
UNSOLVED PROBLEMS НЕРАЗРЕШЕННЫЕ ПРОБЛЕМЫ 

We s tar t with th is number a new 
section of this journal: t h a t of unsolved 
problems. In this section unsolved prob-
lems will be proposed, a t the same t ime 
some information about previous results 
in the direction of the problem in question 
will be given. Problems for this section 
as well as comments on published problems 
should be sent to G. A L E X I T S , editor of 
the section, to the address of the redac-
tion of the journal (Budapest , V. Reál-
tanoda u. 13 — 15.). 

Начиная с настоящего номера поме-
щается новый раздел в нашем журнале: 
неразрешенные проблемы. В этом разделе 
мы публикуем неразрешенные проблемы 
и одновременно указываем на более ран-
ные результаты, связанные с данной про-
блемой. Проблемы, предназначенные для 
этого раздела, а также замечания, связан-
ные с сообщаемыми проблемами просим 
направить по адресу редакции журнала 
(Budapest, V. Reáltanoda u tca 13—15.) 
для редактора раздела G . A L E X I T S . 

SOME UNSOLVED PROBLEMS 

by 

P A U L ERDŐS 

In this paper I shall discuss some unsolved problems in number theory, 
combinatorial analysis, set theory, elementary geometry, analysis and pro-
bability. The choice of problems is purely subjective, I discuss problems on 
which I worked myself or which interested me and it is certainly not claimed 
tha t all or most of the problems discussed here are very important, hut I 
hope the reader will find them challenging and amusing; most of them w ill 
have a combinatorial character. Classical and wellknown problems are-
avoided as much as possible. 

I gave several talks on unsolved problems a t various places (Moscow, 
Leningrad, Peking, Singapore, Adelaide). In the autumn of 1959 I gave a 
series of talks on unsolved problems at the Mathematical Institute of the 
Hungarian Academy of Sciences and most of the problems discussed here 
wTere discussed in my lectures. 

My first talk on unsolved problems was given on November 16, 1957 
at Assumption University Windsor, Ontario, Canada, a paper on this talk 
appeared in the Michigan Mathematical Journal 4 (1957), 291—300, and 
there is a considerable overlap between this paper and the present one. 

c, Cj, c2, . . . , С will denote positive absolute constants, i. o. is an 
abréviation for infinitely often. 

I. Problems in number theory 

First some problems on prime numbers. 
1) Denote by л(х) the number of primes not exceeding x. I t has been 

conjectured that 

(1.1.1) 7Z(X + y) g Я(Х) + Л(у). 

I t is easy to verify (I. 1.1) for small values of y ( P . U N G Á R informed 
me tha t he verified it for y g 41). For x > x0, x — y (I. 1.1) was proved by 
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L A N D A U . H A R D Y and L I T T L E W O O D proved by B R U N ' S method tha t 

(1.1.2) л(х + y) - л(х) < - 3 L 
log y 

and A. S E L B E R G proved that 

( I . 1 . 3 ) „ ( * + У) - „ ( * ) < 2 - У - + 0 [ У ^ М . 
log у { (log у)2 

A conjecture weaker than (I. 1.1) hut stronger than (I. 1.3) would be: To 
every s > 0 there exists a y0 so tha t for y > y0 

(I. 1.4) л(х + y ) - n(x) < (1 + e) У . 
log у 

The replacement in (I. 1.3) of 2 by a smaller constant would be of great 
importance. 

Instead of considering л(х + у) — л(х) one could define f(x, y) as the 
greatest integer к so that there exist к integers x < ax < a2 < . . . < ak 51 
+ x + у satisfying (dj, aß = 1 . The proof of H A R D Y and L I T T L E W O O D 
gives f(x, у) < су/log у (trivially f(x, у) ^ л(х + у) — n(x)) and one could 

V 
conjecture tha t f(x, y) g л(у) or that f(x, у) < (1 + e) а for у > y0. 

log у 
Following H A R D Y and L I T T L E W O O D put 

q(y) = lim sup (л(х + у) — л(х)) . 
x= < " 

One would conjecture that lim д(у) = oo and perhaps even 
Y=CO 

9(У) > ( 1 - е ) У/log у for у > y0, 

h u t it is not even known tha t (jiy) > 2 for у > y0. 

G. H. HARDY and J . E. LITTLEWOOD: "Some problems of par t i t io numerorum." 
Acta Mathematica 44 (1923) 1 — 70. 

E. LANDAU: Handbuch der Lehre von der Verteilung der Primzahlen. Vol. 1. 
A . S E L B E R G : ,,On elementary methods in prime number theory and their limitations." 

Den 11-te Skandinaviske Matematikerkongress (1952) 13 — 22. 

2) Denote by 2 = px< p2 < • • • the sequence of prime numbers. Put 
dn = pn+1 — pn. T Ú R Á N and I proved that for infinitely many n and m, 
dn >dn+1 and dm+1 > dm. I t is not known if dn = dn+1 holds i. o. We could 
not prove that i. o. dn > dn+1 > dn+2, in fact we could not even prove that 
i. o. either dn > dn+1 > dn+2 or dn < dn+1 < dn+2. 

I t seems very likely that the sequence djlog n is everwhere dense and 
t h a t it has a distribution function (in other words the density of integers 
n satisfying dn[\.ogn < с exists and if we denote it by /(c) then /(0) = 0, 
/(oo) = l). R I C C I and I proved tha t the set of limit points of dn/log n has positive 
measure, hut oo is the only known limit point (theorem of W E S T Z Y N T H I U S ) . 
Analogous questions can he asked about d,Jdn+1. 
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P . E R D Ő S and P . T Ú R Á N : " O n some sequences of in tegers . " Bull. Amer. Math. 
Soc. 54 (1948) 3 7 1 - 3 7 8 . 

P . E R D Ő S : " O n t h e difference of consecutive p r i m e s . " Ibid. 885 — 889. 
P . E R D Ő S and A . R É N Y I : " S o m e problems and resul ts on consecutive pr imes ." 

Simon Stevin 27 (1950) 115—125. 
G . R I C C I : "Recherohes sur l 'a l lure de la suite pn+x — P n / log p„ . " Colloque sur la 

Théor ie des nombres, Bruxelles (1955) 93 — 106. 
E . W E S T Z Y N T H I U S : »Über die Vertei lung der Zahlen die zu den ers ten Primzahlen 

te i l e r f remd s ind ." Commentationes Phys.-mat. Soc. Sei. fenn. 5, Nr . 25, 1 — 37. 

3 ) Sharpening the result of W E S T Z Y N T H I U S I proved that i. o. 

(1.3.1) d n > c b g r a l o g l o g r a 
(logloglogra)2 

and R A N K I N proved tha t i. o. 

log 7i loglog n loglogloglog n 
( 1 . 3 . 2 ) dn > c-

(logloglog ra)2 

It seems to he very difficult to improve (I. 3.2). 
I N G H A M proved dn < ra5'8 (dn < ra1_£ was first proved by H O H E I S E L 

for e = 32999/33000) and the Riemann hypothesis would imply dn< ra1,2+£. 
C R A M E R conjectured tha t 

(I. 3.3) lim sup dj(log ra)2 = 1. 

The old conjecture on prime twins states t ha t i. o. dn = 2, hut it is 
not even known tha t 

(I. 3.4) Um inf dn/log ra = 0 . 

I proved using B R U N ' S method that 

(1.3.5) lim inf djlogn < 1. 

I further proved tha t 

(I. 3.6) lim sup min (dn, dn+1)/log ra = oo , 

hut I can not prove t ha t 

(1.3.7) lim inf max (dn, dn+1)/log ra < 1 or lim sup min ' d f l + 1 ' d n + z ) = oo , 
log ra 

also I can not prove 
]imdn + dn+1+...+dn+k_1 < l c  

к log ra 

where с does not depend on ra. 

P. E R D Ő S : " O n t h e difference of consecutive p r imes . " Quarterly Journal of Math-
6 ( 1 9 3 5 ) 1 2 4 — 1 2 8 . See also T . H . C H A N G : "Über aufeinanderfolgende Zahlen, von denen 
jede mindes tens einer von n linearen Kongruenzen genügt , deren Moduln die ersten n 
Pr imzah len sind." Schriften Math. Sem. u. Inst. Angew. Math. Univ. 4 ( 1 9 3 8 ) 3 5 — 5 5 . 

R . A . R A N K I N : „ T h e difference between consecutive pr ime n u m b e r . " Journal 
London Math. Soc. 1 3 ( 1 9 3 8 ) 2 4 2 - 2 4 7 . 
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A . E . I N G H A M : "On the difference between consecutive primes." Quarterly Journal 
of Math. 8 ( 1 9 3 7 ) 2 5 5 - 2 6 6 . 

I I . C R A M E R : "On the order of magnitude of the difference between consecutive 
p r ime numbers." Acta Arithmetica 2 ( 1 9 3 6 ) 2 3 — 4 6 . 

G. H O H E I S E L : „Primzahlprobleme in der Analysis." Sitzungsber. der Preuss. 
Akad . der Wiss phys . Math. Klasse, ( 1 9 3 0 ) , 5 8 0 - 5 8 8 . 

P . E R D Ő S : "The difference of consecutive pr imes," Duke Math. Journal 6 ( 1 9 4 0 )  
4 3 8 - 4 4 1 . 

R . A . R A N K I N , Proc. Amer. Math. Soc. 1 ( 1 9 5 0 ) 1 4 3 - 1 5 0 . 
P. E R D Ő S : "Problems and results on the differences of consecutive primes." 

Puhl. Math. Debrecen 1 ( 1 9 4 9 ) 3 7 — 3 9 . 

4 ) R É N Y I and I proved b y B R U N ' S method tha t to every cx there exists 
a c2 so that there exists r > c2 l o g » d's dk, . . . , dk+r satisfying 

(I. 4.1) к < И, dk+i > clt 0'A г A r, 

b u t we can not prove that (I. 4.1) holds for every cx and c2 if n > »0 (cx, c2). 
Denote by ax < a2 < . . . the sequence of integers having not more 

t h a n two prime factors. I proved that 

(I. 4.2) lim sup (ak+1—ak)fiogk>c] 

bu t can not prove tha t the lim sup in (I. 4.2) is infinite, 1 can not prove that 
the limit in (I. 4.2) is positive if the a's are the integers having not more than 
three prime factors. (ERDŐS — R É N Y I , see problem 2 . ) ( I . 4 . 2 ) was a problem 
in Elemente der Mathematik, 1955. 

5) C R A M E R (see problem 3) proved, assuming the Riemann hypothesis 
t h a t 

(1-5 .1) 2 (PK+i-PK)2<cx(logx)3-
Pi<x 

I t is possible t ha t 

(1-5.2) Z (Pk+i-Pk)2<cx\ogx 
Pk<x 

holds. Perhaps even lim У {рк+к — pk)2 exists . ( I . 5 . 2 ) seems hope-
I Я log Ж ' I 

less at present, but perhaps the following conjecture of mine can he 
attacked. Let 1 = ax < a2< . . . < a (n) he the integers relatevely prime to 
n. Then 

r(ny-1 2 

( 1 - 5 . 3 ) X ( a k + 1 - a k ) 2 < C - - . 
TT7 <p(n) 

I can not even prove t h a t 

fin)-1 
(I- 5.4) V (ak+1 - ak)2 < С »(loglog » + 

k= 1 

( ( I . 5 . 4 ) follows easily by B R I T N ' S method with n (logn)o. 
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SlVASANKARANARAYAMA PlLLAI conjectured that 

(1.5.5) V dk = 
fc— 0(mod 2) 

k<n 

1 
0 ( 1 ) Pn 

(1. 5.5) seems very difficult but again one can conjecture that 

( 1 . 5 . 6 ) V (ak+1-ak) = 
As.0(mod2) 

k<r(n) 

- + o ( l ) 
2 

We mentioned already (the probably hopeless) conjecture t ha t djlog n 
has a distribution function. Let ni be the product of the first i primes. Denote 

С 71 • 
by f(c, i) the number of solutions of — af < (ak\ 1 + 7 + <p(ni) are 

<р(щ) 
the integers + ft, relatively prime to ft,). Is it true that 

lim /(с, г)/<р(и,) = д(с) 

exists ? It is not difficult to show that the numbers 
/j<i) n4) 
- —-1— k , 1 ^ 7 < <p(ni) ,l^i<oo 

пМщ) 
are everywhere dense in (0, oo). 

