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Introduction

In this paper we will only consider non-directed graphs which do not
contain loops and where two vertices are connected by at most one edge!
(see [1] and [7]). We permit isolated points and we do not exclude the empty
graph i. e. the graph without vertices and edges. z(G) and »(G@) denotes the
number of vertices respectively of edges of the graph G. G’ c G denotes
that G’ is a subgraph of G. (If G’ c G and G #+ G, we write G'c G.)

We shall say that the vertices Pl, .o., Pk = 1)% represent the edges
e, ..., ¢(j=1)of Gif every edge ¢(1 < 7) contains at least one the
points Ph(l < h < k). If the vertices Pl, ..., P, represent all edges of G
we call R = {P,, ..., P} a representing system of G and say that R represents

G. We denote by ,u(G) the minimal number of vertices representing every
edge of G (i. e. we can find u(@) vertices in such a way that every edge of
G containts at least one of these vertices, but there do not exist u(G)—1 ver-
tices with this property). If G has no edge, then by definition u(G) = 0.
The chief object of this paper will be to give various estimations from
above of u(@).

In § 1 we shall obtain estimates for u(G) in terms of n(G (G) and other
characteristic data of G. One of our results (Theorem (1.7)) w hlch will be an
easy consequence of a result of TuRAN states that

LR O if  »(G@)>0.

In § 2, 3 and 4 we shall estimate w(G@) in terms of u(G') where G runs
through certain subgraphs of ¢. Our principal results are:

If w(@G') < pforall @' c G with n(G') < 2p + 2, then u(G) < p. (Theo-
rem (3.5)).

1 Every edge ‘‘contains’ exactly two vertices, which are <‘connected’” by it.
2 Numbers which are denoted by letters are always assumed to be non negative
integers.
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Let h = 2, p>py(h). Assume that n(G) > 2p—h + 3 and that G has
no isolated vertices, further assume that for every G' c G with n(G') < p + h
we have u(G') < p. Then (@) < 2p—h (Theorem (2.2)).

In general the above results are best possible.

In § 5 we generalise our problems to ,,multidimensional graphs”. Instead
of graphs we consider sets of k-tuples (£ = 2) and study the minimal number
of elements which represent each of our given k-tuples.

51

(1.1) First of all we need some definitions and notations.

G will always denote a graph, and if in the following it is not explicitely
indicated to which graph some symbols and notations belong, we always
assume that they refer to the graph denoted by G.

a(M) will always denote the number of elements of the finite set M.

We shall denote by PQ the edge connecting the vertices P and @. The
graph which consists of the vertices P and @ and the edge P will also be
called an edge. The graph which consists of the vertices P;, P,, P; and the
edges P,P,, P,P;, P;P; will be called a triangle and will be denoted by P,P,P;.

If P is a vertex of G, then we call the number of edges of G which
are incident to P the valency of P (in G).

If any two vertices of G are connected by an edge G will be called com-
plete. The graph consisting of one point will be called complete too.

It @ is complete and 7(G) = n we shall call G a complete n-graph.

Assume that G has at least two vertices. The complementary graph G of

G is defined as follows: G has the same vertices as G and two vertices of @
are connected if and only if they are not connected in G.

For the definition of path and circuit see [7] (path = Weg, circuit =
= Kireis).

A graph G — having at least two vertices — is said to be connected if
any two of its vertices are on a path of G. The graph having one vertex is
called connected.

The components of (the non empty) G are its maximal connected sub-
graphs.

" Denote by S the set of vertices of G. Let M c S. We denote by [M]
the subgraph of G whose vertices are the elements of M and whose edges
are all the edges of G which have both vertices in 1.

It M c S and N c 8§ then we call the edges one vertex of which is in
M and the other in N the M N-edges.

[M, N] denotes the subgraph of G whose vertices are the elements of
M UN and whose edges are the MN-edges of G.

G is even if there is an M and N for which MUN=8, MNN= @ and
[M,N]=G.

Let P€S. G—P denotes the graph which we obtain by omitting from
G the vertex P and all the edges incident to P.

The vertices Py, ..., P;j(j>1) of G are called independent (in @) if no
two of them are connected by an edge (in G). One vertex is always called
independent. u(G) denotes the maximal number of the independent vertices
of G. If G is empty, then by definition u(G) = 0.
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The edges ¢;, . . ., e; (j>1) are called independent it they have no com-
mon vertex. One edge is always called independent. The maximum number
of the independent edges of G is denoted by &(@). If G has no edges we have
by definition &(G)) = 0.

We shall call G k-fold connected (k > 1) if in case £k = 1 G is connected
and for £>1 if #(G) = £ + 1 and G remains connected after the omission
of any k—1 of its vertices (and all the edges incident to them).

(1.2) It follows from our definitions that if G,,..., G; (j = 1) are the
components of G then if ¢ = x, v, u, uw or ¢

9(@) = S 9(@).

j
i=1

(1.3) It is easy to see that (see [6], p. 134.)

(1) W(G) + A(G) = n(G) .

If G is non empty then u(G) = 1, equality here holds if and only if
G is complete. From this remark and (1) we obtain

(1
(1.4) If G is non empty then w(GQ) < a(G) — 1. Equality holds if and only
if G is complete.

It we make special assumptions about G we can improve the above
estimation. Thus the following trivial inequalities hold:

(1.5) If G is even u(G) é%n(G).

If we assume that G' does not contain a triangle (or a complete k-graph
(k>3)) then the problem of giving a sharp upper bound for u(G) in terms of
(@) is difficult and will not be discussed in this paper. Because of (1.3) (1)
this is really Ramsay’s problem ([8], [5]).

(1.6) u(G) < »(G) s trivial. Equality holds if and only if no two edges
of G have a common vertex.

We can obtain non trivial upper estimates of w(G) using both z(Q)
and »(Q).

Theorem (1.7). Assume that G has edges. Then

29(G) 6)
21(@) + 7(G)

@) <

or in other words: w(G) is less than or equal to the harmonic mean between
%n(G) and v(Q). Equality holds if and only if G is a complete graph, or if each

component of G is a complete graph each of which has the same number of vertices.
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Proof. Our theorem is an easy consequence of a result of TurAN. TURAN
proved ([9], p. 26.) that if #(G) = n and G does not contain a complete
(j + 1)-graph but contain a complete j-graph, then

(1) @) s )+ ]
29 2)
where n = jt + r (0 < r<j). If r = 0 equality occurs if and only if G (G is
the complement of G) has j components and each of them are complete
t-graphs?.
Applying this theorem we obtain

r
2

n

2 G =
(2) V()_2

| e - .
_ufﬁﬂ_m+(]:@m¢J+w,

| 2j J 2]
where 7(G) =n, u(G)=j and n=jt +r (0 < r<ij). Further if » =0
equality occurs if and only if all components of G are complete #-graphs.

