SOME REMARKS ON THE RANDOM ERGODIC THEOREM, IL.

by

P. RÉVÉSZ

Introduction

Let \mathcal{T} be a measurable space of measure preserving transformations each of which is defined on a measure space $\{X, \mathcal{S}, \mu\}$. Let further $\mathbf{P_1}, \mathbf{P_2}, \ldots$ be a sequence of probability measures defined on \mathcal{T} . We denote the product space

$$\mathcal{F}_1 \times \mathcal{F}_2 \times \dots$$
 $(\mathcal{F}_i = \mathcal{F}; i = 1, 2, \dots)$

by \mathcal{T}^* and the product measure

$$P_1 \times P_2 \times \dots$$

defined on \mathcal{F}^* by \mathbf{P}^* . $(T_1,\ T_2,\ldots)$ $(T_i\in\mathcal{F}_i)$ means a point of \mathcal{F}^* . Let H_1 denote the space of those measurable functions defined on X for which

$$\int\limits_X f^2(x)\,d\,\mu < \infty \qquad \int\limits_X f(x)\,d\,\mu = 0\;.$$

We assume in this paper that the function $f(T_k T_{k-1} \dots T_1 x)$ is measurable and integrable on the space $\mathcal{F}^* \times X$ for every $f \in H_1$.

In [1] the following theorem is proved.

Statistical random ergodic theorem. If1

$$\big\| \int\limits_{T\epsilon} f(Tx) \ d \ \mathbf{P}_i \big\| = \big\| \, \mathbf{M}_{\mathbf{P}_i} f(Tx) \, \big\| \leq m_i \, \big\| f(x) \, \big\|$$

for every $f(x) \in H_1$ where

$$m_i = 1 - \frac{C}{i^{1-\varepsilon}}$$

C is an arbitrary positive constant and $0 < \varepsilon \leq 1$. Then for every $f(x) \in H_1$ we have

$$\mathbf{P}^* \left\{ \left\| \frac{1}{n} \sum_{k=1}^n f(T_k \dots T_1 x) \right\| \to 0 \right\} = 1.$$

 $[\]overline{\ }^1$ Here and in what follows $||g||^2=\int\limits_{\mathcal C}g^2(x)\,d\,\mu\,.$

206 RÉVÉSZ

In §[1] we give some conditions under which the sequence $f(T_k \dots T_1 x)$ forms a Markov chain. In § 2. an individual random ergodic theorem is proved and in § 3. as an application of our results we obtain a strong law of large numbers for those Markov chain which can be represented in the form $f(T_k \dots T_1 x)$.

§ 1. The probabilistic behaviour of the sequence $f(T_k \dots T_1 x)$.

A natural question is the following: Is the sequence $f(T_k ... T_1 x)$ a Markov chain for every (or almost every) x? We shall show in an example that generally $f(T_k ... T_1 x)$ is not a Markov chain.

Let X be the space of the numbers 0, 1, 2, 3, 4. We define the measure μ , the function f and the measure preserving transformations $T^{(1)}$, $T^{(2)}$ on

X as follows

$$\mu(0) = \mu(1) = \mu(2) = \mu(3) = \mu(4) = 1;$$

$$f(0) = 0, f(1) = 1, f(2) = 2, f(3) = f(4) = 3;$$

$$T^{(1)} 0 = 1, \quad T^{(1)} 1 = 3, \quad T^{(1)} 2 = 0$$

$$T^{(1)} 3 = 4, \quad T^{(1)} 4 = 2;$$

$$T^{(2)} 0 = 2, \quad T^{(2)} 1 = 3, \quad T^{(2)} 2 = 4$$

$$T^{(2)} 3 = 0, \quad T^{(2)} 4 = 1.$$

On the set $\mathcal{F} = \{T^{(1)}, T^{(2)}\}$ we define the probability measure **P** by

$$P(T^{(1)}) = P(T^{(2)}) = \frac{1}{2}$$
.

Now, it is easy to see that

$$\mathbf{P}\{f(T_3\,T_2\,T_1\,0)=2\,|\,f(T_2\,T_1\,0)=3\}>0,$$

but

$$\mathbf{P}\{f(T_3\,T_2\,T_1\,0)=2\,|\,f(T_2\,T_1\,0)=3,\,f(T_1\,0)=1\}=0.$$

which proves that $\{f(T_n \dots T_1 0)\}\$ is not a Markov chain. The following theorem holds.