6) Let /(n) be a real valued multiplicative function, i.e. f(a.b) = 
= f(a) • f(b) if (a, b) = 1. Assume /(ft.) | = 1. Is it true that 

1 < 7 m (1.6.1) lim 
n=«° ft 

ti — I 

always exists? It is easy to prove that if 

( 1 . 6 . 2 ) N . " 1 < o o , 
nTd"-1 P 

hen the limit (I. 6.1) always exsists and is different from 0. It can be con-
ectured that if ( 1 . 6 . 2 ) diverges, then ( 1 . 6 . 1 ) is 0 . If f(pa) = — 1, then the 
conjecture is equivalent with the prime number theorem. 1 conjectured 
(I. 6.1) about 20 years ago, but quite possibly the conjecture is much older. 

W I N T N E R observed that if j /(я) j = 1 can be complex valued, the 
limit (I. 6.1) does not have to exist. 

A W I N T N E R : " T h e theory of measure in arithmetical semigroups. Baltimore, 1 9 4 4 .  
See also N . G . T C H U D A K O F F : "Theory of the characters of number semigroups." Journal 
Indian Math. Soc. 2 0 ( 1 9 5 6 ) 1 1 - 1 5 . 

7) OSTMANN conjectured tha t there do not exist two sequences of 
integers ax <a2< . . . ; bx <b2< . . . each having at least two elements so 
that all but a finite number of primes are of the form a, + bj. and there are 
only a finite number of composite numbers of this form. 

15 A Matematikai K u t a t ó Intézet Közleményei VI . 1—2. 
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H O R N E E C K proved, using B R U N ' S method that both sequences must be 
infinite. 

It seems certain that O S T M A N N ' S conjecture is true, but the proof 
may well be difficult. 

8) A. W I N T N E R once asked me if I can prove the existence of an infinite 
sequence of primes p,, 1 g г < » so that if ax < a2< . . . are the integers 
composed of the p's, then lim (a,+ 1 — a,) = » . I was unable to prove the 

i= со 
existence of such a sequence of primes. A well-known theorem of Pólya states 
tha t if the a's are all composed of px, p2 pk then lim (a i+1 — aj = ». 

i = 00 
For several problems and conjectures on prime numbers see A. S C H I N Z E L 

and W. S I E R P I N S K I : "Sur certaines hypothèses concernant les nombres 
premiers." Acta Arithmetica 4 (1958) 185—207. 

Now we consider some problems on additive number theory. 
9) Can one give к + 2 integers 1 g ал < a„ <. . . < ak:+2 g 2k so that 

k+2 
t h e sums ^ e, a,, e,• = 0 or 1, are all distinct? The sequence 2', 0 g i g к 

i=i 
shows that one can give к -f- 1 such integers and 3, 5, 6, 7 shows tha t ak+x < 2* 
is possible. Very recently C O N W A Y and G U Y answered this question affir-
matively. independently of each other. The problem, wether one can find 
к 3 such integers g 2k remains open. 

More generally one can ask what is the maximum number of integers 
к 

аг < a2 < . . . < akx < x so tha t the sums ^ e, a,, e, = 0 should be all 
i = i 

different? M O S E R and I proved tha t 
log.r loglogx 

(1.9.1) kxg + ( 1 + e ) ° 8 . 
log 2 2 log 2 

Probably (1.9.1) is very far from being best possible, kx = — ( -0 (1) . 
log 2 

is quite possibly true. 
P . ERDŐS: "Prob lems and results in additive number theory." Colloque sur la 

théorie des nombres, Bruxelles (1955) 136—137. 

10) Denote by / (n ) the maximum number of positive integers ax < a 2 < . . . 
not exceeding n for which the sums a, + ay are all different. S I D O N asked 
t o estimate f(n). T Ú R Á N and I proved that 

( I . 1 0 . 1 ) f(n) < n*I + nlU, 

a n d S I N G E R proved that for infinitely many n 

( I . 1 0 . 2 ) / ( « ) > ПУ*. 

I t is possible that f(n) = n* + 0(1). 

S I N G E R ' S proof is based on his construction of a perfect difference 
set i.e. a set of residues av a2, . . . , ak+1 (mod n) so that every residue mod n 
except 0 can be uniquely represented in the form a, — a y Clearly a perfect 
difference set is only possible if n — к2 + к + 1 and S I N G E R proved that a 
perfect difference set exists if к is a power of a prime. It has been conjectured 
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if 1c is not the power of a primes a perfect set can not exist. Special cases of 
this conjecture have been proved by B R U C K and R Y S E R . The case к = 10 
is not yet decided. 

From (I. 1 0 . 1 ) and S I N G E R ' S result one can in fact deduce 

(I. 10.3) /(71) = (1 + o(\))n* . 

Denote by f3(n) the maximum number of a's not exceeding n so tha t 
all the sums a, + Я/ + a i are all distinct. B O S E recently asked me if I can 
prove analogously to (T. 10.1) and (I. 10.3) 

( 1 . 1 0 . 4 ) / 3 ( N ) = ( 1 + O ( l ) ) N ' / . 

The proof of ( 1 . 1 0 . 4 ) seems difficult, the method we used in the proof 
of ( 1 . 1 0 . 1 ) does not work. 

S I D O N also asked what can be said about an infinite sequence for which 
the sums a, + ay are all different. T Ú R Á N and I proved that for such a 
sequence 

( 1 . 1 0 . 5 ) lim sup akjk
2
 = Œ (or lim inf f(ri)\)pn = 0 ) , 

hut we constructed a sequence for which lim inf ajk2 < oo. 
One can show that there exists such a sequence for which 

(1.10.6) ak < cks fo r a l l к . 

There is a considerable gap between ( 1 . 1 0 . 5 ) and ( 1 . 1 0 . 6 ) , which at present 
I can not fill. 

R É N Y I and I proved by using probabilistic methods that to every e 
there exists an I = 1(e) and a sequence ax < a2 < . . . for which ak < k2+e 

and the number of solutions of n = a, + ay is less than I. 
ERDŐS —TÚRÁN: "On the problem of Sidon in additive number theory and on some 

related problems." Journal London Math. Soc. 16 (1941) 212 — 215. 
J . S I N G E R : "A theorem in finite projective geometry and some applications to 

number theory ." Trans. Amer. Math. Soc. 43 (1938) 377 — 385. 
R . H . BRUCK and H . J . R Y S E R : "The nonexistence of certain finite projective 

planes." Canadian Journal of Math. 1 (1949) 88 — 93. 
P . E R D Ő S and A . R É N Y I : „Additive properties of random sequences of positive 

integers." Acta Arithmetica 6 (1940) 83—110. 
For the problems considered in 10. and 11. see also A . STÖHR "Gelöste und ungelöste 

Fragen über Basen der natürlichen Zahlenreihe, I. and II." Journal für die reine und 
angewandte Math. 194 (1955) 40 — 65 and III —140, many interesting problems can be 
found in this paper. 

Of the many problems discussed in S T Ö H R ' S paper I just wish to mention 
the following problem of R O H R B A C H : What is the smallest number of integers 
ax < a2 <. . . < akn so tha t every integer ^ n should be of the form 
A , + A Y . The estimate KN > ] I 2 N is trivial and R O H R B A C H improves this to ( I -(- E) |/2ТГ 
for A fixed E > 0 . Recently M O S E R obtained A better value for E ( L . M O S E R , Acta 
Arithmetica 6 ( 1 9 6 0 ) 1 1 — 1 3 ) . Trivially kn^2)[n and perhaps kn = 2 ] /n + 0 ( 1 ) . 

For a review of additive number theory see H . H . O S T M A N N : Additive 
Zahlentheorie, Ergehnisse der Math. Heft 7. (two volumes). 

1 1 ) Another problem of S I D O N asked if there exists an infinite sequence 
of integers so that if g(n) denotes the number of solutions of n = a, + AY) 

15* 
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then to every e > 0 there exists an n0 so that for n > n0 

(1.11.1) 0 < g(n) < nc. 

I proved hy probabilistic arguments tha t such a sequence exists, in 
fact I proved the existence of a sequence with 

(I. 11.2) cx log n < g(n) < c2 log n. 

The existence of a sequence with gr(w)/log n = с > 0 is an open problem. 
An older conjecture of T Ú R Á N and myself s ta ted that if g(n) > 0 for all n > Т?0  

then lim sup <7(7?) = 00 (perhaps even g(n) > с log n for infinitely many 77 , 

which would show that (1.11.2) is best possible). Our conjecture seems rather 
difficult. A stronger conjecture would be: if ak < ck2 for all к then lim sup 
g(n) = 00. This would imply our original conjecture, hut is perhaps easier 
to attack; all we can show is that lim sup g(n) > 1 (see S T Ö H R ' S paper quoted 
in 10.1). 

T Ú R Á N and I conjectured that if EQ < a2 < . . . is any infinite sequence 
of integers then 

n 

(1.11.3) 2 # ) = «» + 0 ( 1 ) 
k=1 

is impossible. F U C H S and 1 proved the following stronger theorem: 

тт.1'1 

(1.11.4) ^ g ( k ) = m + o 
k= 1 (log 7?)15 

is impossible for с > 0. In the case ak = k2 H A R D Y and L A N D A U proved tha t 
n 

( 1. 11.5) V g(k) - - n + o((n log 7?)1'1) . 
TT7 4 

In the case ak — k2 (this is the classical problem of the lattice points 
in the circle) it has been conjectured t ha t for every e > 0 

n 
(1.11.6) 2 4 ( 4 ) = Л 7? + 0(тг')+£) . 

k = 1 4 

(1.11.6) is very deep. It is very likely tha t (1.11.4) is very close to being best 
possible, hut we have not been able to prove this. Very recently J U R K A T 
improved the error term in (1.11.4) to o(n1h). 

It would he of interest to show that the number of solutions of a, + + 
+ ar g 77 сап not be of the form с 77 + G(l), hut this, and possible generali-
zations in the direction of (1.11.4) have not yet been done. 

Very recently H . F . R I C H E R T proved the following result: 
Let аг < a2 < . . . he any sequence. Then 

(1.11.5) 2 ai+, = 77 log 77 + C7? + 0(na) 
kl<.n 

and 
n 

(1.11.6) 2 4 = 77+0(77°) 
k= 1 
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can not both hold if a < — . Perhaps the condition (1.11.6) is superfluous 
4 

[perhaps the error term in (1.11.5) has to be changed]. 
P. ERDŐS: " O n a problem of Sidon in a d d i t i v e number t h e o r y , " Acta Szeged 

1 1 ( 1 9 5 4 ) 2 5 5 — 2 5 9 , see also the p a p e r quoted in I . 9 ) . 
P. ERDŐS a n d W . H. J . F U C H S : "On a p r o b l e m of addi t ive n u m b e r t h e o r y . " 

Journal London Math. Soc. 31 ( 1 9 5 6 ) 6 7 — 73. 
E . LANDAU: Vorlesungen über Zahlentheorie, Vol. 2 . 

12) L O R E N Z proved the following conjecture of S T R A U S and myself: t o 
every infinite sequence of integers ax < a2 < • • . there exists a sequence of 
density 0 ,b 1 <b . 2 < . . . so that every sufficiently large integer can be expressed 
in the form ai + br In particular he proved t h a t if the a's are the primes 
then the b's can be chosen so t ha t B(x) < с (log x)3. I improved this t o 
B(x) < c(logx)2 (S(x) = !)• Perhaps such a sequence exists satisfying 

B(x) < с logx. From the prime number theorem с ig 1. I can not prove 
tha t с > 1. This would follow from the following general conjecture of H. 
H A N A N I (oral communication): Let % < a2 < . . . ; Zq < b2 < • . • be two 
infinite sequences of integers so t h a t every sufficiently large n can he written 
in the form a, b,. Then 

(1.12.1) lim sup A(x) B(x)/x > 1 . 
x— ° ° 

cx 
Does there exist a sequence Zq < b2 < . . . satisfying B(x) < so 

log x 
t ha t every sufficiently large integer can lie written in the form 2k + Zq ? 
Lorenz's result only gives B(x) < cx loglogx/logx. 