Let ,u(E‘) = k. By (1.3) j = n —k, thus from (2)
(3) v(G) = (n ﬂi(,kf_*_ n )
2(n— k)

From 0 < r<n—%k we have k<n—r < n. Thus

(4) (n—r)k+r) = nk,

equality only if » = 0. From (3) and (4) we obtain, assuming that »(G) —
=m>0

LI
1
-

m

k<

alw‘

Equality can hold only if we have equality both in (4) and in (2). This com-
pletes our proof since every graph G with 7(G) = 2 is the complementary graph
of a certain graph.

From (1.7) we easily obtain

Theorem (1.8)

(G G
) (@) n(G) 4 »(G)

3

lIA

Equality holds if and only if G is empty or if the components of G are edges and
triangles.

Proof. If G is empty the theorem is trivial, henceforth we shall assume
a(G)>0. It follows from (1.2) that it will suffice to prove our theorem for

3TurRAN gave also in the case » > 0 the necessary and sufficient condition for
equality in (1).




MINIMAL NUMBER OF REPRESENTING VERTICES 185

connected graphs and that equality can hold for G only if it holds for every
component of G.

Henceforth we shall assume that G is connected. Put a(G) = n,
V(G) = m.

Forn = 1 (1) clearly holds with the sign <. Thus we can assume m > 1.
From (1.7) we have

(2) e = =——,

equality holds it and only it G is complete. For positive m and n the inequality
2mn/(2m + n) < (m -+ n)/3 is equivalent to

(3) 0= (m—n)(2m—n).

Therefore if m = =, (1) is implied by (2) and (3), further we can deduce that
equality holds if and only if m = n and G is a complete n-graph. But this is
possible only if n = 3.

If m<n, then since G is connected, m = n — 1 and G is is a tree (see
[7], p. 51.). Since every tree is even, we have by (1.5)

1
W(G) < —m.
#E) = 2
For n = 2 we have (m + n)/3 = (2rn — 1)/3 = 1/(2n), equality only for n = 2.
This proves (1) for m <n and shows that equality holds if and only if G consits
of a single edge. This completes the proof of our theorem.

(1.9) Next we estimate w(G@) in terms of &(G).

Assume »(G) = landlet P, Py, ..., P  Py(s = &(G) = 1) be a maximal
system of independent edges of G. Clearly the vertices P, ..., P, Py, ..., Py
represent the edges of G. On the other hand we clearly need at least s vertices
for the representation of the edges of G. Thus we obtain the following trivial
inequality

(1.10) £(G) < u(G) < 2&(G) .

(1.10) trivially holds for »(G) = 0 too.

The following theorem which we will often use is due to Koxre ([7],
p. 233.).

(1.11) (Kow~1a). For even graphs w(G) = &(G).

For the upper bound in (1.10) we have the following

Theorem (1.12). u(G) = 2 &(G) holds if and only if G is empty or each
component G; of G is complete and n(G;) is odd.

Proof. The sufficiency of the above conditions is evident. To prove
the necessity observe that because of (1.2) it will be sufficient to show that
for a connected G satisfying (@) = 2, u(G) = 2 ¢(@) holds only if G is complete
and n(@) = 2¢(@) + 1. This immediately follows from (1.4) and from the
following
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Theorem (1.13). Let G be k-fold connected (k = 1). Assume n(G)> 2¢(G) +1,
then k < ¢(@) and

wG) < 2¢(G) —k.

The above bound for n(G) is best possible.

Our proof of theorem (1.13) uses the theory of alternating paths. The
proof can be deduced easily from the properties of alternating paths stated
in § 4 of [4]. We do not give the details of the proof.

We remark that one can give a simple proof of (1.12) without using
(1.13).

The following example shows that the bound 2 ¢(G)—Fk in theorem (1.13)
is best possible: Let G be a complete k-graph and G; a complete (2a, + 1)-
graph (k=2 1,a;20,¢2=1,...,1, 1>k -+ 1). The graphs G, and G; have
no common vertex. The vertices of G are the vertices of G and those of the
G (t=1,...,1), the edges of G are the edges of G, the edges of G; (z = 1,
...,0), and every edge which connects a vertex of G, with a vertex of G,
(1<i< ). We have

1 1
e(G>=k+gaw u(G):k+_;:2ai,

1
@) =k+ > 2a;+1)=1—k+2¢G) > 2¢G) + 1.
i=1

G is k-fold connected, u(G) = 2 ¢(G) — k. Observe that in our example n(Q@)
can be made arbitrarily large for given &(Q).

Remark. If G satisfies 7(G)>3 &(G) — 2 (&(G) = 1) and is connected
then we can prove

(1) mG) < 2¢G) —d

where d is the minimum of the valency of the vertices of G. If @ is k-fold con-
nected and z(G)>1, then clearly d = k, thus (1) is a sharpening of (1.13).
The proof of (1) is similar to that of (1.13) and will be suppressed.

Finally we obtain bounds for u(G) in terms of ¢(@), »(G) and #(G).
Theorem (1.14)

(1) (G) < £(G) + ”‘G%‘?@,

(2) wG) < e@) + & = "G 1O =G

Remarks. These bounds are best possible. For (1) we see this by con-
sidering a graph whose components are edges and triangles, and it is not
difficult to see that this is the only case of equality.

For (2) the situation is more complicated. The only connected graphs
(with »(G)> 0) known to us for which there is equality in (2) are: 1.) an edge,
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2.) a triangle, 3.) a complete 4-graph, 4.) two triangles connected by an edge.
It is possible that there are no other cases. Clearly if all the components of
G are the above ones then G satisfies (2) with the sign of equality.

Proof. We use induction for »(G). (1) and (2) are trivial if »(G) <
Let m>1 and assume that (1) and (2) holds for every G* satisfying »(G*) <
In what follows assume that G is an arbitrary graph for which »(G) =
We are going to show that (1) and (2) holds for G too.

We clearly can assume that G has no isolated points. If G is not con-

1
m.

nected, let its components be Gy, ..., G; (j = 2). Clearly »(G)<m (i = 1,
.« ., 7). Thus by our induction hypothesis and (1.2) it follows that ¢ satisfies
(1) and (2).

Henceforth we shall assume that G' is connected.

