edge PjQt, 
and all the edges e,(l gi i gL s, i =f= j, г =f= k) which have no common vertex 
with our a triangle-pairs form a subgraph of G whose existence by (13) contra-
dicts (8). 

We now show t h a t every vertex of M is incident to AW-edges. To see 
this observe tha t if Pk{ 1 51 к ^ s) would be a vertex which is not incident 
to an AW-edge, then by (25) this would be connected to every vertex of i l / ' . 
Among these vertices there clearly is a vertex P} so t h a t the corresponding 
Pj is incident to an NN-edge, which contradicts (26). 

From (18) and f rom the fact t h a t [M' ] is complete it follows t h a t the 
AW-edges incident to the vertices of M are all incident to the same vertex 
Qv Therefore by (19) N = {Qj}- From (26) we fur ther deduce t h a t t he only 
vertex of M' to which Pj can be connected is P'j(l gi j gL s). 

Next we show t h a t no two vertices of M are connected. To see this 
assume t h a t G contains the edge PjPk(;i=f=k, {Pj, Pk} C.M). Choose a of 
the triangle-pairs (Ajt A\) (i = 1, . . . , a -j- 2) so t h a t none of t hem contain 
a common vertex with the edges e ; and ek. These triangle-pairs together 
with the triangle Q1 Pj Pk and together with all the edges e,(l г ^ s, i =f= j, 
i =f= k) which have no common vertex with one of our a triangle-pairs form 
a subgraph of G which by (13) contradicts (8). 

F rom what has been said it follows that the set R = M ' IJ N represents 
G, fur ther a(R) = s -j- 1 íS. 2p—h a n d this contradicts (9). 

(VII) Finally assume 2a = h— 1. Then by (7) n S; 2s + 2, or N contains 
a t least two vertices. Every vertex of N is incident to AW-edges. For if N 
would have a vertex which is not incident to an AW-edge then the other 
vertices of N would represent G, their number is 2s — 1 = 2p — h which 
contradicts (9). 

By (19) and (20) there is a j and i ( l g s, 1 ^ к ^ s, j ф к) for 
which the triangles A' = QJ'jPj and A" = Q2PkP'k are subgraphs of G. 
We now select from the triangle-pairs (Ait A\) (i = 1, . . . , a + 2) a —1 
pairs so t h a t none of them contain a common vertex with or ek. These pairs 
together with A', A" and with all the edges e,(l ^ i ^ s, г =f= j, г =f= k) which 
have no vertex in common with the selected pairs form a subgraph of G. 
By (14) this contradicts (8). 

This completes the proof of Theorem (2.2). 
Now we show t h a t if с ( о 1) is any constant and h>h0(c) then p0(h)>ch. 

More precisely we shall show 

Theorem (2.3). Let с (с > 1) be any constant, then there exists an h0(c) 
so that for every h>h0(c) there exists an integer p>ch and, a graph G satisfying 
the following conditions : 

1.) G contains no isolated vertex. 
2.) л {G) ^ 2 p—h + 3. 

13 A Matematikai Kutató Intézet Közleményei VI . 1—2. 
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3.) For every G' с G which satisfies v(G') ^ p + h we have y(G') <L p. 
4.) p(G)>2p—h. 

Proof. (I) A theorem of E R D Ő S ([3], p. 34. (4)) implies that to every 
c ( c > l ) there is an n0 (c) so t ha t for every n>v0(c) there exists a graph G, 
having no isolated vertices, for which 

(1) л(G) = n, p(G) < — • — 
56 с 

and for which 

(2) every circuit contains more than 28c vertices. 

We are going to show tha t 

na{c) (3) h0(c) = max 28, 

satisfies the requirements of our theorem. 
Let h>h0(c), and choose p so that 

(4) ch < p < -ch . 
6 

Let further n satisfy 
3 -, 6 3 

(5) 2 p p<n<2p p. 
4c 7 4c 

Let G he a graph having no isolated vertices and satisfying (1) and (2) 
with the above choices of с and v. We shall show tha t G satisfies the conditions 
1.), 2.), 3.) and 4.) of Theorem (2.3). 