G. G. L O R E N Z : „On a p r o b l e m of additive n u m b e r theory . " Proc. Amer. Math. 
Soc. 5 ( 1954 ) 8 3 8 — 8 4 1 . 

P. ERDŐS: „ S o m e results on add i t ive number t h e o r y . " Ib id . 8 4 7 — 853 . , see a lso 
m y pape r quoted in I . 9). 

W . N A R K I E W I C Z : „ R e m a r k s on a conjec ture of Hanan i in n u m b e r t h e o r y . " 
Coll. Math 7 ( 1 9 6 0 ) 1 6 1 — 1 6 5 . 

1 3 ) A sequence Zq < b2 < . . . was called by K H I N T C H I N E an essential 
component if for every ax < A 2 < . . . of positive density a the S C H N I R E L -
M A N N sum of the two sequences has density greater than a. By density we 
mean here S C H N I R E L M A N N density i.e. the greatest lower hound o-
A(n)/v, 1 N < OC. The S C H N I R E L M A N N sum of a, and bj, \ У i, j < <x> is 
the set of integers of the form {a,, bj, ai + bj}. I proved, extending previous 
results of K H I N T C H I N E and B U C H S T A B , t ha t every hasis is an essential 
component, a sequence bx < b2 < . . . is called a basis if there exists an 
integer к so tha t every integer is the sum of к or fewer b's. L I N N I K proved 
t h a t an essential component does not have to be a hasis, in fact he constructed 
an essential component for which B(x) = o(xe) for every e > 0. Linnik 
informed me tha t he can construct an essential component satisfying B(x) < 
< exp [(logx)'-c |. I t seems to me that if bi+1/bt > с > 1 then the sequence 6, 
can not be an essential component, hut I have not been able to show this 
(it is easy to show this for Zq = 2'). Perhaps B(x)jlogx oo holds for every 
essential component. 

Does there exist an essential component Zq for which there does not 
exist a function f ( a ) , satisfying / ( a ) > 0 for 0 < a < 1, so tha t if a, has 
S C H N I R E L M A N N density a the S C H N I R E L M A N N sum of the two sequences 
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has density К A + / («)? (I was recently informed by E . W I R S I N G that 
he proved in his unpublished dissertation 10 years ago tha t such an essential 
component does not exist). 

P . E R D Ő S : "On the ari thmetical densi ty of the sum of two sequences one of which 
forms a basis for the integers ." Acta Arithmetica 1 (1936) 197 — 200. 

U . V . L I N N I K : "On Erdős ' s theorem on the addition of numerical sequences." 
Mat. Sbornik 1 0 (1942) 67 — 78, see also A. STÖHRand E. W I R S I N G : "Beispiele von wesent-
lichen Komponenten die keine Basen sind.« Journal reine und angewandte Math. 196  
(1956) 9 6 - 9 8 . 

1 4 ) R O M A N O F F proved that for every integer a > 1 the density of 
integers of the form p -J- ak is positive (p runs through the primes). L . K A L M Á R 
asked me a few years ago if for every A > 1 the density of integers of the form 
p + \_Ak~\ is > 0. The answer no doubt is affirmative, hut I have not been 
able to prove it. 

I proved that if g(n) denotes the number of solutions of p + 2k = n, 
then lim sup g(n) = oo, in fact g(n) > с loglog n i. о. I t seems that 105 is the 
largest integer n for which all the integers n — 2k, 2 <£ 2k < n are primes. 

Let now 1 51 a4 < a2 < . . . be a sequence of integers satisfying 
A(x) > с log x. Denote by g(n) the number of solutions of at + p = n. Is it 
true that lim sup g(n) = oo? Clearly analogous questions could be asked 
if the primes are replaced by other sequences. 

N. P . ROMANOFF: »Über einige Sätze der additiven Zahlentheorie.« Math. Annalen 
109 (1934) 6 6 8 - 6 7 8 . 

P . E R D Ő S : "On integers of the form 2 r + p and some related problems." Summa 
Brasil. Math. 2 (1947-51) 1 1 3 - 1 2 3 . 

15) Denote by A2 (x) the number of distinct integers not exceeding x 
which are of the form a t + a ; . I conjectured that if lim A(x)/x = 0 then 

(1.15.1) lim sup A2(x)/A(x) ^ 3. 

I t is easy to see t ha t (1.15.1) holds with 2 instead of 3 and that if (1.15.1) 
is true it is best possible. 

II. MANN: "A ref inement of the f u n d a m e n t a l theorem on the density of t he sum 
of two sets of integers." Pacific Journal of Math. 10 (1960) 909 — 915. 

16) R O T H conjectured that there exists an absolute constant с so that 
to every к there exists an n0 = n0(k) which has the following property: Let 
n > n0, split the integers not exceeding n into к classes {a/1}, 1 + / 5 k. 
Then the number of distinct integers not exceeding n which for some j, 1 51 j I i 
сап be written in the form a'j + a\'x is greater than en. 

1 7 ) Let (a, b) = 1 . I conjectured and B I R C H proved that every suffi-
ciently large integer can be expressed as the sum of distinct integers of the 
form akbl, 0 fL к, I < oo. 

Let ax < a2 < . . . be an infinite sequence satisfying a i+1/a, —> 1, I con-
jectured t ha t if every arithmetic progression contains infinitely many integers 
which are the sum of distinct a's then every sufficiently large integer is the 
sum of distinct a's. This was disproved by C A S S E L S , who also proved a weaker 
sufficient condition tha t every integer should be the sum of distinct a's. 

C A S S E L S ' S beautiful work (which incidentally contains B I R C H ' S result 
as a special case) leads one to the following conjecture: Let ax < a2 < . . . 
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he an infinite sequence of integers sat isfying 
СО 

(1.17.1) A(2 x) — A(x) ^ oo a n d J£{aka} = со , 0 < a < l 
k = 1 

where {na} is the distance of a f rom t h e nearest integer. Then every suffi-
ciently large integer is t h e sum of dis t inct a's. C A S S E L S proved this under 
the assumption of (с sufficiently large) 

(1.17.2) A(2X)~ A(x) > c > 2{aka}2 = oo , 0 < a < 1 
log log Ж k = 1 

I conjectured t h a t for every ß, 1 < ß < 2 every sufficiently large 
integer is the sum of distinct integers of the form [ßk]. C A S S E L S observed 
tha t this fails to he t rue if [ßk] gets replaced by t h e nearest integer to ßk. 

В . J . B I R C H : „Note on A problem of E r d ő s . " Proc. Cambridge Phil. Soc. 5 5 ( 1 9 5 9 )  
3 7 0 - 3 7 3 . 

J . W. S. CASSELS : „ O n the represen ta t ion of in t ege r s a s the sums of distinct 
summands t aken f rom a f ixed set ." Acta Szeged 2 1 ( 1 9 6 0 ) 1 1 1 — 1 2 4 . 

18) Le t flj < a2 < . . . < an < 2n be n a rb i t ra ry integers. Denote by 
bx < b2 < . . . < bn the other integers ^ 2n. Denote by Mk t he number 
of solutions of a, — bj = k. Put 

M = min m a x Mk 
—2n£k<2n 

where the minimum is t aken over all sequences alt a2, . . . , an. 
n I ~ 1 

I proved M > , S C H E R K improved this to 11 — n and S W I E R C Z -

. 4 - 1 / 6 
KowsKi proved — n . 

5 

M O S E R proved in A very simple a n d ingenious way that 

1/2 
M > — (« — 1) 

4 

and by more complicated arguments he can prove 

M > J 4 - 1 / 1 5 (n — 1 ) > 0 - 3 5 7 0 ( n — 1 ) . 

2 
S E L F R I D G E M O T Z K L N a n d R A L S T O N showed that M < — n, which disproved 

5 

УЪ 

my conjecture M = — . The problem of determining t h e exact value of M is 

open. 
P . E R D Ő S : "Some resu l t s in number t h e o r y . " (In H e b r e w ) Riveon Lematematika 

9 ( 1 9 5 5 ) 4 8 . 
S . S W I E R C Z K O W S K I : " O n the in tersec t ion of a l inear set with the t rans la t ion 

of its c o m p l e m e n t . " Coll. Math. 5 ( 1 9 5 7 ) 1 8 5 — 1 9 7 . 
L . M O S E R : "On t h e minimal overlap problem of E r d ő s . " Acta Ariih. 5 ( 1 9 5 9 )  

1 1 7 - 1 1 9 . 
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T. S. MOTZKIN, К . E. RALSTON and J . L. S E L F M D G E : "Minimal overlap under 
translation." Abstract. Bull. Amer. Math. Soc. 62 (1956) 558. 

Now I s ta te various problems on different topics of number theory-
19) Denote by rk(n) the maximum number of integers not exceeding 

n which do not contain an arithmetical progression of к terms. The first 
publication on rk(n) is due to T Ú R Á N and myself where the conjecture 
rk(n) < та1-'* was enunciated (the problem may he older but I can not 
definitely trace it . S C H U R gave it to H I L D E G A R D I L L E around 1 9 3 0 ) . 

S A L E M and S P E N C E R disproved rk(n) < та1-6*, in fact they shoved 

(I. 19.1) r3{n) > rei-diogiogn . 

B E H R E N D improved this t o 

and M O S E R constructed and infinite sequence which satisfies (1.19.2) for every 
n. R O T H proved r3(n) = o(n), more precisely he showed 

For к > 3 the plausible conjecture rk(n) = o(n) is still open. 
The inequality, rk(n) < (1 — e)та/log та, 1 g к < oo, n > те0(4), would 

imply that for every к there are к primes in an arithmetic progression. Recently 
W. A. G O L U B I E F F observed t h a t 2 3 1 4 3 + I. 300 30 is a prime for 0 ^ Z ^ 11. 
C H O W L A proved t h a t there are infinitely many triplets of primes in an 
arithmetic progression. 

V A N der W A E R D E N proved tha t to every к there exists an f(k) so t ha t 
if we split the integers g /(4) in to two classes a t least one of them contains 
an arithmetic progression of к terms. If we could show t h a t for some n 

ft 
rk(n)<~, we clearly would have f(k) g n, and in fact this observation 

2 
led T Ú R Á N and myself to the problem of estimating rk(n). V A N der W A E R D E N ' S 
upper estimate for /(4) is very bad, and unfortunately nobody succeeded in 

giving a better one. R A D O and I proved that / ( 4 ) > ( ( 4 — 1 )2FC)/« ( W . Schmidt 
just showed /(4) > 2ft-cfc'"l0g k , see Am. Math. Soc. Notices J u n e 1961 p. 261.) 

P . ERDŐS and P . TÚRÁN: „On some sequences of integers." Journal London Math. 
Soc. 11 (1936). 261 — 264. 

R . SALEM and D . C. SPENCER: "On sets of integers which contain no three te rms 
in an arithmetic progression." Proc. Nat. Acad. Sei. USA 28 (1942) 561 — 563. 

F . A . B E H R E N D : "On sets of integers which contain no three t e r m s in arithmetical 
progression." Ibid. 32 (1946) 331—332. 

L . MOSER: "On non-averaging set of integers." Canadian Journal of Math. 5  
(1953) 245-252. 

S. CHOWLA: "There exists an infinity of 3-combinations of primes in A. P . , " 
Proc. Lahore Philos. Soc. 6 (1944) no. 2 15-16 . 

B . L . VAN D E R WAERDEN: "Beweis einer Baudet'sehen Vermutung." Nieuw 
Archiv Viskunde (2) 15 (1928) 212 — 216. 

P . ERDŐS and R . RADO: "Combinatorial theorems on classifications of subsets 
of a given set." Proc. London Math. Soc. (3) 2 (1952) 438-439. 

2 0 ) S C H U R proved that if we split the integers < en ! into n classes 
the equation x + y = z is always solvable in integers of t he same class. 

( 1 . 1 9 . 2 ) r3(n) > . 

( 1 . 1 9 . 3 ) гз(п) < enjloglog n . 
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Denote by f(n) the smallest integer with this property. I t seems likely that 
f(n) is very much less than en !, in fact it has been conjectured tha t f(n) < c" 
and /(я)1/" -а- С . 

T Ú R Á N proved (unpublished) tha t if one splits the integers n < к ^ 5 n + 3 
into two classes then in a t least one of them the equation x + y = z, x =f= у 
is solvable, and that this is not t rue for n < к ^ 5ft + 2. The analogous 
problem for three classes is not yet solved. 