Assume first that G has a vertex P of valency 1 and let PQ be the
edge incident to P. There clearly exists another edge incident to @ say Q@'
(@' == P). Omit the edge Q@' from @, and denote the graph thus obtained
by G'. Let R be a representing system of G’ with a(R) = u(G’). Clearly R
contains P or @, hence we can assume Q€. But then R is a representing system
of G too, thus u(G) = u(G"). A simple argument further shows that e(G") = &(G)
(i. e. if a set of independent edges of G contains QQ’, we can replace Q@ by
QP and obtain a set of independent edges of ¢’). From this and from n(G’) =
= 7(G@), »(@') =»(@)—1 and from the induction hypothesis we obtain (1)
and (2).

Henceforth we are going to assume that the valency of every vertex
of G iz = 2!

If #(G) — 2¢(@) = 0, then (2) clearly implies (1). Next we show that

(2) implies (1) also if #(@) — 2¢(@) = j>0. Let P, P; (1 =1, ..., 8; s = &(@))
be a maximal system of independent edges of G. Further put N = {Py, .. .,
P, P;,..., P}, N=8—N (8 denotes the set of vertices of.G), [N] = G'.
By our assumptions

(3) 1< e(Q) 2v(@) < v(@).

The vertices of N are independent (in G) and all of them have valency > 2.
Thus we have
v(@) 2 (@) + 2]
and hence
Y(G) — (G) _ v(G) — &(G)
4 4

)

¥
(4) g =

which shows that (2) implies (1).

Thus it will suffice to prove (2).

Assume for the time being that #z(G) — 2 &(G) = j>0 and let us use
our above notations. Clearly if R is a representing system of G’ then RUN
represent all edges of G, thus u(G) < u(G’) + j. Further clearly ¢(G') = &(G)
and n(G@) = w(G") + j. These equalities together with (3) and (4) imply (2)
by the induction hypothesis.

Henceforth we can assume 7(G) = 2¢(G).

Assume first that G contains a path with the edges P,P,, P,P;, P3P,
where P, and P; have valency 2 in G. Let G’ = (—P,) — P,. If G contains
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the edge P, P, put G’ = (', if not G'" is obtained from G’ by adding the edge
PP, to it. It is easy to see that

(5) @(@") = a(G) — 2, W(G") < WG) — 2, &(G") =¢(G) — 1, W(G") = p(G) — 1.

(5) and our induction hypothesis implies (2).

Henceforth assume that G' does not contain a path of the above type.

Lok Pl =1 o ox gl 8 e(G)? be a maximal system of independent
edges of G. By our assumptions the valency of both P, and Pi(i =1,...,5s)
are greater than one and by our last assumption they can not both be two.
Thus without loss of generality we can assume that the valency of P; is
>3(i=1,...,8). Assume that for some 7 (1 < i< s) the sum of the valen-
cies of P, and P; is greater than 5. Put G* = (G — P;) — P;. Thus

(6) MG*) = (@) — 2, ¥G*) < »(G) —B, &(G*)=&(G) — 1, w(G*)= p(@) —

(6) and our induction hypothesis proves (2).

Thus finally we can assume that the valencies of the vertices P, are
all 3 and the valencies of the vertices P; are all 2(z = 1,..., s). But then
Piand Pj(isj, 1< i< s 1<7j<s)can not be connected by an edge,
since otherwise G would contain the path with the edges P; P;, P; P}, P} P,
where P; and P; having valency 2 in G, but this contradicts our assumptlom

Hence we see that the vertices P;(z = 1, , 8) represent all edges
of G, which clearly proves (2).

Thus the proof of Theorem (1.14) is complete.

§ 2.

(2.1) &(G) < p is equivalent to the statement that u(G') < p for every
G’ ¢ G with »(G") £ p + 1.Thus the trivial relation u(@) < 2¢(G) can be
restated in the follovnng form:

Assume that for every G’ c G with »(G') < p + 1 we have u(G") < p.
Then w(G) < 2p.

It is now a natural question to ask: what can be said about u(@) if for
every G’ c G with »(G') < q (g>p+ 1) u(G') < p? Here we prove

Theorem (2.2). Let h = 2. Then there exists a smallest integer py(h) with
the following properties : If p> py(h) and G is a graph with n(G) = 2p — h + 3
which has no isolated points, and for every G' c G with v(G') < p + h we have
w(@) < p, then
(1) M@ =2p—h.

Before proving our theorem we make some remarks.

1.) 2p—h is best possible. To show this let G; be a complete (2p—h)-
graph. The graph G, is defined as follows: Its vertices are the vertices of G,
another vertex P, and the vertices of a set M (which may be empty, but
which does not contain P and the vertices of G,). The edges of G, are the
edges of Gy and every edge which connects P with a vertex of G, or M. It is
easy to see that u(G,) = 2p—h. Now we show that for every G' c G, (which
does mnot contain an isolated vertex) satisfying »(G’) < p +h we have
w(G")y < p. To see this observe that if G’ does not contain P we have a(G") <
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< 2p—h and therefore by theorem (1.8) u(G') < p. If G’ contains P then
the number of the not isolated vertices of G'—P is not greater than 2p—h,
»(G'—P) < p + h—1.Thus from theorem (1.8) u(G'—P) < p—1or u(G') < p
which completes the proof.

We remark that in our example 2¢&(G,) equals one of the values 2p—h,
2p—h + 1, 2p—h + 2. This is not an accident, since if 2¢(G) < 2p—h, then
because u(@) < 2¢(G) (1) trivially holds, equality only if 26(G) = 2p—h.
Further a simple modification of our proof of Theorem (2.2) shows that if
2¢(@)>2p—h + 2 we can improve u(G) < 2p—h to p(G)<2p—1 where [
tends to infinity with p but is of much lower order than p, we can give only
very rough estimates for [ = I(p, k).

2.) In (2.3) we shall show that if p is not “sufficiently large” compared
to k then (1) does not always hold. More precisely we shall show that if ¢ is
an arbitrary constant and &> hy(c) then py(h)>ch.

3.) If A =2 our proof could be simplified considerably, and we can
show po(2) = 2.

Proof. of (2.2). (I) According to a well known theorem of Ramsay)
(see [8] and [5]) to every k there exists a ¢(k) so that every G with z(G) = ¢(k)
either contains a complete k-graph or G has k independent points (i. e. u(G) = k).
Clearly (k) = k.

We are going to show that

(2) Poh) < h+ p(p(2h + 4)).
Clearly
(3) h 4+ @o(p2h +4)) = 3h+ 4.

Our proof will be indirect. We are going to show that the following
conditions lead to a contradiction:

(4) G has no isolated point.