Conditions 1.), 2.) and 4.) are clearly satisfied. Thus to complete our 
proof we only have to show tha t 3.) is satisfied. 

(II) Let G' с G, v{G') ^ p + h. We shall prove that 

(6 ) p(G') ^ p. 

To prove (6) we define by recursion for every к > C a subgraph Gk of 
G' as follows: G0 = G'. If Gk has no vertex of valency > 2 we put Gk+1 = Gk. 
If Gk has a vertex of valency > 2, let Pk such a vertex and put Gk+1 = Gk—Pk. 
Since G was finite there is a smallest к say I so that Gl+1 = Gt. Gt has no 
vertex of valency greater than 2, and we obtained Gl from G' by the omission 
of I vertices of valency ^ 3. Thus from (4), (5) and v(G') ^ p ф h we obtain 

(7) n(G,) = n — l < 2 p - - 9 ~ p - l , 
14 с 

(8) v(G,) =- v(G') — 3 Z < p + ^ — 3Z. 
с 

Since all vertices of Gl have valency < 2, the components of G, can 
only be circuits, paths and isolated vertices. Assume that there are j circuits 
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among the components of Gr By (2) every circuit of G, contains more than 
28c vertices, thus by (7) 

or 

(9) 

j • 28 с < n(G,) < 2p 

V 
1 < 14 с 

The edges of a circuit or path of к vertices can always he represented 
by [7/2] or [7/2] -f- 1 vertices respectively. Thus from (7) and (9) 

p(G,) ^ ~n(Gt) + j < p - -f- - i-. 
2 4 с 2 

The edges of G' which do not occur in G, we represent by the / vertices 
which do not occur in G,. Thus we obtain 

p(G') S P(G,) + I < p V_ 
4c 

Thus if p/(4c) ^ 1/2 we obtain p(G') < p. If p/(4c) < 1/2, then by p(G,) ^ v(G,) 
and by (8) we have 

P ( G ' ) ^ p(G,) + 1 <p, 

which proves 3.) and thus the proof of Theorem (2.3) is complete. 

§ 3 . 

(3.1) In connection with the general problem raised in (2.1) the following 
questions can be asked: 

Does there exist to every p a smallest f(p) so t ha t if G has the property 
that for every G' с G with v(G') ^ f(p) we have p(G') ^ p, then p(G) ф pl 

This question can be answered affirmatively. F rom the Theorem (3.5) 
we easily deduce 

12 v 4 - 2 1 
Theorem (3.2). Assume that for every G' с G with v(G') 

we have p(G') ^ p. Then p(G) gL p. 

The estimate f(p) ^ + 2 

Conjecture (3.3). 

m 

seems to be a poor one. 

p + 2 
2 

We can prove our conjecture for p ^ 4 (see t he remark 1. made to 
Theorem (3.10)). The example of the complete (p + 2)-graphs shows that 

P + 2 ) 
f(p) s? , since if G is a complete (p + 2)-graph for every proper sub-

graph G' of it we have //.(G") + p and v(G') + 
p + 2 - 1, but p(G) = p + 1. 

13* 
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(3.4) Now we ask the following question: 
Assume t h a t for every G' с G satisfying n(Gj SL q we have y(Gj fk p 

what upper bound can be given for y(G)'1. 
If q = 2p + 1, p(G) can be arbitrarily large. To see this consider the 

following even graph G*: T h e vertices of G* are Px, . . . , Pm, Qv . . . , Qn 
and its edges are PjQji = 1, . . . , m; j—l,...,n). Clearly y(G*) — min (m, n), 
but a simple argument shows tha t for every G' _c G* with л(Gj 
gk 2p + 1 we have y(Gj gL p. Here we have for m — n n(G*) = 2 n, 
y(G*) = n. The more complicated examples given in [2] a n d [3] show t h a t 
a graph G wi th л (G) = n, y(G)>n—o(n) exists so t h a t for every G' c. G 
with jr(G') ^ 2p + 1 we have p(Gj ^ p. 