I. SCHUR: .Jahresbericht der Deutschen Math. Ver. 25 (1916) 114. 
R . RADO: "Studien zur Kombina tor ik" Math. Z. 36 (1933) 424-480 . 

In his interesting paper Rado considers very much more general problems. 
21) Let /(n) be an arbitrary number theoretic function which only 

assumes the values + 1. Is it true t h a t to every cx there exists a d and an 
m so tha t 

( 1 . 2 1 . 1 ) g(m,d) = 

It is perhaps even true that 

У f(kd) \ > cx ? 
k= 1 

(1.21.2) max g(m, d) > c2 log n . 
d,m 

dm<.n 

If we assume tha t f(ci.b) = f(a)f(b) then (1.21.1) would imply 

n 
(1.21.3) l imsupj 2 f(k) =°°. 

k=l 

This conjecture is similar to the conjecture of V A N DER C O R P U T on 
the discrepancy of sequences. Let \zk\ = 1, 1 + 7 + oo. Denote by N(n\a,b) 
the number of z,-, 1 i gL n on the arc (a, b). The discrepancy 
D(zv z2, . . . , zn) is defined as follows: 

D(zlt z2, . . . , zn) = max лт, I , b — a 
Jy(n;a,b) ß 

2 л 
where the maximum is taken over all the arcs (a,b) of the unit circle. 

V A N D E R C O R P U T conjectured and Mrs. V A N A A R D E N N E — E H R E N F E S T 
proved tha t for every infinite sequence z,; I d i d oo, | z, [ = 1 

(I. 21.4) lim sup D{zx, z2, . . . ,zn) = oo . 
n =00 

(in fact she proved tha t D(zx, z2, . . . , zn) > с log log n[[og log log n i. o.). 
R O T H proved that i. o. 

(1.21.5) D(zx, z2, . . . , z„) > Cl(log п)Уг. 

I t is easy to see tha t there exists an infinite sequence for which 

D(zv z2 zn) < c2 log ft 

for every n and it seems possible t ha t in (1.21.5) ^( log ft)1/2 can be replaced 
by c3 log ft. 
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As far as I know the following two problems are still unsolved: Let 
I zt I = 1, 1 А г < oo be any infinite sequence. Does there exist a fixed arc 
(a, b) of the unit circle so t h a t 

(1.21.6) lim sup 

Is it true t h a t 

лт, ,, b — a 
A (ra; a, b) n 

2л 
= OO ? 

(1.21.7) lim sup m a x / / |z — zt | = oo? 
n=t» 1*1 = 1 1 = 1 

If (1.21.7) a n d (1.21.6) hold one could t r y to determine how fast the 
lef t sides tend t o infinity. 

N. G. T C H U D A K O F F , quoted in problem 6 . 
V A N A A R D E N N E - E H R E N F E S T : "On the impossibility of A j u s t distr ibution." 

Indag. Math. 1 1 ( 1 9 4 9 ) 2 6 4 - 2 6 9 . 
K . F . R O T H : "On irregularities of dis t r ibut ion." Matematika 1 ( 1 9 5 4 ) 7 3 — 7 9 ^ 

22) Let 1 jg ax A a2 A . . . A an he n arbitrary integers. Denote: 

M(av . . . , an) = max 
|zj = l 

n 
/ 7 ( 1 - 2 « ! ) 
i=l 

, f(n) = min M(av . . . a j 

where the minimum is to be taken over all sequences av a2, • • • , an. S Z E K E R E S 

a n d I proved t h a t 

1.22.1) lim /(те)1/" = 1, f(n) > \2n. 

Recently I proved (unpublished) that for some cx > 0 

( 1 . 2 2 . 2 ) f(n) < exp (и1-«,). 

I t is quite possible that for some c2 /(») > exp (»)1_o) j but we were not even 
able to prove t h a t f(n) > nk for every к if n > n0(k). 

My proof of (1.22.2) used probabilistic arguments. Very recently A T K I N -

SON proved f{n) > exp (спУ* log n) in a surprisingly simple way, in fact 
he proved that 

max; [ J (1 — z
k)"~k+1 

|z| = l I k = \ 
< exp(cn log n) 

n 
P. E R D Ő S a n d G . S Z E K E R E S : " O n the product f j (1 — 2°»)." Acad. Serbe des 

k= l 
Sei. 1 3 ( 1 9 5 9 ) . 2 9 — 3 4 . 

F. V . A T K I N S O N : "On a p rob lem of Erdős and Szekeres". Can. Math. Bull- 4  
( 1 9 6 1 ) 7 — 1 2 . 

23) Denote by f(k) the minimum number of terms in the square of a 
к 

polynomial Sharpening a result of R É N Y I and R É D E I I proved 
i=i 

t h a t f(k) < k,1-0 for a suitable с > 0 . R É N Y I and I conjectured t ha t 
f(k) o- oo as к —oo. This seems most plausible, but we have not yet been 
able to prove it. 
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A. R É N Y I , Hungarica Acta Math. 1 (1947) 30 — 34. 
P . E R D Ő S : "On the number of terms of the square of a polynomial." Nieuw Arch. 

Wiskunde (1949). 63 — 65. 
W . VERDENITJS: "On the number of terms of the square and cube of polynomials." 

I ndag. Math. 11 (1949) 4 5 9 - 4 6 5 . 

24) Does there exist to every с a system of congruences 

(1.24.1) я,(mod и,), с < n1< n2< . . . < nk (lc = Jc(c)) 

so tha t every integer satisfies at least one of them? D E A N S W I F T and S E L F -
R I D G E constructed such congruences for с < 8. 

Similarly one can ask if a system (1.24.1) exists where all the 72, arc 
> 1 and odd (or not divisible by the first r primes)? 

S T E I N and I asked the following question: What is the maximum num-
ber of congruences a, (mod тг,), nx < тг2 < . . . < nkx g x so that no integer 
should sat isfy two of them (i. e. the arithmetic progressions a,- + Z?2„ 1 gigkx 
should be disjoint). We proved (unpublished) kx > for every e > 0 if 
x > x0(e). We conjecture kx — o(x). 

P . E R D Ő S : "On a problem on systems of congruences". (In Hungarian) Matematikai 
Lapok 4 (1952) 122-128 . 

25) Let 1 < <2j < a2 < . . . he an infinite sequence of real numbers 
satisfying 

(1.25.1) j kat —aj\ ^ 1 

for every к and i j. Is it then true t h a t 

(1.25.2) lim — V — = 0 , 
x=°° logx aj 

6 a,<x 1 

and 
(1.25.3) V 1 < со? 

H + log а,-

If the a's are integers (1.25.1) means t h a t no a divides any other, in this 
case (1.25.2) was proved by B E H R E N D and (1.25.3) by me. 

F . B E H R E N D : „On sequences of numbers not divisible one by another." London 
Math. Soc. Journal 10 (1935) 4 2 - 4 5 . 

P . E R D Ő S : „Note on sequences of integers no one of which is divisible by any 
other." Ibid. 126-128. 

26) Let ax < a2 < . . . be an infinite sequence of integers, denote 
by bx < b2 < . . . the sequence of integers no one of which is a multiple of 
any of the a's. B E S I C O V I T C H constructed a sequence a, for which the b 's 
do not have a density. D A V E N P O R T and I proved tha t the b' s always have a 
logaritmic density, i.e. tha t 

l i M - L y i 
l ° z x á i bt 

always exists. 
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Make correspond to each a, a set of residues и!", 1 Ф j Ф Ó- Denote 
now hy Zq < b2 < . . . the integers which do not satisfy for any г 

( I . 26.1) b = «/"(moda,), 1 ^ / ^ гг, b > at. 

Is it then true that 

(1.26.2) lim ' X 1 ! 
logx Zq 

exists? (1.26.2) it true is a generalization of (1.26.1), (ir = 1, «j" - 0 for 
all г). 

D A V E N P O R T and I also proved that if alt a2, . . . is a sequence of pos-
itive density, we can select an nfinite subsequence aik( 1 oo) satis-
fying cijt \(ijk . I t is an open problem if three distinct a's exist satisfying 
[eq, aj] = a,. 

A. S. B E S I C O V I T C H : "On t h e density of cer ta in sequences of integers." Math. 
Annalen 110 (1934) 336-341. 

H . D A V E N P O R T and P . E R D Ő S : "On sequences of positive integers." Acta Arithme-
tica 2 (1937) 147— 151, see also Indian Journal of Math. 15 (1951) 1 9 - 2 4 . 

P . E R D Ő S : "Densi ty of some sequences of integers." Bidl. Amer. Math. Soc. 
64 (1948) 685 — 692. 

27) Is it t rue that the density of integers having two divisors dx and <72 
for which dx < d2 < 2 dy is 1 ? In my paper just quoted in 26) I prove that 
this density exists, but I can not show tha t it is 1. 

Let ax < a2 < . . . ^ n be any sequence of integers, by < b2 < . . . the 
integers no one of which is a multiple of any a. B(x) = ^ 1. Is it true that 

bi<,x 
for every m >n 

(1.27.1) B M ^ B i n ) , 
m n 

It is easy to see that in (1.27.1) 2 can not be replaced by any smaller 
constant, to see this let the a' s consist of ax, n = 2ax — m = 2 a 1 . 

28) B A M E A H and C H O W L A proved t ha t for sufficiently large С the 
interval (n, п ф С п 1 *) always contains in integer of the form x2 + y2. It has 
been often conjectured but never proved tha t this holds every С if n > n0(C). 
In fact it seems likely that for every e > 0 the interval (я, n + ne) contain 
in integer of the form x2 -f у2. 1 proved that for a suitable с > 0 and infinitely-
many n the interval (», n + с log fl/(log log does not contain any 
integers of the form x2 -j- У2• 

Denote b y s2, . . . the squarefree integers. It is easy to prove (I do 
not know who difl it first) t ha t i. o. 

(1.28.1) si+1-st > (1 + о(1))я2/6 log 5,-/log log 5,-

The question if (1 -f o(l)) in (1.28.1) can he replaced by 1 + с has not yet 
been decided. I proved that 

(1.28.2) lim 1
 ( 5 . + i _ s . ) 2 
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exists. More generally one could ask the following question : Let a} < a2 < . . . 
be any sequence of integers satisfying ak/k2 oo and denote by bx < b2 < . . . 
the sequence of integers no one of which is a multiple of any of the a' s. 
Is it then t rue that 

(1.28.3) lim -1 J ; (bl+1 - b+ 
4 bi<n 

exists and is finite (in (1.28.2) a, = pf)l I t is easy to see t ha t if we only require 
ak < ck2 then (1.28.3) does not hold in general. 

R . P. B A M B A H and S. C H O W L A : "On numbers which can be expressed as a sum 
of two squares ." Proc. Nat. Inst. Sei. India 13 (1947) 101 — 103. 

P . E R D Ő S : "Some problems and results in elementary n u m b e r theory." Publ . 
Math. Debrecen 2 (1951 - 5 2 ) 103—109. 

As far as I know the best upper bound for a i+1—s, is due to R I C H E R T , 

who improved a previous result of K. F. R O T H . R I C H E R T proved s i + 1 — st < 
< с s?'» log s,. 

H . E . R I C H E R T : "On the difference between consecutive squarefree n u m b e r s . " 
London math. Soc. Journal 29 (1954) 16 — 20. 

29) Denote by A (n) the number of integers not exceeding n which are 
the product of two integers not exceeding те1/» I proved t h a t for every e > 0 
if n > те0(е) 

( log«) - 8 —— (elog 2)log'°g"/i°g2 < A(те) < (logте)8-—- (clog 2)'°el0g«/l°e2 . 
log те log n 

(1.29.1) 

Let ax < a2 <...< ax < У n-, bx < b2 <...< by < У n be two sequen-
ces of integers so that all the products atő, are distinct. Is it then true tha t 

n 
xg < с — - ? This if true is certainly best possible, to see this choose the 

log те 
a's to he the integers not exceeding 1 nVt and the b's the primes in | — пУг, nfi j • 

P . E R D Ő S : , , О Б одном асимптотическом неравенстве в теории чисел." Вестник 
Ленинградского университета 3 ( 1 9 6 0 ) 4 1 — 4 9 ; fo r a weaker resul t see Р . E R D Ő S : 
„Some remarks in number theory" (In Hebrew.) Riveon Lematematika ( 1 9 5 5 ) 4 5 — 4 8 . 