(5) h =2

(6) p>h + @(p(2h + 4)).

(7) a(G) = 2p—h + 3.

(8) It G c Gand »(G') £ p + h then u(G') < p.
(9) w(G)> 2p—h.

Let G satisfy the above conditions and put
(@) =mn, &G)=s.
It is easy to deduce from our conditions and (3) that for every A = 2
pz1l,nz=2l, uG =19 s=09.
From (8) it follows that s < p. Let

p =8+ a.
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Clearly a > 0. (9) implies because of u(G) < 2s that
(10) 2a < h—1.

In the most important cases we will obtain the contradiction by showing
that @ contains a subgraph G’ whose components are triangles and edges
and for which »(G') < p + h and u(@') = p + 1 (these facts contradict (8)).
Assume that such a G’ has & + y components, z triangles and y edges.

Clearly

WG@)=383x+y<p+h and pu@)=224+y=p-+ 1

Thus
(11) r<h—1.

Conversely if (11) is satisfied then because of (3) and 2x +y=p+ 1 we
obtain y>0. G’ further clearly satisfies

z+y<s.
Thus fromy =p +1—22

r=>a-+1.
(From (5) and (10) a +1 < A—1.)

In the following we will only use the G" for which  and y takes on the
following values:

(12) In case 2a < h—3 x=2a+ 2, y=s—(3a -+ 3)
(13)  In case 2a < h—2 r=2a+4+1, y=s8—(3a-+ 1)
(14) r = 2a, Yy = s—(3a—1).
(15) z=ga 4 1 y=s8—(a+ 1)
(IT) Let ¢, = P,P;(i=1,...,s) be a maximal system of independent
edges. These edges will be considered fixed during the rest of the proof. Let
M= P ., Boh M = §F-.., Fgh &= BN, &, =[N]

N = S—N (8 is the set of vertices of G.)

If N is non empty (i. e. n>2s), then put

N == {Ql’ * N Qn—Zs}'
From the fact that s = ¢(@) it trivially follows that

(16) the vertices of N are independent,

(17) theedges P,Q; and P, Q; (P, €M, PLe M’', i 5], {@;, @} € N) can not
both occur in G,

(18) if P,Q, and P;Q, are in G(i<4 k1, {P. P} S M, {Q. Q} c N),
then PP is not in G.
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From (4) and (16) we obtain
(19) every vertex of N is incident to NN-edges.
From (17) and (18) it follows that
(20) if both P, and P}(1 < ¢ < s) are incident to an NN-edge then PP}

and these two NN-edges form a triangle (this means that there can be
only one NN-edge incident to P; and Pj).

(III) We prove that
(21) @) < 2h—3a—2 .

If N is empty then G, = G, n = 2s and because of (9)
(22) w@,) =n—up@) £ 28 — 2p—h + 1) =h—2a—1.

In this case from (22), (5) and (10) follows (21).

For the rest of (II) we assume that N is non empty. Put Gy = [N, N).
79 is an even graph which, because of (19), is non empty. Thus by the theorem
(1.11) of Konie

(23) (@) = &(Gy).
Let e}, ..., eq(sy = €(Gy)) be a maximal system of independent edges
of Gy. By (17) we can assume that
e =P, 9, =L, oe o S
Put M; = {P1,..., Pg,}. By (18) the vertices of M; are independent

and because (20) if P, € M} then the only vertex of N with which P} can be
connected by an edge is @;. Denote by M, the vertices of M; which are
connected with the corresponding @; and put o(M;) = ¢.

Assume t > a1, without loss of generality we have My—{Py, ..., Pi}.
Let A;,=P,PiQ:(i=1,..:,t). Then the triangles Az =1,:..;a 4 1)
and the edges e,,,, ..., e, form a subgraph G’ of G whose existence because

of (15) contradicts (8).

Assume next ¢t < a. The vertices of M; = M;— M; are independent
(assuming that M3 is non empty) and the only edges incident to them belong
to G,. Therefore the vertices of Ny = M (M '—DM;) represent the edges of
G. Thus

w(@) £ a(Ny) = 25 — (so—1) < 2p — (@ + $o)-
Thus from (9)

(24) So < h—a—1.

Let R, respectively B, be a representing system of G respectively G,
having minimal number of elements. B U E, clearly represents G and thus
by (23) sy + w(G,) = u(G). Thus from (9) and (24) we obtain u(G,)=2p—2h +
+ a + 2. Thus by (1.3) (1) we obtain (21).

From now on the triangles 4, and the sets M;, M; will not occur any
more. Thus we will use these symbols and the symbols used for their vertices,
for other purposes.
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(IV) Now we shall show that both [M] and [M’'] contain suitably
related complete graphs having sufficiently many vertices. From (6) and

(10) we have
a([M]) = s>@(p(2h + 4)).
By w([M]) £ u(G,) we have from (21)
w([M]) <2h + 4 < @(2h 4 4).
Thus by RamsAy’s theorem there is an M, € M so that [M,] is complete and

n([M,]) = p(2h + 4).
Let

M,={Py, ..., P}, M{={(P} ..., P} (u=g(2h+ 4)).

By (21) u([M;])<2h + 4. Thus by =([M;]) = ¢(2h 4 4) we obtain from
RAMSAY’s theorem that there exists an M; c M; so that [M;] is complete
and n([M;]) = 2k + 4. Put

I =P .. Poaihs

(10) implies 3(a + 2)<2h + 4. Thus since [M,] and [M;] are complete,
the triangles

A= Py 3Py 1 Pyiy Aj= Py Py 1Py E=1,...,84+9)

are all subgraphs of G.
By (10) 2a < h—1. Now we distinguish three cases, 2a < h—3, 2a =
= h—2 and 2a = h—1.

(V) Assume 2¢ < h—3. Then the pairs of triangles (4,, 4}) (i=1, ... ,a+1)
and the edges ey, ., ..., e, form a subgraph of ¢ which by (12) contra-
dicts (8).

(VI) Assume next 2a = h—2. By (7) n = 25 + 1, thus N is non empty.
By (19) there are NN-edges. Now the following statement holds:

(25) Any two vertices of N which are not incident to N N-edges are connec-
ted by an edge.

For if two such vertices would not be connected, the other vertices
of N would represent the edges of G. Thus n < 2s—2 = 2p—h, which contra-
dicts (9). Thus (25) is proved.