Theorem 1. Let f(x) a measurable function defined on X, A the smallest σ -algebra of those subsets of X with regards to which f(x) is measurable. If for every $A \in \mathcal{A}$ and $T \in \mathcal{F}$ we have

$$TA \in \mathcal{A} \quad and \quad T^{-1}A \in \mathcal{A}$$
.

Then for almost every x the sequence $f(T_k \ldots T_1 x)$ is a Markov chain.

For the proof of the above theorem we need the following

Lemma. Suppose that f(x) and \mathcal{T} satisfy the conditions of Theorem 1. If for a pair x, y of elements of X

$$f(x) = f(y)$$

then for every $T \in \mathcal{T}$ we have

$$f(Tx) = f(Ty).$$

Proof. For the sake of simplicity we denote by α the common value of f(x) and f(y), $\alpha = f(x) = f(y)$. Introduce furthermore the notations

$$f^{-1}(\alpha) = A \qquad (A \in \mathcal{A}).$$

Since $TA \in \mathcal{A}$ there exists a Borel set \mathfrak{B} on the real line such that

$$f^{-1}(\mathfrak{B}) = TA.$$

In order to prove the lemma it is sufficient to show that B has only one element. In contradiction of our statement suppose that B has more than one point. Let $\mathfrak E$ be a point of $\mathfrak B$ then $C=f^{-1}(\widehat{\mathfrak E})$ is a proper subset of B and $A \subset T^{-1}C$ which is a contradiction.

Proof of Theorem 1. Obviously our lemma implies that the conditional probabilities

$$\begin{aligned} \mathbf{P}\{f(T_n \dots T_1 x) \in \mathfrak{B} \mid & f(T_{n-1} \dots T_1 x) = a_{n-1}, \dots, f(T_n x) = a_1\}, \\ \mathbf{P}\{f(T_n \dots T_1 x) \in \mathfrak{B} \mid & f(T_{n-1}, \dots T_1 x) = a_{n-1}\} \end{aligned}$$

both are the \mathbf{P}_n measures of those transformations $T \in \mathcal{F}_n$ which map the set $f^{-1}(a_{n-1})$ into the set $f^{-1}(\mathfrak{B})$ which proves the theorem.

The following question arises: given a Markov chain of real valued random variables ζ_1, ζ_2, \ldots what is the condition which we have to impose on the transition probability functions that makes possible the construction of a measure space $\{X, \mathcal{S}, \mu\}$ a measurable function f(x) defined on X, a measurable set \mathcal{F} of the measures preserving transformations defined on Xand a sequence P_1, P_2, \ldots of probability measures definened on \mathcal{F} such that

(1)
$$\mathbf{P}^* \{ f(T_n \dots T_1 x) \in \mathfrak{B} \mid f(T_{n-1} \dots T_1 x) = \alpha_{n-1}, \dots, f(T_1 x) = \alpha_1 \} =$$

$$\mathbf{P}^* \{ \zeta_n \in \mathfrak{B} \mid \zeta_{n-1} = \alpha_{n-1}, \dots, \zeta_1 = \alpha_1 \}$$

for a special x and for every n and for every sequence $\alpha_1, \alpha_2, \ldots$ of real numbers. If the above construction is possible then we say that the Markov chain ζ_1, ζ_2, \ldots can be represented in the form $f(T_k, \ldots, T_1, x)$. In the sequel we shall give a sufficient condition ensuring the representation in the form $\{f(T_k \dots T_1 x)\}$. of a Markov chain. First we mention some definitions and two theorems.

1) A matrix $A = \{a_{ik}\}_{i,k=1}^{\infty}$ is called doubly stochastic if

$$a_{ik} \ge 0$$
 $(i, k = 1, 2, ...)$ $\sum_{k=1}^{\infty} a_{ik} = 1$ $(i = 1, 2, ...)$, $\sum_{i=1}^{\infty} a_{ik} = 1$ $(k = 1, 2, ...)$.

2) A matrix $A = \{a_{ik}\}_{i,k=1}^{\infty}$ is called weakly doubly stochastic (WDS) if

$$a_{ik} \ge 0 \qquad (i, k = 1, 2, ...)$$

$$\sum_{k=1}^{\infty} a_{ik} = 1 \quad (i = 1, 2, ...), \qquad \sum_{i=1}^{\infty} a_{ik} \le 1 \quad (k = 1, 2, ...).$$

3) A matrix Π having only zeros and ones as elements is called a permutation matrix (resp. weak permutation matrix) if it is a doubly stochastic matrix (resp. WDS matrix). We denote the set of all permutation matrices (resp. weak permutation matrices) by Ω (resp. by Ω^*).