30) Let /(те) he an additive function, i. e. f(ab) = f(a) + f(b) if (a, b) = 1. 
Assume tha t |/(те -f 1)—/(те) | < cv Is it t rue that /(те) = c2 log те + g(n), 
where j g(n) | < c3. I proved that if /(те + 1)—/(те) -> 0 or if /(те + 1) ^ f(n) 
then /(те) = с log я. 

P . E R D Ő S : "On the distr ibution function of additive func t ions . " Annals of Math. 
47 (1946) 1 — 20. My proofs of the above theorems were unnecessarily complicated and 
have been simplified by various authors. 

Many interesting problems and results on additive functions can be 
found in the following three papers : 

M. KAC: "Probabi l i ty methods in some problems of analysis a n d number t h e o r y . " 
Bull. Amer. Math. Soc. 55 (1949) 641 — 665. 

K U B I L J U S , Uspehi Matern. Nauk. I I (1956) 31 — 66. 
P. E R D Ő S , Proc. Internat ional Congress of Math. Amsterdam ( 1 9 5 4 ) Vol. 3 , 1 3 — 1 9 . 
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31) The following problem is due to W. L E V E Q U E : Let ax < <i2 < . . . 
be an infinite sequence tending to infinity satisfying a i+1/a,--> 1. Let 

oß a. 
a,- g xn < aj+1, put yn = —• '-, Ogyn<\. We say tha t the sequence 

a i+ i a, 
xn, 1 g n< oo is uniformly distributed mod alt a2, . . . if yn i g n < oo is 
uniformly distributed. Is it t rue that for almost all a the sequence na, 1 gn < oo 
is uniformly distributed mod ax, a2, . . . ? L E V E Q U E proved this in some 
s pecial cases. 

W . J . L E VEQUE: " O n u n i f o r m dis t r ibut ion modulo A subdiv i s ion ." Pacific J. 
of Math. 3 (1953) 757 -771 . 

32) S T R A U S and I conjectured that for every integer n > 1 

1 . 1 + 2 + 1 
n x y z 

is solvable in positive integers x, y, z. S C H I N Z E L conjectured that for every 

a > 0 if n > n0(a) — = — + — + — - is solvable in positive integers x, y, z. 
n x y z 

S C H I N Z E L conjectured t h a t there exists А к so t h a t every sufficiently 
large integer can be written in the form (a, are integers) 

к к 
IJ ai — 2 ai, »(2 2, I gi gk . 
i=1 1=1 

33) Problem of S E L F R I D G E and STRAUS. Let Z,, Z2, . . . . Zn be n complex 
numbers, oq, a2, . . . , a^ny are the products of Z's taken к at a time. The 
authors prove tha t if к = 2, n ф 21 and the cr's are given, there can be a t 
most one set of Z,, 1 g i g n which generate them. For n = 2' this is not 
true, here they conjecture t h a t there can be at most two sets of Z 's which 
generate the cr's. 

If к > 2 they conjecture the Z ' s (if they exist) are determined uniquely 
b y the cr's and they prove this in many cases, but the general problem is 
unsolved. 

J . L. SELFRIDGE a n d E . Straus: „On t h e de te rmina t ion of numbers b y the i r 
s u m s of a f i x e d order . " Pacific Journal of Math. 8 (1958). 847 — 856. 

34) Problem of L I T T L E W O O D . Let a and ß be two real numbers. Is 
it true that 

(1.34.1) l im inf n(n a) (nß) = 0 

where (no.) denotes the distance of n a f rom the nearest integer? (1.34.1) is 
trivial except if both a and ß have hounded partial quotients in their con-
tinued fraction development. (1.34.1) seems very deep, even if a = |/2, ß = У3 
say. 

Another very difficult problem in the theory of diophantine approxim-
ation is the following one: D A V E N P O R T and H E I L B R O N N proved the 
inequality 

(1.34.2) I 2 4 nl < E 
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is solvable for every e > 0 in positive integers nk if not all the ok are of the 
same sign and a t least two of them have irrational ratios. 

I t is not known if for every irrational a and e > 0 the inequalities 

] (x2 -j- y2) a — z2 I < e and | x2 + y2 — z2a. j < £ 

are solvable in integers. The case a = is also undecided. 

H . D A V E N R O R T and H . H E I L B R O N N : "On indef ini te quadra t i c f o r m s in f ive 
va r i ab l e s , " London Math. Soc. Journal 21 (1946) 185—193. 

Several unsolved arithmetical problems are stated in a recent paper of 
S I E R P I N S K I L'Enseignement Mathématique 5 ( 1 9 6 0 ) 2 2 1 — 2 3 5 , an English 
version appeared in Scripta Math. 2 5 ( 1 9 6 0 ) 1 2 5 — 1 3 6 . 

II. Problems in combinatorial analysis and set theory 

1) Let cq, a2, . . . , ak he n elements. Alt A2, . . . , An are к sets formed 
from the a's so t ha t no A can contain any other. SPERNER proved that 

(II. 1.1) max 4 = 

(II. 1 . 1 ) has several applications in number theory, e. g. B E H R E N D ' S result 
( 1 . 2 5 . 1 ) is proved by using ( I I . 1 . 1 ) . 

The question has been considered that in how7 many ways can one 
select sets A s o tha t no A should contain any other. Denote this number 
by A(n). From (II.1.1) we have 

1 1 1 ) < A(n) < 
Í2" where Tn = 

I t seems tha t A(n) < exp (c Tn), perhaps с can he chosen to be 
(1 -f- e) log 2 for every e > 0 if n > n0(e). 

How many sets Av A2, . . . , A, can one give so that the union of two 
of them never equals a third? (all three sets are supposed to be distinct i. e. 
Aj с A,, AjU Aj = A j is not permitted). I conjectured for a long time that 
I = o(2n). If I could prove this the following result in number theory would 
follow: Let cq < a2 < . . . he an infinite sequence of positive density, then 
there are infinitely many triplets of distinct integers a„ ar ak satisfying 
[a,-, a y ] = ak (see problem I 26). 

I t is possible tha t I < (1 + o(l)) Tn. 
Several other problems can be asked e. g. How many sets can one give 

so t h a t the union of any two of them never contains a third? How many sels 
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Aj can one give so t ha t the symmetric difference of any two sets should con-
tain a t least r elements? 

E . SPERNER: »Ein Satz über Unte rmengen einer endl ichen Menge.« Math. Zeit-
schrift 27 (1928) 544 — 548. 

2) As far as I know R. P E L T E S O H N and S U T H E R L A N D (unpublished) 
were the first to construct an infinite sequence formed from the symbols 
0, 1, 2 where no two consecutive blocks were identical. I t is easy to.see that 
in a sequence of length four formed from the symbols 0 and 1 two consecutive 
blocks will be identical, I understand that E U W E proved that in an infinite 
sequence formed from 0 and 1 there will he arbitrarily large identical conse-
cutive blocks, hut that there do not have to be three consecutive identical 
blocks. 

Let us now call two consecutive blocks „identical" if each symbol 
occurs the same number of times in both of them (i.e. we disregard order). 
I conjectured tha t in a sequence of length 2^—1 formed from к symbols 
there must be two "identical" blocks. This is true for k g 3, but for к = 4 
de B R U I J N and I disproved it and perhaps an infinite sequence of four symbols 
can he formed without consecutive "identical" blocks. 

3) L I T T L E W O O D and O F F O R D proved the following result: LetZ,, 
1 g i g n he n complex numbers. Then there exists an absolute constant 
с so that the number of sums 

n 
(H.3.1) + = ± 1 

i=i 
which fall into the interior of an arbitrary circle of radius 1 is less than 
i2n lou 71 
с ~ — . 1 proved that if Z, ^ 1, 1 g i g n (i. e. the Z, 's are real) then 

пУг 
the number of sums (II.3.1) which fall into the interior of any interval of 
length two is at most n \ 

n 
and this estimation is best possible. The proof 

\ 2 
uses the theorem of S P E R N E R (see problem II.1). Г do not know if this inequality 
remains true if the Z, are complex numbers (my proof gives for complex z 
c2"l\n), or more generally vectors of Hilbert space of norm > 1. In this ease 
I can only prove tha t the number of summands (IT.3.1) falling into an 
arbitrary unit sphere is o(2"). 

J . E. LITTLEWOOD and C. OFFORD, Mat. Sborink. 12 (1943) 277 — 285. 
P . ERDŐS: " O n a L e m m a of Lit t lewood and O f f o r d . " Bull. Amer. Math. Soc. 

31 (1945) 8 9 8 - 9 0 2 . 

4) RAMSAY proved tha t there exists a function /(/, k, I) so tha t if we 
split the /-tuples of a set of /(/, k, I) elements into two classes then either 
there are к elements all whose /duplets are in the first class or I elements 
al whose /-tuples are in the second class. S Z E K E R E S and I proved tha t 

(II. 4.1) 2fc2 < /(2, k, k) g j ^ J * ) ; /(2, к, 1) g j* 2 j . 

The best estimation for /(/, k. k), / > 2 is due to R A D O and myself. 
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I t would be interesting to determine f(i, k, I) explicitely, this seems 
very difficult even for « = 2 . 1 have not even he able to prove t h a t lim /(2, к, к)1!* 
exists. I can prove that i=03 

( I I . 4 .2) / ( 2 , 3, k) > ck2/(log A")2 

but could not decide whether /(2, 3, k) > c2k2 is true. 
I do not wish to mention here the many problems connected with the 

generalisations of RAMSAY'S theorem to cardinal and ordinal numbers and 
just state one of the simplest unsolved problems in this subject. 

Let 99 he a well ordered set of ordinal number wa, a. < Ü. Split the 
pairs a Çy, b £<p into two classes so that there is no triplet all whose pairs are 
in the first class. Does there then exist a set <p' с (p of type юа all whose 
pairs are in the second class ? 

For a = 2 this was proved by S P E C K E R , for 2 < a < w it was dis-
proved by him, for a > w the problem is open. The most interesting unsolved 
case is a = со. 

E. P. IIAMSAY: "On a p rob lem of formal logic ." Collected papers , 82—111. See 
also Т. II. SKOLEM: »Ein kombinatorischer Sat/, m i t Anwendung auf ein logisches E n t -
scheidungsproblem.« Fund. Math. 2« (1933) 254—261. 

P. ERDŐS and G. SZEKERES: " A Combinatorial Problem in geomet ry . " Compositio 
Math. 2 (1935) 4 6 3 - 4 7 0 . 

P. ERDŐS: "Remarks on a t heo rem of R a m s a y . " Bull. Res. Council. Israel (1957) 
21 — 24. See also " G r a p h theory and probabil i ty." Can . Journal of Math . I and II, 11 (1959) 
3 4 - 3 8 , 1 3 ( 1 9 6 1 ) 3 4 6 — 3 5 2 . 

E. SPECKER: »Teilmengen von Mengen m i t Relationen.« Comm. Math. Helv. 
31 ( 1 9 5 6 — 57) 302 — 314 . 

P. ERDŐS and R. RADO: ,,A par t i t ion calculus in set theory ." Bull. Amer. Math. 
Soc. 62 (1956) 427—489. (See also t h e f o r t h c o m i n g t r i p l e p a p e r of ERDŐS—HAJNAL—RADO.) 

5) Let ax, a2, . . . , an be n elements Ax, A2, . . . , Ak, к > 1 sets whose 
elements are the a's. Assume t h a t each pair (a,-, af) is contained in one and 
only one A. Then k >n. This is a result of de B R U I J N and myself (also proved 
by S Z E K E R E S and HANANI). We can not determine the smallest I so tha t 
there should exist sets Ax. A2, . . . . A,, I > 1 so that every triplet (a,-, ay-, a,) 
is contained in one and only one A. 

N. G. DE BRUIJN and P. ERDŐS: "On a combinatorial p rob lem." Ind. Math. 
(1948) 4 2 1 - 4 2 3 . 

C. S T E I N E R conjectured t h a t if n = 6A; + 1 or 6A" -f- 3 there exists a 
system of triplets of n elements so that every pair is contained in one and 
only one triplet (if n is not of the above form it is easy to see that such a 
system can not exist). S T E I N E R ' S conjecture was first proved by REISS and 
later independently by MOORE. 