On the other hand we are going to prove that for q — 2p + 2 we have 
K(G) = V (which is clearly best possible). 

Theorem (3.5). Assume that for every G' С G with T I ( G ' ) ^ 2p - F 2 we 
have y(Gj ^ p. Then p(G) ^ p. 

We will prove Theorem (3.5) in § 4. I t is curious t o observe the sharp 
change between q = 2p -f- 1 a n d q = 2p + 2. This change can he seen also 
in the order of magnitude of the number of edges. 

If q = 2p -f 2 (3.5) immediately gives 

(1) v(G) g, p(n(G) - 1) . 

(1) is bes t possible. T o see this let t h e vertices of G be Pv . . . , Pp , 
Qx, . . . , Qn_p (the set of the Q's may he empty) . The edges of G connect each 
of the vertices Px, . . . 
and v(G) = p (n — l). 

P with all the other vertices of G. Clearly y(G) — p 

If q = 2p + 1 then G* shows tha t v(G) can he as large as 

For sufficiently large values of n(G) 

лЩ* 

2 ) 
for m = MG)' 

, n = 
л ( 0 ) + 11 

2 2 
this is best possible. Here we have 

Theorem (3.6). Let л (G) ^ 4 (p + 1). Assume that for every G' с G with 
TT(G') ^ 2p + 1 , y(Gj £ p. Then 

r(G)S f W l 2 1 

Disregarding the condition л (G) (g 4 (p + 1), for p — 1 this theorem 
is identical with T U R Á N ' S theorem ([9], p. 26.) for j = 2. The proof of Theorem 
(3.6) uses this special case of T U R Á N ' S theorem. We supress the details. 

Perhaps we can digress for a moment a n d call a t tent ion to the following 
interesting class of problems. Let n(G) = n a n d assume t h a t for every G' С G 
with n(Gj q we have y(Gj p. Denote b y g(n, p, q) t h e maximum value 
of v(G). We wish to determine or estimate g(n, p, q). The cases q gL p + 1 

are trivial since there tr ivial ly g(n,p,q) = П q>2p+ 2 implies by (3.5) 

g(n, p, q) = p(n — 1). The interesting range The case 
q = 2p + 1 is settled by Theorem (3.6). q = p + 2 means t h a t G does not 
contain a complete (p - F 2)-graph and is thus settled by T U R Á N ' S theorem. 
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The determination of g(n, p, q) for general p and q seems to be a difficult 
problem and we made very little progress with it. E R D Ő S can show t h a t for 
sufficiently large n 

(n + m 
(i) g(n,p,2p) = — 1 

The methods required for the proof of (1) and Theorem (3.6) are quite different 
than those used in this paper. 

I t is easy to see t ha t conjecture (3.3) and theorem (3.5) can be restated 
in the following form: 

(3.7) Conjecture. If y(G) > p then there is a G' c G for which fi(G') > p 

and v(G') А + . 

(3.8) If y(G)>p then there is a G' с G for which y(G')>p and n(G') A 
A2p+2. 

A graph G is said to be edge-critical if it has edges and for every G' с G, 
y(G') < p(G). 

G is point-critical if it has edges and for every G' с G for which n(G')< 
<n(G) we have g(G') < p(G). 

Clearly every G which has edges has subgraphs G' which are edge-, 
respectively point-critical and for which g(G') = p(G). 

(3.7) and (3.8) are substantially equivalent to the following statements: 

Conjecture (3.9). For every edge-critical graph G we have v(G) A ^^ * . 

Theorem (3.10) For every point-critical G we have n(G) A 2 /i(G). 

The proof of the equivalence is left to the reader. The proof of (3.10) will he 
given in § 4. 

Remarks. 1.) Conjecture (3.9) holds for p(G) A 4. 

2.) In § 4 we shall show that in (3.10) equality can hold only if 2e(G) = 
= n(G). 

3.) From (3.10) and from the fact that an edge-critical graph is also 
point-critical we obtain tha t for an edge-critical graph G we have v(G) A 

§ 4 . 