208 RÉVÉSZ

4) Let Ω_{ik} (resp. Ω_{ik}^*) be the subset of those elements of Ω (resp. Ω^*) in which the k-th element of the i-th row is 1.

The following theorems are proved in [2].

Theorem 2. Let $A = \{a_{ik}\}_{i,k=1}^{\infty}$ be a WDS matrix. Then we can find a σ -algebra \mathscr{S}^* of subsets of Ω^* and a probability measure \mathbf{P}^* on \mathscr{S}^* such that $\Omega^*_{ik} \in \mathscr{S}^*$ $(i=1,\ 2,\ldots,\ k=1,\ 2,\ldots)$ and $\mathbf{P}^*(\Omega^*_{ik}) = a_{ik}$.

Theorem 3. Let $A = \{a_{ik}\}_{i,k=1}^{\infty}$ be a doubly stochastic matrix. Then we can find a σ -algebra $\mathscr S$ of subsets of Ω and a probability measure $\mathbf P$ on $\mathscr S$ such

that $\Omega_{ik} \in \mathscr{S}$ (i = 1, 2, ...; k = 1, 2, ...) and $\mathbf{P}(\Omega_{ik}) = a_{ik}$. These two theorems together imply the following

Consequence. Let $x \in l^2$ the i-th coordinate of which is denoted by $x \mid_i$. Consider every doubly stochastic (WDS) matrix as a linear bounded operator in the space l^2 . Then $\Pi x \mid_i (\Pi \in \Omega)$. (resp. $\Pi \in \Omega^*$) is a measurable function defined on the measurable space $\{\Omega, \mathscr{S}\}$ (resp. $\{\Omega^*, \mathscr{S}^*\}$). Now, if A is a doubly stochastic (WDS) matrix, then we can find a probability measure $\mathbf{P}(\mathbf{P}^*)$ on the σ -algebra \mathscr{S} (resp. \mathscr{S}^*) satisfying.

$$Ax|_i = \mathbf{M}(\Pi \, x|_i) = \int\limits_{\pi \, \epsilon \, \Omega} \Pi \, x|_i \, d \, \mathbf{P}$$

resp.

$$Ax|_i = \mathbf{M}(\Pi |x|_i) = \int\limits_{\pi \in \Omega^*} \Pi |x|_i d \mathbf{P}^*$$
 .

These formulae can be written in the concise form

$$Ax = \mathbf{M}(\Pi x).$$

Applying these results we prove the following two theorems

Theorem 4. Let ζ_1, ζ_2, \ldots be a discrete Markov chain having $\alpha_1, \alpha_2, \ldots$ as possible values. Suppose that the matrix

$$A_n = \{a_{ik}^{(n)}\}_{i,k=1}^{\infty} \,, \quad a_{ik}^{(n)} = \mathbf{P} \, \{\zeta_n = \alpha_k | \zeta_{n-1} = \alpha_i \}$$

is doubly stochastic. Under these conditions the Markov chain ζ_1, ζ_2, \ldots can be represented in the form $f(T_k \ldots T_i x)$.

Proof. Let X be the set of the positive integers, $\mathscr S$ the set of all subsets of X. We define the function f(x) and the measure μ on X as follows

$$f(i) = \sigma_i$$
 $(i = 1, 2, ...)$ $u(i) = 1.$

Let further $\mathcal F$ denote the set of all measure preserving transformations defined on X. Every $T \in \mathcal F$ there can be found a permutation matrix Π_T as follows if

$$Ti = k_i$$
 $(i = 1, 2, \ldots)$

 (k_i) is a permutation of the positive integers) then

$$\Pi_T = \{\pi_{ik}\}_{i,k=1}^{\infty} \quad \pi_{ik} = egin{cases} 1 & ext{if} \quad k=k_1 \ 0 & ext{if} \quad k
eq k_1. \end{cases}$$

In the space $\mathcal F$ we define a sequence $P_1,\,P_2,\ldots$ of probability measures as follows:

The $\mathbf{P_1}$ measure of the set $T \in \mathcal{T}$ transforming the point 1 into the point i equals $\mathbf{P}\{\zeta_1=i\}$

The \mathbf{P}_n measure of the set $T \in \mathcal{T}$ transforming the point i into the point k equals $a_{ik}^{(n)}$. (Theorem 3. states that we can define a measure in this way).