Let now 2 A r < s be any two integers. For which n is there a system 
oi combinations taken s at a t ime formed from n elements so tha t all r tuples 
should be contained in one and only one s tiuple. The ease r = 2, s = 3 is 
S T E I N E R ' S . The only other case which has been settled is r = 3, s = 4 
H . R A N A N I recently proved t h a t such a system exists if a n d only if И = 2 
or 4(mod 6 ) . (Very recently H A N A N I settled the cases r = 2, s = 4 and 
r = 2, s = 5). 

II lias been known for a long time that if n = p2t -f- pl -} 1 (p prime), 
r = 2, s = pl -j- 1, then there exist n (pl ф 1) — tuplets so tha t every pair 
is contained in one and only one (p l ф l)-tuplet. If n = A;2 -f- к -f- 1, к ф p" 

16 A Matematikai Kutató Intézet Közleményei VI. 1—2. 
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it has been conjectured t h a t such a system of (k + l)-tuplets does not exist. 
Special cases of this conjecture have been proved by B R U C K and R Y S E R , the 
first unsettled case is к = 1 0 (see 1 . 1 0 ) . 

Connected with this problem is the following conjecture of S Y L V E S T E R : 
For every n = 0 (mod 4) there exists an orthogonal matrix of order n all 
whose elements are ± 1 (it is easy to see t ha t if n ф 0 (mod 4) such a matrix 
does not exist.) If n = 2k SYLVESTER showed that such a matrix exists, 
if p = — 1 (mod 4 ) . P A L E Y proved tha t such a matrix exists for p -j- 1 , the 
general case is still unsolved. 

Denote by Mn the maximum value of an n by n determinant whose 
elements are ± 1. From HADAMARD'S theorem it follows that M n ^ п п г  

and if a SYLVESTER matrix exists Mn = те"'2. It follows easily from the prime 
number theorem for arithmetic progressions that for every n > n0(e) 
(II.6.1) M n > ( 1 - е ) " те"'2. 

COLUCCI and BARBA proved that if те ф 0 (mod 4 ) then 

(II. 6.2.) Mn < (2те — (n - —0/2 = + o ( l ) ) -> 

M. REISS: »Über eine Steinersche kombinator ische Aufgabe.« J. reine und an-
gewandte Math. 56 (1859) 326 — 344. 

E. EL MOORE: "Concern ing triple s y s t e m s . " Math. Annalen 43 (1893) 271 — 285. 
See also „Prac t i ca l m e m o r a n d a . " Amer. J. Math. 18 (1896) 264 — 303. 

H . HANANI: " O n q u a d r u p l e s y s t e m s . " Can. J. Math. 1 2 (1960) 1 4 5 — 1 5 7 . 
J . H . SYLVESTER: " T h o u g h t s on inverse orthogonal ma t r i ce s . " Phil. Mag. (4) 

2 4 (1867) 4 6 1 — 475. 
R. E . A. C. PALEY: " O n orthogonal ma t r i ce s . " Journal of Math, and Phys (1933) 

3 1 1 - 3 2 0 . 
COLUCCI: «Sui valori mas s imi dei de t e rminan t i ad e l emen t i ± 1.» Gior. di Matern, 

di Battaglini 54. See also G. BARBA ibid. 71. 
See also G. SZEKERES a n d P. TÚRÁN: „ A n extremal p r o b l e m in the t h e o r y of 

d e t e r m i n a n t s . " (In Hungar ian , German s u m m a r y ) Sitzungsber. I I I . Klasse Ung. Alcad. 
54 (1937) 7 9 6 - 8 0 6 . 

7) Problem of V A N der W A E R D E N : Let | aik | be an n by те doubly 
I n n ' , 

stochastic matrix i. e. aik >0 and S а, ь = Saik — ^ f ° r e v e r y 1 and к . 
; = i ' k=i J 

те ! . 1 Then the value of the permanent is ^ —/, equality only for ailk =—. The 
те" ' те 

permanent (A terminology of SYLVESTER) is the sum of the expansion terms 
of the determinant. The fact that the permanent of a doubly stochastic 
matrix can not ho 0 is a theorem of F R O B E N I U S — K Ö N I G . V A N der W A E R D E N ' S 
problem seems to be difficult. 

I made the following two weaker conjectures: The value of a t least 

one term of the permanent is > —-, and the still weaker one: There is at 
" т е " 

least one non-zero expansion term of the permanent where the sum the 

factors is > 1. This was proved by R . R E E and S. M A R C U S (in fact they prove 

tha t the sum is ^ — S a?k . 
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R. REE and S. MARCUS: „Diagonals of doubly stochastic matrices." Quarterly 
Journal of Math. 10 (1959) 2 9 6 - 3 0 1 . 

8) A special case of a theorem of T Ú R Á N states that if in a graph of n 

vertices the number of edges is greater than Щ1 + 1 , then the 
n 

2 
graph always contains a triangle. He points out that the following analogous 
problem is unsolved: Let there be given n elements what is the smallest 
number f(n) so that to every system <p of f(n) triplets formed from the n 
elements there are always four elements all four triplets of which occur in <p. 

P. TÚRÁN: "On the theory of graphs ." Coll. Math. 3 (1954) 1 9 - 3 0 . 
D. KÖNIG: Theorie der endlichen und unendlichen Crapheri. 
9 ) H A J N A L and I proved the following theorem: To every real x make 

correspond a bounded set of real numbers f(x) whose outer measure is less 
than 1. Then for every finite к there exists an independent set of к elements 
(i. e. a set xv x2, . . . , xk so that for every 1 < i, j g.k, i ф j, xt $f(Xj)). 
We can not prove tha t there always exists an infinite independent set (not 
even if we also assume that the sets f(x) are compact.) 

If we assume that the sets f(x) are closed and of measure < 1, we can 
not even prove that there are two independent points. (Recently GLADYSZ 
proved in a very ingenious way the existence of two independent points. 
The existence of an independent triplet is open). 

P. ERDŐS and A. HAJNAL: „Same remarks on set theory, VIR . " Michigan 
Math Journal 7 (1960) 187—191, for fa r ther problems in this direction see P. ERDŐsand 
A. HAJNAL: "On the structure of set mappings. Acta Math. Hung. 9 (1958) 111—131. 
a n d P . ERDŐS: " S o m e r e m a r k s o n se t t h e o r y . " 3 (1953) 5 1 — 5 7 . 

III. Problems in elementary geometry 
1) Letaq, x2, . . . , xn be « points in the plane. Denote by Mn(xx. x2, . . . ,xn) 

the number of distinct distances between any two of the points. Put 
f(n) = min Mn(xlt x2, . . . , xn), 

where xx, x2, . . . , xn ranges over all sets of n distinct points of the plane. 
I t seems to be difficult to get a good estimate for f(v), the best results (due 
to M O S E R and myself are) 
(III. 1.) Cjft2'3 < f(n) < c2ft/|/logw. 

I would guess tha t the upper bound is the right one and perhaps even 
the following result holds: There is one point xt so tha t amongst the distances 
(Xj, xt) there are at least c3 w/|/log n distinct ones. 

71 
If the set xv x2, . . . , xn is convex it seems that f(n) = — ; despite 

its seeming simplicity 1 have not been able to prove this. A somewhat stronger 
conjecture is: In every convex polygon there is a vertex which has no three 
vertices equidistant from it. 

How often can the same distance occur between n points of the 
plane? Denote this maximum by g(n). I proved 

ft'+c./loglogn < g(n) < n3 '2 . 

1 believe that the lower hound is close to being the correct one. 

16* 
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C O X E T E R asked me how many points does one have to have in «-dimen-
sional space so t h a t one should be sure to have more than two distinct distances 
between them. I s ta ted that for c5 sufficiently large nc* points suffice, but-
my proof was wrong and if corrected it only gave exp («1-E). 

One can show t h a t from 7 points in the plane one can always find three 
of them which do no t determine an isosceles triangle, it is easy to see t h a t 
this is false for 6 points. How many points does one have to have in «-dimen-
sional space to he sure tha t one can find three of them which do not determine 
an isosceles triangle? This is not even known for » = 3. 

P. ERDŐS: " O n sets of distances of n points." Amer. Math. Monthly. 54 (1946> 
2 4 8 - 2 5 0 . 

L. MOSER: " O n t h e different distances determined by n points ." Ibid. 59 (1952) 
8 5 - 9 1 . 

P. ERDŐS: " O n some problems in geometry." (In Hungarian) Mat. Lapok (1954) 
86 — 92. .Many fur ther problems are s ta ted in this paper . 

2) B L U M E N T H A L ' S problem. Let there be given « points in the plane, 
denote by A(xlt x2, . . . , xn) the largest angle (g л) determined by the n 
points, and define 

on — inf A(xj,x2, . . . , x„) 
where the minimum is taken over all sets of « points. S Z E K E R E S proved 

1 — -j- - 1 j and that for every e > 0,2" points can be tha t аг»+1 > л 
n n(2" + l ) 2 

given with A(xx2, . . . , х2») > л 1 - 1 
n 

S Z E K E R E S and I recently proved that 0.2« = л 11 

this implies o.2"gлl\ - j 
1 n ) 

and in fact for 

every 2" points A(x1, x2, . . . , x2n) > л 11 —I , we also showed a2»_i 
n 

I n 
Let there be given 2" + 1 points in « dimensional space. 1 conjectured 

л 
tha t there are always three of them which determine an angle > . This 

is trivial for И = 2, for « = 3 it was proved by (unpublished) N . H . K A I P E R 
and A. H. BoERDiJK. For « > 3 the problem is open. (Recently this con-
jecture was proved by L . D A N Z E R and G . G R Ü N B A U M in a simple and 
ingenious way.) 

G. SZEKERES: " O n an extremum problem in the plane." Amer. Journal of Math. 
53 (1941) 208 — 210. Our paper with SZEKERES will appea r in the Annales of the Univ. 
of Budapest 3 ( 1961 ) . 

3) BORSUK'S problem. Is it t rue that every set of diameter one in n 
dimensional space is the union of n + 1 sets of diameter < 1 ? This is trivial 
for n = 1, easy for n = 2. For n = 3 it was f irst proved by Eggleston and 
later simultaneously and independently G R Ü N B A U M and H E P P E S found A 
considerably simpler proof. The problem is open for n > 3. 

BORSUK and U L A M proved tha t the n dimensional sphere is not t h e 
union of n sets of smaller diameter. 
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K. BORSUK: »Drei Sätze über die n-dimensionale euklidische Sphäre.« Fundamenta 
Math. 20 (1933) 1 7 7 - 1 9 0 . 

H. G. EGGLESTON: "Covering A three dimensional set with sets of smaller dia-
m e t e r . " Journal of bond. Math. Soc. 30 (1955) 11 — 24. 

B. GRÜNBAUM: ,,A simple proof of Borsuk's conjecture in t h ree dimensions." 
Proc. of Cambridge Phil. Soc. 53 (1957) 7 7 6 - 7 7 8 . 

A. HEPPES —P. RÉVÉSZ: »Zum Borsukschen Zertei lungsproblem." ,4eta. Math. 
Acad. Sei. Hung. 7 (1956) 159—162. 

A. HEPPES: „Térbeli pontha lmazok felosztása kisebb ármórőjű részhalmazok 
összegére." MTA I I I . Oszt. Közi. 7 (1957) 413 — 416. 

II. HADWIGEE: »Über die Zers tückung eines Eikörpers.« Math. Zeitschr. 51 
(1949) 1 6 1 - 1 6 5 . 

H. LENZ: " Z u r Zerlegung von Punk tmengen in solche kleineren Durchmessers.« 
Arch. Math. 6 (1955) 4 1 3 - 4 1 6 . 

4 ) S Y L V E S T E R conjectured and GALLAT first proved tha t if we have 
n points, not all on a line then there is at least one line which goes through 
exactly two of the points. Denote by Gn the minimum number of such lines, 
de B R U I J N and I conjectured tha t Gn -> oo as n - > o o . This was proved 
by M O T Z K I N (his paper contains many more problems and results in this 

3 n~ 
direction). M O S E R and K E L L Y proved that Gn - -

7 
sible for n = 7. For n > n0 perhaps Gn = n — 1. For 
always is a triangle all whose lines goes through only two of our points (except 
if я—1 of them are on a line). 

and this is best pos-

arge n perhaps there 

S Y L V E S T E R asked: Let there be given n points no four on a line. What 
is the maximum number of lines which goes through three of them? He proved 

я that this maximum is greater than * 
3 

1 

— cn on the other hand the maximum 

is < 
3 

n\ 

2 j 
Let there be given n points not all on a line I observed tha t it easily 

follows from G A L L A I ' S result t ha t these points determine a t least n lines 
(see also II.5). G . D I R A C conjectured that there always exists a point which 
is connected with the other points by more than cn lines. 