In this § we are going to prove Theorem (3.10) (and thus also Theorem 
(3.5)). 

Our definitions trivially imply 

(4.1) A point-critical graph can have no isolated vertices. If G is non-
empty and not point-critical, then it has a vertex P with p(G—P) = y(G). 
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(4.2) Let S be the set of vertices of G, further let 

(1) S, с S {i = 1, . . . , к ; к ^ 2); S^Sj = 0 (г ф j, г, j = 1, . . . , к) and 

U 8, = S . 
i=l 

Let R 1)0 a set of y(G) vertices which represent every edge of G. Clearly 
R П represents all edges of Gi = [S;], thus 

к 
(2) 2 M G f ) á MG) . 

1 = 1 

If there exists a decomposition of $ into non empty subsets satisfying 
(1) for which 

к 
2 fi(G,) = y(G) 
i = 1 

holds, then we say that G is decomposable a n d we call the set {Gx, . . . , Gk] 
a decomposition of G. The following two statements trivially follow from our 
definitions: 

(4.3) If G is decomposable we have л (G) > 1 and G has a decomposition 
{G1, . . . , Gk) where all the G,( 1 g i g к) are indecomposable. 

(4.4) If (the non-empty) G is not connected, it is decomposable. 

(4.5) If n(G) > 1 and G is indecomposable, then G is point-critical. 

Proof» If (4.5) would be false, there would exist by (4.1) a P £ S so t ha t 
for Gx = G—P we would have y(Gk) = y (G). Clearly neither Gx nor G2 = [ P ] 
are empty and y(G2) = 0. Thus y(G() + y(G2) = y(G), hu t then {Gv G2j 
would he a decomposition of G. 

(4.6) Let G be point-critical and {Gx, . . . , Gk} a decomposition of G. Then 
the G i (i = 1, . . . , k) are also point-critical. 

Proof. Assume say that Gx is not point-critical. Since G*x is non empty 
it has by (4.1) a vertex P so t h a t y(Gk-P) = y(Gk). But then by (4.2) (2) 

к к 
y(G - P ) Ж P(Gl — P) + >'//(G,.) = 2P(Gi) = / ( G ) , 

i=2 i=l 

which is a contradiction since G was assumed to he point-critical. 

Theorem (4.7). If л (G) > 1 and G is indecomposable, then 

n(G) g 2y(G) 
where equality stands only if G consists of a single edge. 

Proof. (I) Because of (4.4) G is connected and therefore it has no 
isolated vertex. If G consists of a single edge n(G) = 2y(G) trivially holds. 
Henceforth we assume л (G) > 2. Let R be a set of y(G) = r vertices which 
represent every edge of G. Pu t S—R = T. Clearly neither R nor T are empty 
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and the vertices of T are independent. Thus every vertex of T is incident 
to Tß-edges. 

Consider the graph G' — [R, T). Clearly G' is even and contains edges. 
Put p(G') = r'. Clearly 0 < r' < r. 

We are going to show in (II) that the only representing system of G' 
with r' elements is T. This easily implies л (G) < 2 p(G), since R is a representing 
system of G' and therefore r > r', or л (G) = r + т' < 2r as stated. 

(II) Let R' be any representing system of G' which has r' elements. 
R' is non empty. Put 

R' П R = Ri, R' П T — Tv 

Assume that R1 is empty. Then from R' C.T and f rom the fact tha t 
every vertex of T is incident to Tß-edges it follows tha t R' = T. 

Thus to complete our proof we only have to show t h a t the assumption 
a(ß 4 ) = r1 > 0 leads to a contradiction. 

By theorem ( 1 11) of K Ö N I G G' contains r' independent edges, say 
ei — PtP'i ( P , £ ß , P't£T. i= 1 r'). Each of these edges is incident to 
exactly one vertex of R'. Denote by elt . . . , eTi the edges incident to the 
vertices of R1 and put {P[. . . P'n} = T2. We evidently have 1\ (VT2 = 0. 
Let R — R1 = Rv T—T2 = T2. G' clearly does not contain an R^-edge. 
Put 

G1 = [R1 U T2], G2 = [R, U T2). 

a) Assume first that G2 is empty. Then 

rx = r' = r = a(R) = a(T). 

