SOME REMARKS ON THE RANDOM ERGODIC THEOREM, II.

by
P. REVESZ

Introduction

Let .77 be a measurable space of measure preserving transformations
each of which is defined on a measure space {X, &, u}. Let further P;, Py, . . .
be a sequence of probability measures defined on 7. We denote the product
space

.71><:72><... (‘71:7;2:1’2"')
by 7% and the product measure
Py X Pa3k won

defined on 7* by P*. (T, T, ...) (T;€.7,) means a point of 7*.
Let H, denote the space of those measurable functions defined on X
for which

[P@du<oo (fz)ydu=0.
X X

We assume in this paper that the function f(7', 7,_, ... T, x) is measurable
and integrable on the space 7* x X for every fcH,.
In [1] the following theorem is proved.

Statistical random ergodic theorem. /f!
| § /T2 d Py =[[Mef(T) || <m|/f()]
Te.r

for every f(x) € H; where
C

Z‘l—e

m=1—

C is an arbitrary positive constant and 0 < e < 1.
Then for every f(x) € Hy we have

—>0l=1.

/

P*{‘%__\'z‘f(Tk...Tlx).

k=1

1 Here and in what follows llg|® = j g*(z)d .
X

206



206 REVESZ

In §[1] we give some conditions under which the sequence f(T,...7T, )
forms a Markov chain. In § 2. an individual random ergodic theorem is proved
and in § 3. as an application of our results we obtain a strong law of large
numbers for those Markov chain which can be represented in the form
(Lo LX)

§ 1. The probabilistic behaviour of the sequence f(7, ... T, z).

A natural question is the following: Is the sequence f(T)...7T,z) a
Markov chain for every (or almost every) x? We shall show in an example
that generally f(7, ...7T,x) is not a Markov chain.

Let X be the space of the numbers 0, 1, 2, 3, 4. We define the measure
u, the function f and the measure preserving transformations 7@, 7® on
X as follows

w(0) = p(l) = u(2) = p(3) = p4) = 1;
(0) =0, f(1) =1, f(2) = 2, f(3) = f(4) = 3;
TV () — 1, 7)) ] = 3, T™W 9 — 0
FA) g — 4, T1) 4 — 2
T@0 =2 T®O1=3 7TO2=24
T3 =0, T®4=1.

On the set 7 = {TW, T®} we define the probability measure P by
P(TW) = P(T®) = 1.
Now, it is easy to see that

P{/(TsT,T,0) = 2|f(T,T,0) =3} > 0,
but
P{/(T3T,T,0) = 2 | (T, Ty 0) =3, (T,0) =1} =0.
which proves that {/(7, ... 7,0)} is not a Markov chain.
The following theorem holds.

Theorem 1. Let f(x) a measurable function defined on X, cAthe smallest
o-algebra of those subsets of X with regards to which f(x) is measurable. If for
every A€t and T € 7 we have

TAEA and T YAEA.

Then for almost every x the sequence (T, ...T,x) is a Markov chain.

For the proof of the above theorem we need the following

Lemma. Suppose that f(x) and .7 satisfythe conditions of Theorem 1. If
for a pair x, y of elements of X

then for every T €.7 we have
H(Tx) = [(Ty).
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Proof. For the sake of simplicity we denote by a the common value
of f(x) and f(y), « = f(x) = f(y). Introduce furthermore the notations

[Ha) = 4 (4 €ct).
Since T A € o# there exists a Borel set 85 on the real line such that
YB)="TA4.

In order to prove the lemma it is sufficient to show that % has only one
element. In contradiction of our statement suppose that B has more than
one point. Let € be a point of B then C = f~1(€) is a proper subset of B and
A c T-1C which is a contradiction.

Proof of Theorem 1. Obviously our lemma implies that the conditional
probabilities

PAT: .. Pi)eB|AT, g Tyd) =8, 955.., T, 2)=a;}),
P{/T,.. T'o)€B|(Tpy,...T12) =0, 4}

both are the P, measures of those transformations 7' €.7, which map the set
[Ya,_,) into the set f~1(B) which proves the theorem.