It is easy to see that for the sequences $f(T_k \ldots T_1 x)$ and ζ_1, ζ_2, \ldots formula (1) holds.

Theorem 5. Let ζ_1, ζ_2, \ldots be a discrete Markov chain. Let the values of ζ_1, ζ_2, \ldots be the real numbers $\alpha_1, \alpha_2, \ldots$ Suppose that the matrix

$$A_n = \{a_{ik}^{(n)}\}_{i,k=1}^{\infty} \quad a_{ik}^{(n)} = \mathbf{P}\{\zeta_n = k \,|\, \zeta_{n-1} = i\}$$

is a WDS matrix. Then there exists a measurable set $\vec{\mathcal{F}}$ of measurable transformations defined on the positive integers and a sequence $\mathbf{P_1}$, $\mathbf{P_2}$, ... of probability measures defined ox \mathcal{T} such that

$$\begin{aligned} \mathbf{P}^* \left\{ f(T_k \dots T_1 \, 1) &= \alpha_{j_k} | f(T_{k-1} \dots T_1 \, 1) = \alpha_{j_{k-1}}, \dots f(T_1 \, 1) = \alpha_{j_1} \right\} \\ &= \mathbf{P} \left\{ \zeta_k = \alpha_{j_k} | \, \zeta_{k-1} = \alpha_{j_{k-1}}, \dots \, \zeta_1 = \alpha_1 \right\} \end{aligned}$$

and

$$\mu(T^{-1}E) \, < C \, \mu(E) \tag{$C > 0$}$$

for every $T \in \mathcal{T}$ where f(x) is the function

$$f(i) = \alpha_i$$
.

The proof of this theorem is similar to the proof of Theorem 4. the only one change is the application of Theorem 2. instead of Theorem 3.

§ 2. An individual random ergodic theorem

Let H_1^* be the space of those bounded measurable functions defined on X for which

$$\int\limits_X f^2(x) \, d \, \mu < \infty \, ; \quad \int\limits_X |f(x)| \, d \, \mu < \infty \, ; \quad \int\limits_X f(x) \, d \, \mu = 0 \; .$$

In this section we prove the following

Individual random ergodic theorem. If for every $f(x) \in H_1^*$

(1)
$$\| \int_{T \in T} f(Tx) \, d \, \mathbf{P}_i \| = \| \mathbf{M}_{\mathbf{P}_i} f(Tx) \| \le m_i \| f(x) \|$$

where

$$m_i = 1 - \frac{C}{i^{1-\epsilon}}$$
.

C is an arbitrary positive constant and $0 < \epsilon \le 1$ then

(2)
$$\mathbf{P}^* \left\{ \frac{1}{n} \sum_{k=1}^n f(T_k \dots T_1 x) \to 0 \text{ for almost every } x \right\} = 1$$

for every $f(x) \in H_1^*$.

¹⁴ A Matematikai Kutató Intézet Közleményei VI. 1—2.

Proof. In [1] it is proved that

(3)
$$\int_X \mathbf{M} \left[(S_n f)^2 \right] d \mu = O(1/n^{1/a})$$

where $S_n f = \frac{1}{n} \sum_{k=1}^n f(T_k \dots T_1 x)$ and $\alpha = [1/\epsilon] + 1$. (3) implies that

(4)
$$\sum_{n=1}^{\infty} \int_{X} \mathbf{M} \left[(S_{n^{2\alpha}} f)^{2} \right] d\mu < \infty.$$

By (4) and the Beppo-Levi theorem

$$\mathbf{P}^* \{ S_{n^{2a}} f \to 0 \text{ for almost every } x \} = 1.$$

If n is an arbitrary positive integer then there exists a k such that

$$k^{2a} \leq n < (k+1)^{2a}.$$

Using this fact we can write

$$\begin{split} |S_n f| & \leq \left| \frac{f(T_1 x) + f(T_2 T_1 x) + \ldots + f(T_{k^{\mathbf{a}^a}} \ldots T_1 x)}{k^{2a}} \right| + \\ & + \left| \frac{f(T_{k^{\mathbf{a}^a} + 1} \ldots T_1 x) + \ldots + f(T_n \ldots T_1 x)}{k^{2a}} \right|. \end{split}$$

By supposition there exists a K for which $|f(x)| \leq K$. Thus

$$|S_n f| \le |S_{k^{2a}} f| + \frac{K}{k}$$

and the theorem follows.