Since л (G) > 2 we have r > 1. Then if G3 = [{Px, Р'г}] and G4 = [S - {Plt 
we have p(G3) = 1 and p(G4) > r — 1 (since G4 contains e2, ... , er). Thus 
{G3, G4} is a decomposition of G and this is a contradiction. 

b) Assume now G2 non empty. The vertices of Rk represent all edges 
of G4 and since G1 contains the edges e4, . . . , en we obtain 

(1) /i(öi) = 

p(G2) > r—r1 is impossible since {G4, G2} would then be a decomposition of 
G. But fi(G2) < r—r1 is also impossible, for in this case if R2 would be a 
representing system of G2 having p(G2) elements, then R1 U R-i would represent 
all edges of G and thus 

P ( G ) ^ ^ ( G J ) + p(G2) < R, 

which is impossible. This completes the proof of (4.7) . 

Finally we prove (3.10) and our remark 2.) belonging to it. 

( 4 . 8 ) If G is point-critical then n{G) 5 Í 2 / I ( G ) , equality can hold only if 
2 e(G) = n(G). 

Proof. If G consists of an edge, (4.8) it trivial. We can therefore assume 
ihat л (G) > 2. If G is indecomposable, then by (4.7) ?r(G) < 2/t(G). Assume 
now tha t G is decomposable and let {G4, . . . , Gkj be a decomposition of G 
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where all the G, (1 + i к) are indecomposable. By (4.6) G, (i = 1, . . . , 7) 
is point-critical and thus 

к к 
я(в)= 2 2y(Gi) = *y(G) . 

i=l í=l 

Equality occurs if and only if every G,- (1 ^ г + 7) consits of a single edge 
In this case the edges of Gx, . . . , Gk are independent, which implies 2e(G) = 
= n(G). 

§ 5. 

(5.1) In this § we generalise our problems to "graphs of several dimen-
sions" i. e. t o k-tuples. Let S be a set (its elements we will call points) and 
H a certain finite set of 7-tuples formed from the elements of S. (For 7 = 2 
H was G and the points of S which occur in the 2-tuples of H, i. e. in the 
edges of G were called the vertices of G. This G has no isolated vertices.) 
Denote by л (H) the number of elements of S which occur in the 7-tuples 
of H and by v{H) the number of 7-tuples of H. If R с S and if every 7-tuple 
of H containts at least one point of R we say that the points of R represent 
H or that R is a representing system of H. Denote by p(H) the minimal number 
of points which represent H . 

Generalising the problems considered in (3.1) and (3.5) (i. e. in (3.7) and 
( 3 . 8 ) ) we wish to determine the smallest values f(k,p) and g(k,p) which 
satisi'y the following conditions: 

Every H for which p(H) > p contains a subset H' and a subset H" 
for which p(H') > p, p(H") > p and v(H') ^ f(k,p), n(H") ^ g(k,p). 

We now obtain upper estimates for f(k,p) and g(k, p) further we deter-
mine /(7,1) respectively g(k, 1) for every 7 ^ 2 . 

Theorem (5.2) 

f(k,p)^ 2 k'. 
1 = 0 

Proof. For p = 0 our statement is trivial. Assume henceforth p ^ 1. 
Let H be an arbitrary f ini te set of 7-tuples with p(H) > p and let t0 = 
= {Pv . . . , Pk} he an arb i t rary element of H. Put H0 = {i0}. Since p(H) > 
> p > l a single element can not represent H and therefore to every Pti (1 + 
5Í q + 7) there is a in H which does not contain P ( i . Let tii = {/+,, . . . , 
Pilk} (q = 1, . . . , 7) and p u t Hx = [tx, . . . , tk}. If p S 2 we need a t least 
three points for the representation of H and therefore we can find to every 
pair of points Pi,, Гц, (1 ^ q ^ 7, 1 г2 5Í 7) a 7-tuple tiiit = {Píiíty j j 