Assume first that there is a j (1 < j < s) so that both P; and P; are
incident to NN-edges. By (20) the vertices of these NN- edges Wthh are in N
must coincide. Denote this common vertex by @,.Consider the triagles (4,, A7)
(i=1,..., a-+ 2) defined in (IV). We can find a of these pairs in quch a
way that none of them should have a common vertex with e;. These pairs
of ‘triangles together with the triangle P; P;@, and together with all the
edges ¢; (1 < 7 < s, © 5 j) which have no common vertex with our a triangle-
pairs form a subgraph of G whose existence by (13) contradicts (8).

For the rest of part (VI) we can assume that no vertex of M’ is connected

(by an edge) to a vertex of N. Thus we obtain by (25) that [M'] is a complete
graph. No we prove the following statement:
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(26) Assume that G contains an edge P;Q, (1 < j < s, @, €N),assume further
k=71 <k < s), then the edge P P, is not in G.

It (26) would be false, then since [M'] is complete the trlangle PP I}
is a subgraph of G. From the triangle-pairs (4;,, 4})) ¢t =1,..., a —}— 2) we
can again find a of them so that none of them have a common vertex with
e; or e,. These triangles togother with the triangle P; P, P}, the edge P;Q),
and all the edges ¢;(1 < ¢ < s, i =~ 4, ¢ 5 k) which Have no common vertex
with our @ triangle-pairs form a subgraph of G whose existence by (13) contra-
dicts (8).

We now show that every vertex of M is incident to NN-edges. To see
this observe that if P, (1 < k < s) would be a vertex which is not incident
to an NN-edge, then by (25) this would be connected to every vertex of 2/".
Among these vertices there clearly is a vertex P; so that the corresponding
P; is incident to an NN-edge, which contradicts (26).

From (18) and from the fact that [M'] is complete it follows that the
NN-edges incident to the vertices of M are all incident to the same vertex

®;. Therefore by (19) N = {@,}. From (26) we further deduce that the only
vertex of M’ to which P; can be connected is Pj(1 < j < s).

Next we show that no two vertices of M are connected. To see this
assume that G contains the edge P; P\ (j # k, {P;, P} € M). Choose a of
the triangle-pairs (4, 47) ¢ =1,..., a + 2) so that none of them contain
a common vertex with the edges e; and ¢,. These triangle- palrs together
with the triangle @, P; P; and together with all the edges ¢,(1 < ¢ < s, ¢ 7,
7 == k) which have no common vertex with one of our a trlangle pairs form
a subgraph of G which by (13) contradicts (8).

From what has been said it follows that theset R = M’ N represents
G, further o(R) = s + 1 < 2p—h and this contradicts (9).

(VII) Finally assume 2a¢ = A—1. Then by (7) n = 2s 4 2, or N contains
at least two vertices. Every vertex of N is incident to NN-edges. For if N

would have a vertex which is not incident to an NN-edge then the other
vertices of N would represent G, their number is 2s — 1 = 2p — A which
contradicts (9).

By (19) and (20) thereisa j and k(1< j<s, 1 <k<s jFk) for
which the triangles 4" = @, PP and A" = QQP P,, are subgraphs of G.
We now select from the trlangle pairs (4, 4) =1,..., a4+ 2) a—1

pairs so that none of them contain a common vertex with ej or e,. These pairs
together with A4’, A’" and with all the edges ¢,(1 < ¢ < s, ¢ 5§, ? 5= k) which
have no vertex in common with the selected pairs form a subgraph of G.
By (14) this contradicts (8).

This completes the proof of Theorem (2.2).

Now we show that if ¢ (¢>1) is any constant and k> h(c) then py(h) > ch.
More precisely we shall show

Theorem (2.3). Let ¢ (¢ >1) be any constant, then there exists an hyc)
so that for every h>hy(c) there exists an integer p>ch and a graph G satisfying
the following conditions :

1.) G contains no isolated vertex.

2.) a(@) = 2p—h + 3.

13 A Matematikai Kutaté Intézet Kozleményei VI, 1—2.
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3.) For every G' c G which satisfies v(G') < p + h we have u(G') < p.
4.) p(G)>2p—h.

Proof. (I) A theorem of Erpés ([3], p. 34. (4)) implies that to every
c(c>1) there is an n, (¢) so that for every n>n(c) there exists a graph @,
having no isolated vertices, for which

- 3 n
(1) @) =n, W@ <_—-—
{ 56 ¢
and for which
(2) every circuit contains more than 28¢ vertices.
We are going to show that
(3) ho(c) = max 28,”020))
satisfies the requirements of our theorem.
Let h>hg(c), and choose p so that
7
(4) ch < p< gck 2
Let further n satisfy
3 6 3
5 B el W E B > —se s
(5) =7 = e R

Let G be a graph having no isolated vertices and satisfying (1) and (2)
with the above choices of ¢ and n. We shall show that G satisfies the conditions
1.), 2.), 3.) and 4.) of Theorem (2.3).

Conditions 1.), 2.) and 4.) are clearly satisfied. Thus to complete our
proof we only have to show that 3.) is satisfied.

(II) Let G' c G, »(G') < p + h. We shall prove that
(6) mG’) < p.

To prove (6) we define by recursion for every &k = 0 a subgraph G, of
G’ as follows: Gy = G’. If G, has no vertex of valency >2 we put G, ., = G,
If G has a vertex of valency > 2, let P, such a vertex and put G}, ,; = G, —
Since G was finite there is a smallest k say ! so that G, ; = G;. G, has no
vertex of valency greater than 2, and we obtained @, from G’ by the omission
of I vertices of valency = 3. Thus from (4), (5) and »(G') < p + h we obtain

(7) @) =n—l<2p———p_1,
14 ¢

(8) WG =nG)—3l<p+L —3l.
c

Since all vertices of G, have valency < 2, the components of G, can
only be circuits, paths and isolated vertices. Assume that there are j circuits
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among the components of G,. By (2) every circuit of G| contains more than
28¢ vertices, thus by (7)

jr28c<m(Gy)<2p
or

. _ P
9 < =
(9) .
The edges of a circuit or path of k& vertices can always be represented
by [k/2] or [k/2] + 1 vertices respectively. Thus from (7) and (9)

1 , P l
(G) < —a(G <pPp————.
1z 1)_2 G@G)+i<rp v

The edges of G’ which do not occur in G, we represent by the ! vertices
which do not occur in G;. Thus we obtain

l
e =p@)+i<p—L 42,
4c 2
Thus if p/(4¢c) = I/2 we obtain u(G') < p. If p/(4c) < /2, then by u(G) < »(G,))
and by (8) we have

WG < plG) +1 <p,

which proves 3.) and thus the proof of Theorem (2.3) is complete.