Remark 1. It is worth while to mention that Theorem states the validity of (2) for every $f(x) \in H_1^*$. If we want to prove the validity of (2) only for a special function $f(x) \in H_1^*$ then it is enough to assume that Condition (1) holds for the functions

$$\begin{split} g_{\boldsymbol{k}}(\boldsymbol{x}) &= \mathbf{M}\left\{f(\boldsymbol{T}_{\boldsymbol{k}} \ldots \boldsymbol{T}_{1} \boldsymbol{x})\right\} = \int\limits_{\mathcal{F}_{\boldsymbol{k}}} \ldots \int\limits_{\mathcal{F}_{1}} f(\boldsymbol{T}_{\boldsymbol{k}} \ldots \boldsymbol{T}_{1} \boldsymbol{x}) \ d(\mathbf{P}_{1} \times \mathbf{P}_{2} \times \ldots \times \mathbf{P}_{\boldsymbol{k}}) \end{split}$$

$$(k = 1, 2, \ldots)$$

Remark 2. In our theorem we can substitute the assumption that the elements of \mathcal{T} are measure preserving transformations by the following ones.

1) for every sequence T_1, T_2, \ldots of elements of $\mathcal T$ and for every $E \in \mathscr S$ the inequality

$$\frac{1}{n} \sum_{k=1}^{n} \mu(T_1^{-1} T_2^{-1} \dots T_k^{-1} E) \le C \mu(E)$$

holds.

2) the condition (1) is fulfilled for the functions

$$g_k(x) = \mathbf{M}(f(T_k \dots T_1 x))$$

We omit the proofs of these remarks, because they can be proved in similar way to the proof of the Individual random ergodic theorem.

§ 3. An example

In this § a strong law of large numbers for a special class of the inhomogenous Markov chains is proved.

Theorem 6. Let ζ_1, ζ_2, \ldots be a discrete Markov chain with the state space $\{\alpha_1, \alpha_2, \ldots\}$. We introduce the following conditions

1)
$$\sum_{i=1}^{\infty} \alpha_i = 0$$
, $\sum_{i=1}^{\infty} |\alpha_i| < \infty$.

2) The matrices

$$A_n = \left\{a_{ik}^{(n)}\right\}_{i,=1}^{\infty} \quad a_{ik}^{(n)} = \mathbf{P}\left\{\zeta_n = \alpha_k \middle| \zeta_{n-1} = \alpha_i\right\}$$

are WDS matrices.

3) There exists a C > 0 and a $0 < \varepsilon \le 1$ such that for every n

$$||A_n|| \le 1 - \frac{C}{n^{1-\epsilon}}$$

where the norm of a matrix A is defined by

$$||A|| = \sup_{X \in H_1} \frac{||Ax||}{||x||}$$

and H_1 contains those points $x=(x_1,x_2,\ldots)$ of the space l^2 for which $\sum_{i=1}^{\infty}x_i=0$ and $\sum_{i=1}^{\infty}|x_i|<\infty$.

Under these conditions

$$\mathbf{P}\left\{\frac{\zeta_1+\ldots+\zeta_n}{n}\to 0\right\}=1.$$

Proof. We can represent the Markov chain ζ_1 , ζ_2 , ... in the same way in the form $f(T_k \ldots T_1 x)$ as it has been made in the proof of Theorem 5. due to Condition 2. The corollary of Theorem 4 shows that (5) implies (1) Hence follows the theorem.

 $\bf Remark~3.~We~show~by~an~example~that~if~instead~of~(5)~we~suppose~only~that$

$$||A_n|| \le 1 - \frac{1}{n}$$

then the strong law in general does not hold.

$$\begin{split} \mathbf{P}\{\zeta_1 = +\ 1\} &= \mathbf{P}\,\{\zeta_1 = -\ 1\} = 1/2 \\ A_n &= \begin{pmatrix} 1 - 1/2\ n & 1/2\ n \\ 1/2\ n & 1 - 1/2\ n \end{pmatrix} = (a_{ik}^{(n)})_{i,k=1}^2\,a_{ik}^{(n)} = \mathbf{P}\,\{\zeta_n = a_k | \, \zeta_{n-1} = a_i\} \;. \end{split}$$

It is easy to see that

$$||A_n|| = 1 - 1/n$$

and

$$\mathbf{M}\left[\left(\frac{\zeta_1+\zeta_2+\ldots+\zeta_n}{n}\right)^2\right]\to 0.$$

The variables ζ_n are bounded hence the arithmetic mean of ζ_1, ζ_2, \ldots is also bounded. This implies that

$$\mathbf{P}\left\{\frac{\zeta_1+\ldots+\zeta_n}{n}\to 0\right\}<1.$$

(Received January 20, 1961.)