- 1 7} which does not contain Pfi and Рц,. P u t H2 = {tiiit \ q , i 2 = 
= 1, . . . , 7}. Continuing this process for every j (1 ^ j ^ p) we obtain the 
7-tuples ... q (of Я) and the points ,...qq and the sets of 7-tuples 
H j (q, . . . , i j , i j + 1 = 1 7). Put 

H' = U Hj . 
j=o 
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Since v(Hj) g У we have v(H') g У. Now we show fi(H') > p. To 
j=о 

see this let Я be a representing system of H . R must contain an element 
of t0 say 1 \ . By our construction T\ + Д, thus R must contain an element of 
Д say P12. If p > 2 then Px and P12 are not contained in t12 and R must contain 
an element P123 of t12. This process can be continued (p + 1) times and we 
obtain tha t R contains the elements Px, P12, . . . , P12 . . . p+1 or a(R) > p 
as stated. 

Theorem (5.3) f(k, 1) = к + 1 (к 7> 2). 

Proof. By (5.2) f(k, 1) ^ к + 1. The following example shows f(k, 1) = 
= 1 + 1 . Let S = {P0, . . . , Pk}. H consists of the (k + 1) к-tuples formed 
from S. Here p(H) > 1 but for every H ' с H p(H') = 1. 

(5.4) In general we know little about the value of f(k, p). Conjecture 
p + 2 (3.7) states that /(2, p) = 

P + k ture f(k, p) = . In any case f(k, p) > 

. This and (5.3) might permit us to conjec-

p + k . To see this let H consists 

of all the p + k 

к 
A-tuples formed from p + k elements. Clearly /.<(//) = 

p + 1 , but a simple argument shows that for every Я ' с Я y(H')gp, which 
p + k 

proves f(k,p) > 
к 

A trivial argument shows tha t g(k,p) g kf(k,p). Thus we have 

p+i 
Theorem (5.5). g(k, p) g JV У (к ^ 2). 

i=l 
We know only a little more about g(k, p) than about f(Jc, p). (3.8) states that 
g(2,p) = 2p + 2. Further we have 

Theorem (5.6). g (Je, 1) = (к + 2)2 
(к ^ 2). 

Proof. (I) First we show g(k, 1) ^ [(к + 2)2/4]. To see this let H be a 
set of fc-tuples for which p.(H) > 1, let further t' and t" be two A-tuples of 
H for which a(t' f)t") = a is minimal. 

If a = 0, then putting H' = {f , t"} we have p(H') > 1 and л(Н') = 
= 2 kg [(fc + 2)2/4]. Thus we can assume a > 0 . Put t'C\t" = {Px, . . . , Pa}-
To every P, (1 g i g a) we can find a i, of H which does not contain Pt. 
Put H' = {t', t", tv . . . , ta}. Clearly p(H') > 1. Further for every i (1 ^ 
g i g a ) 

(1) a( f ' rH) ^ a, a ( í " f | í , ) ^ a, a ( í ' n í " Dí,) ^ a — 1. 

Denote by a, the number of elements of / which do not belong to t' R\t". We 
have by (1) 

a i = a(i,) — a(i'fl< () — a(<"ni , ) + a(t'Ç)t" ОЦ) g k - a - 1. 
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Thus 

л(Н') и t") + 2 щ è 2 к — a + a(k - a — \ ) = 
i = i 

= 2k+ a(k — 2 — a ) 5 2 i + к — 2) (к + 2)2 

which proves our assertion. 

(II) To show g(k, 1) ^ [(k + 2)2/4] put [к/2] = I and M = Pq} 
where q = I + 1 if к is even and q — I + 2 if к is odd. Let further 

a n d 
Mt = M-{Pù, м\ = {ра pn), t, = м, и м\ a- i....,q) 

H = { * ! , . . . , * , + 1 } , 

(the P's with different indices denote different points). 
Here we have a(<;) = к (г = 1, . . . , * + 1) and 

л(Н) = q + ql = 
(к + 2)2 

Clearly p(H) > 1, but for H,=H - {*,} (t = 1, . . . , I + 1) we have 
g(Hi) = 1 since P, clearly represents H t . This completes our proof. 