§ 3.

(3.1) In connection with the general problem raised in (2.1) the following
questions can be asked:

Does there exist to every p a smallest f(p) so that if G has the property
that for every G' c G with »(G') < f(p) we have u(G’') < p, then u(G) < p?

This question can be answered affirmatively. From the Theorem (3.5)
we easily deduce

’ Y *. 1/ 2 p + 2
Theorem (3.2). Assume that for every G’ c G with »(G') £ ( g }

&

we have w(G') < p. Then u(G) < p.

)
The estimate f(p) < (21) =

seems to be a poor one.
2

Conjecture (3.3).

_(pt+2
io="7 7

We can prove our conjecture for p < 4 (see the remark 1. made to
Theorem (3.10)). The example of the complete (p 4 2)-graphs shows that

f(p) = (p;_ ; , since if G is a complete (p -+ 2)-graph for every proper sub-

graph G’ of it we have u(G') < pand »(G') < (p—;— 5

]— 1, but p(G) = p + 1.

13%
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(3.4) Now we ask the following question:

Assume that for every G’ c G satisfying 7(G') < g we have u(G') < p
what upper bound can be given for u(G)?

It g = 2p + 1, u(@) can be arbitrarily large. To see this consider the
following even graph G*: The vertices of G* are P,,..., P, @,,..., @
and its edges are PQ,(i =1, ..., m; j=1,. n). Clearly w(G*)= min (m,n)
but a simple argumont shows that for e\ery G' c G* with =(@') <
< 2p+ 1 we have u(G') < p. Here we have for m = n a(G*) = 2n,

u(G*) = n. The more complicated examples given in [2] and [3] show that
a graph G with zn(G) = n, u(G)>n—o(n) exists so that for every G’ c @
with #(G') < 2p + 1 we have WG < p.

On the other hand we are going to prove that for ¢ = 2p + 2 we have

w(G@) < p (which is clearly best possible).

Theorem (3.5). Assume that for every G' C G with 7(G') < 2p + 2 we
have u(G') < p. Then u(G) < p.

We will prove Theorem (3.5) in § 4. It is curious to observe the sharp
change between ¢ = 2p + 1 and ¢ = 2p + 2. This change can be seen also
in the order of magnitude of the number of edges.

If ¢ = 2p + 2 (3.5) immediately gives

- 3

(1) »(@) < p(n(G) — 1).

(1) is best possible. To see this let the vertices of G be Py, ..., P,
@y, ..., Q@,—, (the set of the @’s may be empty). The edges of G connect each
of the vertices Py, ..., P, with all the other vertices of G. Clearly u(G) = p

and »(G) = p (n—l)
If ¢ = 2p + 1 then G* shows that »(G') can be as large as [

(for mz[z@] . [@t_l] |
- g 2

this is best possible. Here we have

Theorem (3.6). Let n(G) = 4(p + 1). Assume that for every G' c G with
a(G') < 2p + 1, u(G') < p. Then

s iyl

Disregarding the condition #n(G) = 4 (p + 1), for p = 1 this theorem
is identical with TurAN’s theorem ([9], p. 26.) for j = 2. The proof of Theorem
(3.6) uses this special case of TURAN's theorem. We supress the details.

Perhaps we can digress for a moment and call attention to the following
interesting class of problems. Let #(G) = n and assume that for every G’ c G
with #(G') < ¢ we have u(G’) < p. Denote by g(n, p, ¢) the maximum value
of »(G). We wish to determine or estimate g(n, p, ¢). The cases ¢ < p + 1

il

For sufficiently large values of x(G)

are trivial since there trivially g(n, p,q) = (72") g=2p -+ 2 implies by (3.5)

g(n, p, q) = p(n—1). The interesting range is p + 2 < ¢ < 2p + 1. The case
q = 2p + 1 is settled by Theorem (3.6). ¢ = p + 2 means that G does not
contain a complete (p + 2)-graph and is thus settled by TUrAN’s theorem.
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The determination of g(n, p, q) for general p and ¢ seems to be a difficult
problem and we made very little progress with it. ErRp8s can show that for
sufficiently large n

(1) g(n,pﬂp):[@]—l.

The methods required for the proof of (1) and Theorem (3.6) are quite different
than those used in this paper.

It is easy to see that conjecture (3.3) and theorem (3.5) can be restated
in the following form:

(3.7) Conjecture. If u(G) > p then there is a G’ < G for which u(G')>p
and v(G') < {p—2}-2“

(3.8) If u(G)>p then there is a G' < G for which u(G')>p and =(G') <
< 2p+ 2.

A graph G is said to be edge-critical if it has edges and for every G’ C G,
(@) < u(G).

G is point-critical if it has edges and for every G’ C G for which #(G') <
<n(@) we have u(G@') < w(@).

Clearly every G which has edges has subgraphs G’ which are edge-,
respectively point-critical and for which u(G') = p(G).

(3.7) and (3.8) are substantially equivalent to the following statements:

(&) 1 :

2
Theorem (3.10) For every point-critical G we have n(G) < 2 u(Q).

Conjecture (3.9). For every edge-critical graph G we have »(G) < {‘u

The proof of the equivalence is left to the reader. The proof of (3.10) will be
given in § 4.

Remarks. 1.) Conjecture (3.9) holds for u(G) < 4.

2.) In § 4 we shall show that in (3.10) equality can hold only if 2¢(@) =
= 7(G).

3.) From (3.10) and from the fact that an edge-critical graph is also
point-critical we obtain that for an edge-critical graph G we have »(G) <

2 2#(G)J _
2
§ 4.
In this § we are going to prove Theorem (3.10) (and thus also Theorem
(3.5)).

Our definitions trivially imply

(4.1) A point-critical graph can have mo isolated vertices. If G is mon-
empty and not point-critical, then it has a vertex P with u(G—P) = u(G).
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(4.2) Let S be the set of vertices of G, further let
(S, el =1 ..., ki b = 2),‘; SiﬂSj: 2 (@sh 40 = 1, wus, k) and
8= S

=1
Let R be a set of u(G) vertices which represent every edge of . Clearly
R N 8, represents all edges of G; = [8;], thus
Kk

(2) 21 wG) < u(@) .

If there exists a decomposition of § into non empty subsets S, satisfying
(1) for which

holds, then we say that G is decomposable and we call the set {G,,..., G}
a decomposition of G. The following two statements trivially follow from our
definitions:

(4.3) If G is decomposable we have n(G) > 1 and G has a decomposition
{Gy, ..., G} where all the G(1 < i < k) are indecomposable.