REFERENCES

- Révész, P.: "Some remarks on the random ergodic theorems, I." A Magyar Tudományos Akadémia Matematikai Kutató intézetének Közleményei 5 (1960) A, 375-380.
- [2] Révész, P.: "A probabilistic solution of problem 111. of G. Birkhoff" in print.

НЕСКОЛЬКО ЗАМЕЧАНИЙ О СЛУЧАЙНОЙ ЭРГОДИЧЕСКОЙ ТЕОРЕМЕ

P. RÉVÉSZ

Резюме

Пусть $\{X, \mathscr{S}, \mu\}$ есть измеримое пространство, \mathscr{T} — множество определенных на пространстве X измеримых и не изменяющих меру преобразований. Обозначим через \mathbf{P}_1 , \mathbf{P}_2 , . . . последовательность определенных на \mathscr{T} вероятностных мер. Пусть, далее,

$$\begin{split} \mathcal{F}^* &= \mathcal{F} \times \mathcal{F}_2 \times \dots \\ \mathbf{P}^* &= \mathbf{P_1} \times \mathbf{P_2} \times \dots \end{split}$$

$$(i = 1, 2, \dots)$$

u, наконец, через H_1^* обозначим множество тех определенных на пространстве X ограниченных интегрируемых с квадратом функций, для которых

$$\int\limits_X f(x)\,d\,\mu=0\;.$$

Предположим, что для всех $f(x) \in H_1^*$ функции $f(T_k \dots T_1 x)$ измеримы на пространстве $\mathcal{F}^* \times X$, где (T_1, T_2, \dots) обозначает некоторую точку пространства \mathcal{F}^* . В работе доказываются следующие теоремы.

Теорема 1. Пусть f(x) определенная на пространстве X измеримая функция. Обозначим через \mathcal{A} наиболее узкую σ -алгебру, для которой f(x) измерима. Предположим, что для всех $A \in \mathcal{A}$ и $T \in \mathcal{F}$

$$TA \in \mathcal{A}$$
 и $T^{-1}A \in \mathcal{A}$.

Тогда почти для всех фиксированных X последовательность случайных величин $\{f(T_n\ldots T_1\,x\}\$ образует цепь Mаркова.

Теорема 2. Пусть ζ_1 , ζ_2 ,... есть дискретная цепь Маркова, пред-положим, что одношаговые матрицы вероятности перехода дубльстохастичны. Тогда можно найти пространство $\{X, \mathcal{S}, \mu\}$, пространство \mathcal{T} определенных на нем удерживающих меру преобразований, определенная на X измеримая функция f(x) и последовательность $\mathbf{P_1}$, $\mathbf{P_2}$,... определенных на \mathcal{T} вероятностных мер так, что для некоторого X n — мерные функции распределения последовательности случайных величин $\{f(T_n...T_1x\}$ совпадают с соответствующими n — мерными распределениями цепи Маркова ζ_1 , ζ_2 ,...

Теорема 3. Если для всех $f(x) \in H^*$

$$\|\int\limits_{T} f(Tx) d \mathbf{P}_i\| = \|\mathbf{M}_{\mathbf{P}_i} f(Tx)\| \le m_i \|f(x)\|,$$

зде

$$m_i = 1 - rac{C}{i^{1-\epsilon}}$$
 .

(С любая положительная постоянная, $0<\epsilon \le 1$), тогда

$$\mathbf{P}^* \left\{ \frac{1}{n} \sum_{k=1}^n f(T_k \dots T_1 x) \to 0 \text{ noumu dar scex } x \right\} = 1 \text{ dar scex } f(x) \in H_1^*.$$

В § 3 работы с помощью теорем 2 и 3 доказывается одна теорема больших чисел относительно неоднородных цепей Маркова.