Let there be given я points not all on a circle. What is the minimum 
number of circles these points determine? This problem is unsolved (see also 
II.5). 

Т. H. MOTZKIN: "The lines and planes connecting the points of a f in i te se t . " 
Trans. Amer. Math. Soc. 70 (1951) 451 — 464. This paper contains m a n y more problems 
and results and also t he history of th i s problem and m a n y references to t h e l i terature. 

5) Miss K L E I N asked: Does there exist for every я an f ( n ) so that if 
/(я) points in the plane are given no three on a line then there always exist 
n of them which are the vertices of a convex polygon. She proved /(4) = 5 
and M A K A I and T Ú R Á N proved tha t / ( 5 ) = 9 . S Z E K E R E S conjectured /(я) = 
= 2"-2 + 1. He and I proved 

) 2 « 4 
( I I I . 5 . 1 . ) 2 " - 2 ^ / ( Я ) ^ 

( я — 2 



2 4 6 ERDŐS 

P. ERDŐS and G. SZEKERES : "A combinatorial problem in geometry", Compositio 
Math. 2 (1935) 463—470. The proof of t he lower bound in (III. 5. 1) will appear in 
the Annales of the Univ. of Budapest. 

6) H E I L B R O N N ' S problem. Let there be given n points in the unit 
circle. Denote by A(xx, x2, ... , xn) the smallest area of all the triangles deter-
mined by the Xj. Est imate max A(xlt . . . , xn) where the maximum is taken 
over all the xt in the unit circle. An < cjn is trivial. R O T H proved 

and I observed that An > c3/n2. I t seems to he a difficult and interesting 
problem to improve these inequalities for An. 

K . F. ROTH: " O n A problem of Hei lbronn." London Math. Soc. Journal 26 (1951 
1 9 8 - 2 0 9 . 

7) Recently it was asked if the plane can be split into four sets cpt, 1 5 / ' 5 4 
so tha t no cpi should contain two points whose distance is 1. Several 
mathematicians observed that this certainly can not ho done with three sets. 
(I can not trace the origin of this problem.) 

8) A N N I N G and I proved that if in an infinite set of points in the plane 
all the distances between the points arc integers then the points all are on 
a line. On the other hand it is known tha t one can give an infinite set of points, 
not all on a line so t ha t all the distances should he rational. U L A M asked: 
Does there exist a set <p dense in the plane so tha t all the distances between 
points of (p are rational? I think the answer is no, but the question seems 
very difficult. S C H O E N B E R G asked if to every polygon and every E there 
exists a polygon whose vertices are a t distance < e from the corresponding 
vertices of the original polygon and all whose sides and diagonals have rational 
length. Clearly if U L A M ' S problem has an affirmative answer, then the same 
holds for S C H O E N B E R G ' S problem. BESICOVITCH dealt with some special 
cases of this problem. 

P. ERDŐS and A. ANNING: "Integral distances." Bull. Amer. Math. Soc. (1945) 
5 9 8 - 6 0 0 and 996. 

A. S. BESICOVITCH: "Rational polygons." Mathematika 6 (1959). 98. 
Fur ther l i terature on these similar problems and results: L. FEJES TÓTH: Lagerun-

gen in der Ebene auf der Kugel und im Raum. Berlin, 1953 and H. HADWIGER and H . 
DEBRUNNER: »Kombinatorische Geometrie in der Ebene.« L'Enseignement Math. 1 
(1955) 56 — 67. The paper also appeared in French a more detailed version of this paper 
recently appeared in book form .Monographies de L'Enseignement Mathématique No 2. 
See also a forthcoming book of HADWIGER on these subjects. 

1) Let z" + . . . be a polynomial of degree n. 11. CARTAN proved that 
the set j /(z) | < 1 (which we will call Ef can be covered by a set of circles 
the sum of whose radii is < 2 e. I t seems likely t ha t 2 e can he replaced by 
2 (which if true is known to he best possible). If Efn) is connected this was 
proved by P O M M E R E N K E , and in the general case he recently proved this 
with 2.59 instead of 2. 

, more precisely 

An < c2/Ti(loglog , 

IV. Problems in analysis 
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Assume that E f is connected. Is it true that 

(IV. 1 . 1 ) max I f'(z) J < — ? 
ZCE(;> 2 

ß 
P O M M E R E N K E proved this with — n 2 . ( I V . 1 . 1 ) if true is best possible as is 

2 
shown by the те-th T C H E B I C H E F F polynomial Tn(z). 

Is it true that to every c > 0 there exists an A(c) independent of n 
so tha t Е{р> can have at most A(c) components of diameter > 1 + c2, 

Is it true that the length of the curve | fn(z) [ = 1 is maximal for fn(z) = 
= z" — 1 . 

Let I zt I 1. Estimate from below the area of EfK H E R Z O G , P I R A N I A N 
and I prove that for every e there exists an n0 so that for n > nQ(e) 
the area of Ejn) can he made to be < e, but we have not succeeded in getting 
an a good estimate of the area from below. 

Let — 1 xx W x2 ^ . . . ^ xn 1. Is it t rue that the measure of the 
set on the real line for which j f(x) | iL 1 is ^ 2 f 2 ? (We can prove tha t the 
diameter of this set is less than 3). Most of these problems are discussed in 
our paper with Herzog and Piranian. 

P. ERDŐS, F. HERZOG and G. PIRANIAN: "Metric properties of polynomials." 
Journal d'Analyse Math. 6 (1958) 125—148. 

CHRISTIAN POMMERENKE: "On some problems of Erdős, Herzog and Piranian." 
Michigan Math. Journal 6 (1959) 221 — 225; ,,On the derivative of a polynomial ." Ibid. 
373—375; "On some metr ic properties of polynomials with real zeros." Ibid. 377 — 380; 
»Einige Sätze über die Kapazi tä t ebener Mengen.« Math. Annáién 141 (1960) 143—152. 

2) Littlewood conjectured tha t for every sequence of integers nx < 
< n2 < . . . < nk 

2л 
к 

( í v . 2 . 1 ) j ! У 
J 11 = 1 

COS П: X dx > с log к 

и, = i shows that if true this is best possible. I t was not even known that 
the integral ( I V . 2 . 1 ) tends to infinity with k. Recently P . C O H E N proved 
( I V . 2 . 1 ) with с (log Ä/loglog к)11» and D A V E N P O R T improved this to 
с (log //loglog к)11*. 

A N K E N Y and C H O W L A conjectured that to every с > 0 there exists a 
к so tha t for 

к 
( I V . 2 . 2 ) min S c o s n i x < — c • 

0 £ х < 2 я 1 = 1 

( IV.2 .2) immediately follows from the result of C O H E N . 
C H O W L A observed that if nx < n2 < . . . < nk is A sequence for which 

( * f l i. e. S c o s nix\ 
i = i ' I 

the sums n, d: fij are all distinct then 

^ COS (И,- ± П J) X 
)<i<j<k 
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gives a trigonometric polynomial of k2 — к terms whose minimum is > — \k . 
He then asked : is it true that the minimum of (IV.2.2) is less than —-c)ik 
for a suitable absolute constant с > 0 ? 

PAUL COHEN: " O n a conjecture of Littlewood and idempotent measures." Amer. 
.Journal of Math. 82 (1960) 190-212 . 

H . DAVENPORT: „On a theorem of P. J . Cohen." Mathematika 7 (I960) 93—97. 

3) Let fn{0) be a trigonometric polynomial of degree n all whose roots 
are real. Is it t rue tha t 

(IV. 3.1) j ' i fn(6) 1 = 4 -

fn(0) = cos n 0 shows that if (IV.3.1) is true, it certainly is best possible 
For similar problems see P. ERDŐS: "Note on some elementary properties of 

polynomials." Bull. Amer. Math. Soo. 46 (1940) 954 — 958. 
n 

4) It is known that there exists a polynomial ^ ekzk, ek= + 1 for which 
K= I 

( I V . 4 . 1 ) max 
1*1=1 /£ = 1 

As far as I know it is not known if there exists a polynomial of the above 
form which besides (IV.4.1) also satisfies 

(IV. 4.2) mm X ek zk > c2 \n . 
fc= l 

In fact it is (as far as I know) not known if a polynomial satisfying 
(IV.4.2) exists. 

Does there exist an absolute constant с > 0 so that 

(IV. 4.3) m a x I ^ ekzk > (1 + с) /те ? 
|2 | = 1 I k= 1 

( I V . 4 . 3 ) is trivial for с = 0 ( P A B S E V A L ' S inequality). 
I can prove (my paper will appear in Annales Polonici Math, 

the analogous inequality for trigonometric polynomials i. e. 
1 + c (IV. 4.4) max S e k cosk0 > 

k= 1 f 2 
Г* 

A generalisation of (IV.4.3) would be 

(IV. 4.5) max 
l*l=i 

Here I can not even prove 

(IV. 4.6) max 
0£9<2Я 

£K ZN* 
k=1 

> (1 + c ) f n . 

ek cos nk в 
k=l 

I + С ,R-
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J . CLUNIE: "The minimum modulus of a polynomial on the unit circle." Quarterly 
Journal of Math. 10 ( 1 9 5 9 ) 9 5 - 9 8 . 

CO 
5) Let f{z) = J£anz" an entire function 

n =0 n 

M(r) = max |/(z) I, m(r) = max ja„ r" |. 

Is it true that if lim m(r)/M(r) exists it must be 0? C L U N I E (unpublished) 
Г= от 

proved this if an ig 0. Determine 
max lim m(r)/il/(r) = с . 

f  

— ф с < 1 is trivial. K Ő V Á R I observed с > — , hut the exact value of с 
2 2 
is not known. 

S. M. SHAH : „The behavior of entire and a conjecture of Erdős" Amer. Math. 
Monthly 68 (1961) 419- 425. 

6) Let / ( 2 ) be an entire function. I conjectured and P O A S proved (un-
published) that there exists a path L so t ha t for every n 

( I V . 6.1) l im \ f(z)/zn\ —>- 00 

where 2 00 on L. Can one estimate the length of this path in terms of 
M(r)1 Does there exist a path along of which | /(2) | tends to 00 faster than 
a fixed function of M(r) e. g. il/(r)c? 

H U B E R proved the following theorem: Let / ( 2 ) be an entire function, 
not a polynomial. Then to every Я > 0 there exists a locally rectifiable 
path Ck tending to infinity, such tha t 

(IV. 6.2) $\f(z)\->\dz\ < 00 . 
Q. 

Does there exist a path С independent of Я so that for every Я > 0 

( IV. (6.3) J \f(z)\~k\\dz\ < 0 0 ? 
с 

A. HUBER: "On subharmonic functions and differential geometry in the large." 
Comment. Math. Helv. 32 (1957) 1 3 - 7 2 . 

СО 
7) Pólya 's problem. Let f(z) = z a l f 2 n t b e an entire function of finite 

fc=i 
order. Assume that lim njk = 00. Does, it then follow that 

(IV.7.1) Tim log m(r)/log M(r) = 1? 

P Ó L Y A remarks that W I M A N ' S results (Acta Math. 3 7 ( 1 9 1 4 ) 3 0 5 — 3 2 6 , 

and 41 ( 1 9 1 6 ) 1 — 2 8 ) imply that if 

(IV. 7.2) log (nk+1 - nk)ßog nk > 1/2, 

then 

( IV. 7.3) ïïmm(r)jM(r) = 1 
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holds (also for functions of inifinite order). M A C I N T Y R E and I proved that if 
OO -Ĵ  °° 1 

2 < 0 0 then (IV.7.3) holds and tha t if 2 — 0 0 there 
k=2 %+i — nk k=2 nk+1 — nk oo 

always exists an entire function 2akz"k 'ot whicli 
k= 1 

l i m m{r)jM(r) = 0 . 