(4.4) If (the non-empty) G is not connected, it is decomposable.
(4.5) If n(G) > 1 and G is indecomposable, then G is point-critical.

Proof. If (4.5) would be false, there would exist by (4.1)a P € Ssothat
for G; = G—P we would have u(G,) = u(@). Clearly neither G nor G, = [P]
are empty and u(G,) = 0. Thus u(G,) + u(G,) = u(G), but then {G,, G,}
would be a decomposition of G.

(4.6) Let G be point-critical and {G,, . . ., G} a decomposition of G. T hen
the G; (i =1, ..., k) are also point-critical.

Proof. Assume say that G is not point-critical. Since G, is non empty
it has by (4.1) a vertex P so that u(G;—P) = u(G,). But then by (4.2) (2)

k k
MG — P) = u(G, — P) + g; @) = ,-=2. wG) = w@),

which is a contradiction since G was assumed to be point-critical.
Theorem (4.7). If #(G) > 1 and G is indecomposable, then
(@) < 2u(G)

where equality stands only if G consists of a single edge.

Proof. (I) Because of (4.4) G is connected and therefore it has no
isolated vertex. If G consists of a single edge @(G) = 2u(G) trivially holds.
Henceforth we assume #(G) > 2. Let R be a set of u(G) = r vertices which
represent every edge of G. Put S— R = 7. Clearly neither R nor 7' are empty
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and the vertices of 7' are independent. Thus every vertex of 7 is incident
to T R-edges.

Consuler the graph G' = [R, T']. Clearly G’ is even and contains edges.
Put u(G") = Clearly =7 =7

We are gomg to show in (II) that the only representing system of G’
with r” elements is 7'. This easily 1mphes (@) < 2u(@),since R is a representing
system of G’ and therefore » > 7', or #a(G) =r 4 7" < 2r as stated.

(IT) Let R’ be any representing system of G’ which has 7’ elements.
R’ is non empty. Put

BFNR=R, BENT=T,

Assume that R; is empty. Then from R’ T and from the fact that
every vertex of 7' is incident to TR-edges it follows that R’ = T.

Thus to complete our proof we only have to show that the assumption
a(Ry) =7 > 0 leads to a contradiction.

By theorem (1.11) of Ko6ni¢ G’ contains 7’ independent edges, say

¢ = PP} (Pp€R, Piel; i=1, . su; r’). Each of these edges is incident to
exactly one vertex of R’. Denote by e, ..., e, the edges incident to the
vertices of B, and put {P;,..., P} = T,. We evidently have T'NT, = &.

Let B— R, =Ry, T—7T, = T G’ clearly does not contain an R,T,-edge.
Put

G=[R,UT,), G,= 1E1 U Tz]
a) Assume first that G, is empty. Then
= =7 =aR) = aT).

Since #(G) > 2 wehaver > 1. Thenif G; = [{P;, P;}]and G, = [8 — {P;, P1}]
we have u(G;) =1 and pu(Gy) = r —1 (since G, contains ey, ..., ¢). Thus
{G,, G} is a decomposition of G and this is a contradiction.

b) Assume now G, non empty. The vertices of B, represent all edges
of G, and since G, contains the edges ¢, ..., ¢, we obtain

(1) w(Gy) = 71;.

(Gy) = r—ry is impossible since {G}, Gy} would then be a decomposition of
G. But p(G,) < r—ry is also 1mp09qihle for in this case if R, would be a
representlng system of G, having u(G,) elements, then R, U R, would represent

B |

all edges of G and thus
w(@) = w(@) + w(@y) <
which is impossible. This completes the proof of (4.7) .
Finally we prove (3.10) and our remark 2.) belonging to it.

(4.8) If G is point-critical then #n(G) < 2u(@), equality can hold only if
2¢(Q) = n(@).

Proof. If G consists of an edge, (4.8) it trivial. We can therefore assume
that @(G) > 2. If G is indecomposable, then by (4.7) #(G) < 2u(@). Assume
now that G is decomposable and let {G, ..., G;} be a decomposition of G
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where all the G, (1 £ ¢ < k) are indecomposable. By (4.6) G, (: =1, ..., k)
is point-critical and thus

k k
A(G) = DaG) <2 > uG)=2uG).

i=1 i=1

Equality occurs if and only if every G; (1 < 7 < k) consits of a single edge
In this case the edges of Gy, . .., G, are independent, which implies 2¢(G) =
= z(G).

§ 5.

(5.1) In this § we generalise our problems to “graphs of several dimen-
sions” i. e. to k-tuples. Let S be a set (its elements we will call points) and
H a certain finite set of k-tuples formed from the elements of 8. (For & = 2
H was G and the points of § which occur in the 2-tuples of H, i. e. in the
edges of G were called the vertices of G. This ¢ has no isolated vertices.)
Denote by z(H) the number of elements of § which occur in the k-tuples
of H and by »(H) the number of k-tuples of H. If R ¢ 8 and if every k-tuple
of H containts at least one point of R we say that the points of R represent
H or that R is a representing system of H. Denote by u(H) the minimal number
of points which represent H.

Generalising the problems considered in (3.1) and (3.5) (i. e. in (3.7) and
( 3.8)) we wish to determine the smallest values f(k,p) and g(k, p) which
satisfy the following conditions:

Every H for which u(H) > p contains a subset A’ and a subset H''
for which u(H’) > p, u(H'') > p and v(H') < f(k,p), n(H"') < g(k, p).

We now obtain upper estimates for f(k, p) and g(k, p) further we deter-
mine f(k,1) respectively g(k, 1) for every k£ = 2.

Theorem (5.2)

fe,p)= 2%

Y
oV

Proof. For p = 0 our statement is trivial. Assume henceforth p = 1.

Let H be an arbitrary finite set of k-tuples with w(H) > p and let t, =
= {Py, ..., P,} be an arbitrary element of H. Put H, = {¢,}. Since u(H) >
> p = 1 a single element can not represent H and therefore to every P; (1 <
=3 k) there is a t; in H which does not contain P;. Lett; = {P;, ...,
P} (=1, , k) and put H; ={t;,..., t,}. If p = 2 we need at least
three points for the representatlon of H and therefore we can find to every
pair of pomts P, P 1= 2k 1<4 <k ak- tuple t,, =P ,,][ j=

iy,

=1,..., k} which does not contain P and Puis Pubt Hy = {ty,, | 4,9 =
= 1,..., k}. Continuing this process for ewery /] (1 =9= p) we obtain the
k-tupleqt .i; (of H) and the points P; ;;  and the sets of k-tuples
Hj (z'l,...,z], ta=1. . s k). Put

Hi=10 H

j=0




MINIMAL NUMBER OF REPRESENTING VERTICES 201

Since »(H;) < k/ we have »(H') < zp‘ k. Now we show u(H') > p. To
=0

see this let B be a representing system of H'. R must contain an element
of ty say P,. By our construction P, ¢#,, thus E must contain an element of
t; say Pi,. If p > 2 then P, and Py, are not contained in ¢,, and E must contain
an element P, of t;,. This process can be continued (p 4 1) times and we
obtain that E contains the elements Py, Py, ..., Pyp. .., or a(R) > p
as stated.