The following question arises : given a Markov chain of real valued ran-
dom variables {;, {,, ... what is the condition which we have to impose on
the transition probability functions that makes possible the construction of
a measure space {X, &, u} a measurable function f(x) defined on X, a
measurable set .77 of the measures preserving transformations defined on X
and a sequence Py, Py, . .. of probability measures definened on.7 such that

Ly PR ...Tlx)€§B|f(Tn_1... BBV = 0w T ) == 0 =
P*{Cne%gcn—IZQn—l' v by = a4}

for a special x and for every n and for every sequence «,, ¢,, ... of real num-
bers. If the above construction is possible then we say that the Markov chain
21 Gy - - . can be represented in the form f(7', ... T «). In the sequel we shall
give a sufficient condition ensuring the representation in the form {/(7', .. .7 x)}.
of a Markov chain. First we mention some definitions and two theorems.

1) A matrix 4 = {a; };;_; is called doubly stochastic if

G =0 Gk=1,2,...)
’é;aik:] (1=1,2,...), é'aikzl k=1,2,...).
2) A matrix 4 = {a,; };_,is called weakly doubly stochastic (WDS) if
@ =0 Epl= 152 =)
é‘aikzl =12 ::.), léa,,é] k=1,2,...).

3) A matrix [l having only zeros and ones as elements is called a per-
mutation matrix (resp. weak permutation matrix) if it is a doubly stochastic
matrix (resp. WDS matrix). We denote the set of all permutation matrices
(resp. weak permutation matrices) by £ (resp. by Q%).
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4) Let 2, (resp. 2%) be the subset of those elements of Q (resp. 2%)
in which the k-th element of the ¢-th row is 1.
The following theorems are proved in [2].

Theorem 2. Let A = {a; };,_, be a WDS matrix. Then we can find
a o-algebra &#* of subsets of Q2% and a probability measure P* on #* such that
et i1, 2,.... =1, 2,...) otd PO =38,

Theorem 3. Let A = {a; }; w1 be a doubly stochastic matriz. Then
we can find a o-algebra &7 of subsets of 2 and a probability measure P on & such
that Qpe? (=1, 2, o3l = 1, 2y:4) and P(Q;) =@,

These two theorems together imply the following

Consequence. Let x €1* the i-th coordinate of which is denoted by z |,.
Consider every doubly stochastic (W DS) matrixz as a linear bounded operator
inthe spacel®. Then Ilx |, (I1 € 2). (resp. II € 2% ) is a measurable function defined
on the measurable space {Q, 5} (resp. {Q*%,*}). Now, if A isa doubly stochastic
(W DS) matrix, then we can find a probability measure P (P*) on the o-algebra
& (resp. &*) satisfying.

Azl =M z|)= (M z|,dP
nen

resp.
Azl =M1 z|)= | Dz|,dP*.
nEN*

These formulae can be written in the concise form
Az =M(II z).
Applying these results we prove the following two theorems

Theorem 4. Let {y, &, . . . be a discrete Markov chain having oy, a,, . . .
as possible values. Suppose that the matriz

A, = (a1, af =P{L, = ay|lpy = a;}

is doubly stochastic. Under these conditions the Markov chain £y, C,, ... can be
represented in the form f(T, ... T, ).

Proof. Let X be the set of the positive integers, & the set of all subsets
of X. We define the function f(x) and the measure p on X as follows

f(@) = o;
p(@)=1.

Let further 7 denote theset of all measure preserving transformations defined
on X. Every T € 7 there can be found a permutation matrix [T, as follows if

Ti=k (=12..)

(k; is a permutation of the positive integers) then

Gi=12...)

1 if b=k
H — ni ;:o e ni — I 1
s { k} k=1 k 10 if k%kl.
In the space & we define a sequence Py, P,, ... of probability measu-

res as follows:
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The P; measure of the set 7' € 7 transforming the point 1 into the point
i equals P{{; = 7}

The P, measure of the set 7' € .7 transforming the point 7 into the point
k equals a{’. (Theorem 3. states that we can define a measure in this way).

It is easy to see that for the sequences f(7', ... T)z) and ;, &, . ..
formula (1) holds.