I V 1 < oo implies (IV. 7.2) . 
\ Á - I 

G. PÓLYA: "Lücken und Singular i tä ten der Potenzre ihen ." Math. Zeitschrift 
29 (1929) 549 — 640. 

P. ERDŐS a n d A. J . MACINTYRE: " In tegra l funct ions with gap power series." 
Edinburgh Math. Proc. Ser. 2. 10 (1954) 6 2 - 7 0 . 

8) F E J É R proved that if 2 1 l n k < 0 0 then the entire function 2 a k z n i 

k=1 k=1 
assumes every value at least once and B I E R N A C K J proved that it assumes 
every value infinitely often. F E J É R and P Ó L Y A conjectured that if njlc - > oo 

oo 
then akz"k assumes every value infinitely often. 

k= 1 
L. FEJÉR: " Ü b e r die Wurzel v o m kleinsten abso lu ten Betrage einer algebraischen 

Gle ichung." Math. Annalen 65 (1908) 413 — 423. 
M. BIERNACKI: "Sur les equa t ions algébriques con tenan t des p a r a m é t r é s arbi tra-

i res . " Thèse, Par is , 1928. 

9) Let (pk, 1 Á 1 < oo be a set of complex numbers which has no limit 
point in the finite part of the plane. Does there exist an entire function f(z) 
and a sequence n1< n2< . . .so tha t for every z£cpk, /("*)(z) = 0, 1 ^ к < oo 
(i. e. the set of zeros of ßnk)(z) contains cpklj 

10) H ANA NI and I proved (unpublished) that if \an\ > с > 0, lim | an |/]/n = 
= 0, an real, then to every real a there exists a sequence e„ = ± 1 

oo 

so that the series 2 Enan l s C+summable to a. I t is easy to see that 
n — l 

\an\/Vn 0 can not be replaced by | a n { < e f « . But we conjectured that if 
oo 

\an\ > с > 0 and the series 2an is C+summable to a finite number then 

the conclusion of our result remains true. We were unable to prove this, even 
if we assume | an | < e ]/«. 

00 
Let an, 1 Á л < oo be a sequence of real numbers. Assume that VVq 

/1=1 
is Gx-summable. Denote by cp the set of values to which some rearrangement 

СО 
of 2 a n i s G-summable. B A G E M I H L and I proved that cp either consists of 

n=i 
a single number, or is the whole real axis or is the set of all numbers 
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a -f- v ß, v = 0, + 1, + 2, . . . I t would be interesting to extend this for Ck 
summability and for series with complex terms. 

P. ERDŐS a n d F . BAGEMIHL, "Rear rangement s of Cj-summable Series." Acta Math. 
92 (1954) 35 — 53. T h e problem h a s been considered previously b y S. MAZUR, SOC. Sav. 
Sei. Lett. Lwow 4 (1929) 411 — 424. See also K. ZELLER and G. G. EORENTZ: "Ser ies 
rearrangements a n d analytic s e t s . " Acta Math. 100 (1958) 144—169. 

11) T U R Á N ' S problem. Let zx = 1, zv . . . ,zn be any complex numbers 
n 

Pu t sk = 2 z r T Ú R Á N conjectured that there exists an absolute constant с 
i = i 

so tha t 

(IV. 11.1) max |sk| > с. 
l u t e i n 

Q 
About 20 years ago T U K Á N proved max sk > -=•, this was improved by 

1 á f c á n n 

me to — - — , by T Ú R Á N to log 2/log n and by de B R U I J N and U C H I J A M A 
2 log n 

to c2 loglog n[log n. Very recently A T K I N S O N proved T U R Á N ' S conjecture 

with с = —. The best value of с is unknown. 
6 

For problems of this type and their application see P . T U R Á N ' S hook: 
Eine neue Methode in der Analysis und deren Anwendungen. The book also 
appeared in Hungarian and there is a Chinese edition which contains new 
material. A new American edition of the book will appear soon. I would like 
to mention just one problem I proved (see T U R Á N ' S book) t h a t one can f ind 
n complex numbers zx = 1, | zt \ A 1, 2 A i A n for which 

(IV. 11.2) max |*k| < (1 + c3)~" 
2<,k<,n+l 

where c3 > 0 is an absolute constant. Can one find n complex numbers zt 
satisfying (IV.11.2) and \ zt | ^ 1, 1 А г A nl 

F. V. ATKINSON: On sums of powers of complex numbers ." Acta Math. Hung. 
12 (1961) 185—188. 

V. Problems on probability 

1) Let rn(t) be the sequence of Rademacher functions i. е. гп(1)=ф 1 with 

probability — and the rn(t) are independent functions. The well known law 
2 

of the iterated logarithm states that for almost all t 
n 

(V. 1.1 ) l i m SUp y rk(t)l^2 n log log n = 1. 
П=сх> k= 1 

Assume now that cpp(t) (p prime) is a sequence of independent functions 

= ± 1 with probability —. Further assume that for n = a • b, <pn{t) = 

= (pa{t) <pb(t). Thus if the ip's are defined for all primes they are defined for 
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all integers. W J N T N E R proved that for all e and almost all t 

n 

(V. 1.2) lim 2<Pk(t)ln*+ , = 0 . 

and I improved this (unpublished) to 
n 

(V. 1.3) l i m 2<Р„(Ф* ( log n)c = 0 . 
k= 1 

It would he interesting to prove a result analogous to (V.l.l). I can 
not even prove that 

n 
(V. 1.4) lim sup 2<Pk(t)lny* = 0 0 • 

n—>°° k= I 

I was unable to locate the paper of W I N T N E R . 
The nex t few questions deal with random polynomials and power series. 

2) Let ek = ± 1 . Completing previous results of L I T T L E W O O D , 
2 " 

O E F O R D and K A C , O F F O R D and I proved that if we neglect о (log log 
n 

polynomials 2 ekzk the number of real roots of the remaining polynomials 
fc = о 

2 
is of the form — log n + o((log n)2 3 loglog n) . 

л 
Our result was not quite strong enough to prove the following conjecture 

(which as far as I know is still open): Pu t 0 < t < 1,let the binary expansion 
° ° E (t) 

of t be t = 2 - к г • 
Denote by Rn(t) the number of real roots of the я-tli 

k= 1 -
partial sum of 2 Ek^)zk- Then for almost all I 

k=о 

(V. 2.1) l i m Rn(t)l — l o g n = 1 . 
n= <» л 

Denote by R'n(t) the number of roots in the unit circle of the я-tli 

partial sum of 2 e k ^ ) z k - ^ true tha t 
k=о 

(V.2.2) ад/»-* \ 

for almost all t ? Here I can not even prove that for all bu t o(2") polynomials 
n 

2 ek zk the number of roots in | z I < 1 is 1- o(n). 
k = 0 2 

J . E . LITTLEWOOD a n d C . OFFORD, Proc. Cambridge Phil. Soc. 35 (1939) 1 3 3 — 148. 
M. KAC, Bull. Amer. Math. Soc. 49 (1943) 3 1 4 - 3 2 0 and 938, see also Proc. London 

Math. Soc. 5 0 ( 1 9 4 8 ) 3 9 0 - 4 0 8 . 
P. ERDŐS and C. OFFORD: "On the n u m b e r of real roots of A random algebraic 

equat ion." Proc. London Math. Soc. 139—160. 
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3 ) S A L E M and Z Y G M U N D proved the following theorem: For almost 
all t and n > n0 (t) 

(V.3.1) cx(n log n)K < max 
И - 1 k=0 

< c2(n log n)У'. 

The proof of the upper bound in ( V . 3 . 1 ) is easy, t he difficult par t was 
the proof of the lower bound. One would except tha t for almost all t 

(V. 3.2) lim max 
2 ч (t) г* 
6=0 = c 

n=co = l пУ'(log n)Y* 

where С does not depend on t. The following weaker s tatement has also not 
n 

been proved so far: For every e if we neglect o(2") polynomials 2 £k z<c w e have 
6 = 0 

(V. 3.3) (C — £) (n log n)v> < max 
|2| = 1 

2 e 6 z k I < ( G + e ) ( n l o g n)Y*. 
6 = 0 

Denote 

Mn(t) = max j 2 ek(t) 
I á x < l I 6 = 0 

The upper bound for Mn(t) is given by the lawT of the iterated logarithm, 
hut the lower bound is much more difficult. I proved (unpublished) tha t 
for almost all t and every e > 0 

(V. 3.4) lim M„(Z)/n'J-E - oo . 

A theorem of C H U N G implies that for almost all t there are infinitely 
many n for which 

(V. 3.5) Mn(t) < с 
loglog n 

The exact lower hound for Mn(t) seems very difficult (the problem i-
d u e t o S A L E M a n d Z Y G M U N D ) . 

Is it t rue that for all but o(2") polynomials 2 Ekzk-
6 = 0 

(V. 3.6) min 2 e k " k < 1 ? 
|z| = l I 6=0 

or more precisely how can one estimate the minimum (V.3.6) as accurately 
as possible. 

R. SALEM and A. ZYGMUND: "Some properties of tr igonometric series whose 
terms have random signs." Acta Math 91 (1954) 245—301. 

4 ) D V O R E T Z K Y ' S problem. Let 

(V.4.1) 
n = 1 

Place on the circle of circumference 1 at random arcs of length an. It 
is easy to see that if (V.4.1) is satisfied then with probability one almost all 
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points of the unit circle are covered by the arcs. D V O R E T Z K Y showed t h a t 
for suitable choice of an all points of the unit circle are covered for almost 
all choices of the arcs of length an (satisfying (V.4.1)], and that for suitable 
choice of the an for almost all choices of the arcs there are points not covered 
b y them. The first case we shall call the case of covering, the second of not 

1 + с 
covering. an — where c > 0 was shown by K A H A N E t o he in the case of 

n 

covering. I proved (unpublished) that an = -— is in the case of covering bu t 
n 

] c 
an = in the case of not covering. At present no necessary and suffi-

n 
cient condition for the case of covering is known. 

СО 
Let ^ \bnf = oo. I t is well known that for almost all choices of 

n= 1 
oo 

e„ = + 1, 2 en bn z" diverges for almost all points of the uni t circle. Sharpen-
k= 1 

Q 
ing previous results of D V O R E T Z K Y , he and T proved tha t if j btl j > - . - > then 

\n ' 
CO 

for almost all choices of e„ = ± 1, 2 e n b n z " diverges for all points |z| = 1. 
n=l 

CO 

We have an example of a series ^ j i>„ | 2 = |Д,+1[ ^ so that for 
n= 1 

almost all choices of en = + 1 there exists a z0, | z0 \ = 1, (z0 depends on 
CO 

the sequence en) so that 2 enbnzo converges. Perhaps every series satisfying 
n = l 

те1/« I bn -*• 0 has this property. 
A. DVORETZKY: "On the covering of the circle by randomly placed arcs." Proc. 

Nat. Acad. Sei. USA 12 ( 1956) 1 9 9 - 2 0 3 . 
J . P. KAHANE: "Sur le recouvrement d 'un cercle par des arcs disposés au hasard . ' ' 

Comptes rendus 2 4 8 (1959) 1 8 4 — 1 8 6 . 
A. DVORETZKY and P. ERDŐS: "Divergence of random power series." Michigan 

Math. Journal 6 (1959) 3 4 3 - 3 4 7 . 

5) Denote by f(n, k) t he number of random walk paths of n steps in 
к dimensional space where we assume tha t the path does not intersect itself. 
I t has been obeserved that lim /(те, к)11" = Ck exists, but no sharper inequalities 

n — CO 

are known for f(n,k) even for к = 2. 
The expected position and distribution of the point after те steps has 

also not been determined. I t has often been conjectured t h a t for к = 2 the 
expected distances from the origin divided by те1/* tends to oo and divided 
by те tends to 0, for к ^ 3 t he expected distance was supposed to be О(те^). 

I do not know the origin of these problems (probably applications in 
polymer chemistry, I first heard of them in 1949). See the forthcoming paper 
of B. Rennie in the Publications of the Mathematical Ins t i tu te of the Hun-
garian Academy of Sciences, Series A. 

(Received October 5, 1960.) 
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