Theorem (5.3) f(k,1) =k + 1 (k = 2).

Proof. By (5.2) f(k,1) < k 4+ 1. The following example shows f(k, 1) =
=k+ 1. Let S = {Py, ..., P,}. H consists of the (k¥ + 1) k-tuples formed
from S. Here u(H) > 1 but for every H' c H u(H') = 1.

(5.4) In general we know little about the value of f(k, p). Conjecture
(3.7) states that f(2, p) = p;— .

p+)

J . This and (5.3) might permit us to conjec-

ture f(k, p) = )g(?’j;’“

In any case f(k, p . To see this let H consists

of all the [pz_ ] k-tuples formed from p -+ k elements. Clearly w(H) =

= p+ 1, but a simple argument shows that for every H'CcH u(H')< p, which
proves f(kp) = (7 T

A trivial argument shows that ¢(k, p) < kf(k, p). Thus we have

p+1
Theorem (5.5). gk, p)< > ki (k=2).
i=1
We know only a little more about g(k, p) than about f(%, p). (3.8) states that
g(2,p) = 2p + 2. Further we have -

Theorem (5.6). g(k, 1) :[(k—tzf] kz2).

Proof. (I) First we show g(k, 1) < [(k + 2)%/4]. To see this let H be a
set of k-tuples for which u(H) > 1, let further ¢" and ¢’ be two k-tuples of
H for which a(t'Nt’’) = a is minimal.

If @ = 0, then putting H' = {t’, t"’} we have ,u(H ) > 1 and n(H

=2k < [(k + 2)2/4] Thus we can assume a>0. Put ¢’ Nt = {Py, ... }
To every P, ( == a) we can find a ¢, of H which does not contai n P,
Put H' = {t "ty ..., t.}. Clearly u(H')> 1. Further for every ¢ (1 <
<i< a)

(1) a(t,ﬂt‘-) Z a, a(t”nti) = a, (t ﬂt”ﬂt) sl

Denote by a; the number of elements of ¢, which do not belong to t'Nt"’". We
have by (1)

a; = a(t;) —alt'Nt;) —alt’'Nt,) + at'Nt’’'Nt) <k —a — 1.
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Thus

aH') Sat’ UL") + ._2:a,-§2kaa+a(k—a—l):

:2k+a(k._2___a)§2k+ [k—2]2:(k+2)2

) 4

&

which proves our assertion.

(IT) To show g(k,1) = [(k 4 2)%/4] put [k/2] =land M ={P,, ..., P;}
where ¢ =1+ 1 if k is even and ¢ =1 + 2 if k is odd. Let further

My=M— (P}, Mi={Py,....P}, t=M, UM, G=1...,9),
and

- JE TR .

(the P’s with different indices denote different points).
Here we have a(t)=%k(z=1,...,71+ 1) and

n<H>:q+ql:[(“;—2)2].

Clearly w(H) > 1, but for H,=H — {t;,} (¢=1,..., 14 1) we have
w(H;) = 1 since P; clearly represents H,;. This completes our proof.

(Received November 25, 1960.)
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0 MUHUMAJIBHOM UUCJIE TOYEK, PENNPE3EHTUPYHKOIUINX PEBPA
IF'PAD®A

P. ERDOS u T. GALLAI
Pe3iome

B pa6ore Qurypupyior JMIIb TaKue KOHEUHble HeHampaBJIeHHblE I'Padb,
KOTOpble He CO/JepyKaT MeTjell M B KOTOPBIX /B TOUKM CBSI3aHBl He 0OoJlee uem
onHuM pebpom. YUmcso Touyek rpada G oGo3Havaercss uepes w((F), a uuCIO ero
pebep uepe3 ¥(().

Ecma ey, ...,e(j = 1) pedpa rpapa G u Py,. .., P(k = 1) Takue Touku G,
uto soboe ¢l < ¢ < j) coaep)KUT XOTS OBl OJHY U3 HUX, TO MBI I'OBOPUM, UTO
Py, ..., P, penpesenmupyiom pebdpae, ..., e;. O003Haunm yepes w(G) MUHAMAIIb-
HOe YKCJI0 TOUeK, pernpe3eHTupyomux sce pedbpa G. Eciu G He cojepykut pebep,
To monaraem u(G) = 0. LUesb pa6oTel 1aTh BepXHUe rpaHu mis w((), Ucronsdys
pasnuuHble JaHHble M cBoMicTBa (. OCHOBHBIE pe3yJILTATHI:

Ecau G cooepncum peGpo, mo u(G) He npesocxooum 2apMoHUdecKoe cpeoHee

1 <
om 3 7(GQ) u »(@). Pasercmeo umeem mecmo AUMb 6 mom caydae, ecau G noamsi

epag, uau ecau kancoas komnoHenma G ecmo noAHbil 2pag ¢ 0OHUM U MM Hce
qucnom moyex. (Teopema (1.7).)

Ecau p «0ocmamouro eeauroy omuocumensio hMh = 2) u oaa epaga G,
He codeprucawjeeo u3oauposanmsrx mouex, w(G) = 2p — h + 3, mo, ecau 045 6cex
nooepagos G' epagpa G, cooepucawyux e 6Ooace p + h pebep, w(G') < p, mo
wm(G) < 2p — h. (Teopema (2.2.).)

Ecau oaa scex nooepagos Q' epagpa G, cooepucayux He Goaee 2p + 2 mouex,
w(G@) < p, mo w(G) =< p. (Teopema (3.5).)

['panuupl, ¢urypupyooumue B 3TUX Teopemax, He MOTYT ObITb yJyudlleHHbI
0e3 JaJbHEHIIMX IPeANoJIoYKeHU .

§ 5 3aHMMaeTCs «MHOTOMepHBIM» 0000UeHHeM npobdiiem. 3/ech BMECTO
rpadoB Gurypupyior k-aTel, o6pasyemble u3 JIOOBIX 1eMeHTOB (k = 2).
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