Theorem 5. Let &y, &y, ... be a discrete Markov chain. Let the values of
81,8y, - . . be the real numbers aq oy, ... Suppose that the matrix

A, ={aR)ix—r af =P{L,=k|C, , =1}

is a WDS matrix. Then there exists a measurable set 7 of measurable trans-
formations defined on the positive integers and a sequence Py, P, ... of
probability measures defined ox .7 such that

{f(Tk o Ty 1) = Aj. \f(Tk—1 i e Tll) = Qg5 o - f(T11) = a,) =

= P{Ck == ajl(“:lf—l =0pyi w0 z--1 = al}
and
w(T—1B) < Cu(E) (€= 0)
for every T €.7 where f(x) is the function
/(@) = a,.

The proof of this theorem is similar to the proof of Theorem 4. the only
one change is the application of Theorem 2. instead of Theorem 3.

§ 2. An individual random ergodic theorem

Let Hjf be the space of those bounded measurable functions defined
on X for which

[P@du<oo; [|f@))du<oo; (fa)ydu=0.
X X X

In this section we prove the following

Individual random ergodic theorem. If for every f(x) € H¥

(1) | § /(Ta)d P = ||Me,f(T2)|| < m; | f(2)]]
TeT
where
my =1 — e :
=2

C s an arbitrary positive constant and 0 < ¢ < 1 then
(2) P* {% SHTy ... Tyx)—0 for almost every x} =1
k=1

for every f(x) € H¥.

14 A Matematikai Kutaté Intézet Kozleményei VI.1—2.
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Proof. In [1] it is proved that

(3) M8, 1)21d p=0(1/n'"
X
where 8, f :%‘\:'f(Tk ...T,2) and a = [Ye] 4+ 1. (3) implies that
k=1
(4) ,5,5 M [(S,paf)2]dp < oo .

By (4) and the Beppo-Levi theorem
P*{Spaf—0 for almost every o} =1.
If » is an arbitrary positive integer then there exists a & such that
e <n < (k4 1),

Using this fact we can write

18, /| < ,f(Tlx) + /Ty T4 ) 7;2;‘. +f T Ty2) |
+)f-(]ln'l_;l.--T1x)+ 3 8 —j',—,f(Tn"'Tlx)‘
k2a .

By supposition there exists a K for which | f(z) | £ K. Thus

Sl = |Sef| +

and the theorem follows.

Remark 1. It is worth while to mention that Theorem states the validity
of (2) for every f(z) € Hf. If we want to prove the validity of (2) only for a
special function f(x) € H¥ then it is enough to assume that Condition (1) holds
for the functions

gu@) =M{{T, ... T, ST Dy AP %P % .. . X P

Tl

‘7k fl
k=1,2,...)
Remark 2. In our theorem we can substitute the assumption that the
elements of .7 are measure preserving transformations by the following ones.
1) for everysequence T, T,. ... of elements of .7 and for every E €.

the inequality

1 n
- = w7 Tyt .. T E) < C ()

~

holds.
2) the condition (1) is fulfilled for the functions

(@) = M(f(T/.» )

We omit the proofs of these remarks, because they can be proved in
similar way to the proof of the Individual random ergodic theorem.
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§ 3. An example

In this § a strong law of large numbers for a special class of the in-
homogenous Markov chains is proved.

Theorem 6. Let C, C,, ... be a discrete Markov chain with the state space
{0q, 0g,...}. We introduce the following conditions

o
—

1) ;=0 2|a,~|<oo.

i=1 i=1
2) The matrices

4, = {a‘ﬁ}’}Ll a = P{Cn = aklcn-—l = a,.}
are W DS matrices.

3) There exists a C > 0 and a 0 < & < 1 such that for every n

" C
5) 4 L
n
where the norm of a matrix A is defined by
Ax
4= sup L1221
xeth, [lo]
and Hy contains those points x = (1, ¥y, . . .) of the space I2 for which > x, =0
i=1
and 3|z;| < oo.
=1
Under these conditions
plat... M%O}:L
| n
Proof. We can represent the Markov chain {;, &, ... in the same

way in the form f(7', ... T; «) as it has been made in the proof of Theorem 5.
due to Condition 2. The corollary of Theorem 4 shows that (5) implies (1)
Hence follows the theorem.

Remark 3. We show by an example that if instead of (5) we suppose only
that

|41 —

then the strong law in general does not hold.