(Received November 25, 1960.) 

R E F E R E N C E S 

[1] B E R G E , С.: Théorie des graphes et ses applications. Paris, 1958. 
[ 2 ] E R D Ő S , P . : "Remarks on a t heo rem of R a m s a y . " Bull. Research Council of Israel 

Section F 7 (1957) 2 1 - 2 4 . 
[3] E R D Ő S , P.: "Graph theory a n d probabil i ty." Canadian Journal of Mathematics 11 

(1959) 34 — 38. 
[4] E R D Ő S , P. — G A L L A I , T.: " O n maximal paths and circuits of g raphs . " Acta Mathe-

matica Academiae Scientiarum Hungaricae 10 (1959) 337 — 357. 
[ 5 ] E R D Ő S , P . — S Z E K E R E S , G . : " A combinatorial problem in geometry ." Compositio 

Math. 2 ( 1 9 3 5 ) 4 6 3 - 4 7 0 . 
[ 6 ] G A L L A I , T.: "Über extreme Punk t - und Kantenmengen." Annales Universitatis 

Scientiarum Budapestien sis de Rolando Eötvös Nominatae, Sectio Mathematica 
2 (1959) 133—138. 

[ 7 ] K Ö N I G , D.: Theorie der endlichen und unendlichen Graphen. Leipzig, 1 9 3 6 . 
[ 8 ] R A M S A Y , F . P . : Collected papers. 8 2 — 1 1 1 . 
[ 9 ] T Ú R Á N , P . : " O n the theory of graphs" . Colloquium Mathematicum 3 ( 1 9 5 4 ) 1 9 — 30. 



MINIMAL N U M B E R OF REPRESENTING VERTICES 2 0 3 

О МИНИМАЛЬНОМ ЧИСЛЕ ТОЧЕК, РЕПРЕЗЕНТИРУЮЩИХ РЕБРА 
ГРАФА 

Р. ERDŐS И T. GALLAI 

Резюме 

В работе фигурируют лишь такие конечные ненаправленные графы, 
которые не содержат петлей и в которых две точки связаны не более чем 
одним ребром. Число точек графа G обозначается через n(G), а число его 
ребер через v(G). 

Если ev .. .,e/j ^ 1) ребра графа G и Р 1 г . .,Рк(к ^ 1) такие точки G, 
что любое е,(1 Ai A j ) содержит хотя бы одну из них, то мы говорим, что 
Рх, ..., Рк репрезентируют ребра е 1 ; . . . , ej. Обозначим через p(G) минималь-
ное число точек, репрезентирующих все ребра G. Если G не содержит ребер, 
то полагаем p(G) = 0. Цель работы дать верхние грани для p(G), используя 
различные данные и свойства G. Основные результаты: 

Если G содержит ребро, то p(G) не превосходит гармоническое среднее 

от - Ti(G) и v(G). Равенство имеет место лишь в том случае, если G полный 
2 

граф, или если каждая компонента G есть полный граф с одним и тем же 
числом точек. (Теорема (1.7).) 

Если р «достаточно велико» относительно h(h ^ 2) и для графа G, 
не содержащего изолированных точек, n(G) > 2р — h + 3, то, если для всех 
подграфов G' графа G, содержащих не более p + h ребер, p(G') А р, то 
p(G) А 2р - h. (Теорема (2.2.).) 

Если для всех подграфов G' графа G, содержащих не более 2р + 2 точек, 
p(G') А р, то p(G) А р. (Теорема (3.5).) 

Границы, фигурирующие в этих теоремах, не могут быть улучшенны 
без дальнейших предположений. 

§ 5 занимается «многомерным» обобщением проблем. Здесь вместо 
графов фигурируют fc-аты, образуемые из любых элементов (k ^ 2). 
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