Pli=+1}=P{{,=—1}=1/2
(1—12n 12m

4, = Mo BBl @ alf =P, =)l =a}.

14%
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It is easy to see that

|4n]|=1—1/n
and
M ”514"52"' T CnrJﬁO,
n
The variables ,, are bounded hence the arithmetic mean of £, ,, ... is also

bounded. This implies that

P{“'1+ s BB il i,

" J

(Received January 20, 1961.)
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HECKOJIBKO 3AMEUAHHI 0 CJIYUAWMHON J3ProJUUYECKON
TEOPEME

P. REVESZ
Pesiome

[Myctsb {X, &7, u} ecTb U3MepUMOE MPOCTPAHCTBO, .7 — MHOYECTBO OINpe-
JeJIeHHBIX Ha MpOocTpaHcTBe X M3MepPUMBIX U He H3MEeHSALIMX Mepy npeodpaso-
BaHuil. ObosHauum dvepes P,, P,, ... mociie0BaTeJIbHOCTL ONpe/lesIeHHbIX Ha
.7 BepOATHOCTHBIX Mep. [lycTb, naiee,

TE=F Fg 5 vu
P* =Py X Ps 56 =5

U, HaKoHel|, uepe3 H* 0603HaYMM MHOYKECTBO TeX OINpe/lesIeHHbIX Ha MpPOCTpaH-
cTBe X OrpaHMUYEHHBIX MHTEIPUPYEMBIX € KBAJpaToM QYHKUHMIA, ISl KOTOPBIX

(f@)ydu=0.
>4

IMpeanonosxkum, uro aas Beex f(x) € H¥ dyuxuun f(T)...T; ) u3Mepumbl Ha
npocrpanctee .7 * X X, rae (Tq, T'y,...) 0003HaUaeT HEKOTOPYI TOUKY TpPOCT-
paHcTBa .7 *. B palore [0KasbIBalOTCS CJeAYIOLIMe TeOPEMB.

Teopema 1. [Tycmo f(x) onpedenennas na npocmparcmee X usMepumast
Pynryua. Obosnauum uepe3 of Haubosee y3kyw o-aaebpy, 0aa komopol f(x)
usmepuma. Ilpeonoaoncum, umo 0as écex A € A u T €.7

TA€cA n T1A€A.

(FTiv=T) (G=1,2...)
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Toeoa noumu 0aa 6cex PurcuposarHsiX X 1n0cae006ameasbHoOCHb CAYIQUHBIX el
aun {f(T,...T,x} obpasyem yeno MapKosa.

Teopema 2. [Iycmo (,, C,,... ecmbd Ouckpemuas yens Maprosa, npeo-
N0A0NCUM, 4MO 00HOWIA206ble MAMPUYbL 6ePOSMHOCMU  nepexoda 0y6abcmoxa-
cmuuanst. To20a moncro Hatimu npocmpancmeo {X, &2, u}, npocmparicmeo 5 onpe-
OefeHHbIX HA HeM yOepycusarowux Mmepy npeobpasosanuil, onpedesernas Ha X
usmepumas Pynxyua f(x) u nocaedosamensvrocmos Py, P,,. .. onpedesenmsix Ha
7 6epOSIMHOCMHLIX Mep mak, umo 044 Hexomopoeo X m — MepHble (PyHKYUU
pacnpeoesenusn nocaedosamenstocmu caydatinsx eeauuun {f(T,...T,x} coéna-
0awm ¢ coomeemcmeyoWumu n— MePHuIMU pacnpedeseHusmu yenu Maprosa

20 S

Teopema 3. Ecau 0as 6cex f(x) € H*

| § f(Tx)d P = ||Me,f(T2)| < m, || f@)],
Tie T
20¢

C
m=1——.
i

(C mobas nononcumensvras nocmostnasn, 0 < e < 1), moeoa
n

P* {712 gf(Tk ... Tyx)—0 noumu 0aa 6cex x} =1 0asa ecex f(x) € H¥.

B § 3 pabotsl ¢ momouybio Teopem 2 1 3 J10Ka3blBATCS 0/HA Teopema 00Jib-
WX 4YKCesl OTHOCUTeJIbHO HeoJAHOPOAHBIX Lenelt Mapkosa.
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