ERROR ESTIMATION FOR MASSAU’S METHOD
OF CHARACTERISTICS

by
L. VEIDINGER!

The method of characteristics is one of the oldest and most frequently
used numerical methods of solution of initial value problems for hyperbolic
systems of quasilinear differential equations. In the present paper we shall
investigate only Massau’s original version of this method for systems in two
independent and two dependent variables (the adaptation of Massav’s method
to more general equations is described in [2], methods of higher accuracy
based on the same principle can be found in [1], [3] and [4]). ForsyTHE
and Wasow conjectured in their recent book [1] that the error of Massau’s
method is of order O(kh) where A is the maximum arc length between two
adjacent grid points on the initial curve (see [1], p. 65). We shall prove that
this hypothesis is true under some rather trivial assumptions.

We consider systems of two quasilinear differential equations of the
form

(la) Ay Uy + Qg U + by Uy + byyvy, =y
(1b) gy Uy + Qg U, + byy w0y + byy vy = hy
for the two unknown functions u = wu(x, y) and v = v(x, y). The coefficients
@, by and h; (i, k = 1, 2) are functions of x, ¥, «, v and have bounded third
partial derivatives in a domain D of the 2, y, u, v-space. We assume that
the system (la)—(1b) is of hyperbolic type in D, that is the equation

(A — by by, | —0

Qg A — by Ay h — by |

possesses two distinct real roots A, = A;(x, y, w, v) and 2, = A(x, y, u, v) at
every point of ). Moreover, we assume for convenience

| A bu?#“

| @y by

at every point of D. The latter condition can always be satisifed by introducing
new coordinates instead of x and v.
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Let 7 be a curve in the x, y-plane, on which the values of » and » are
given. We assume that 7 is finite, rectifiable and has no double points. The
curve o should be represented by the parametric equations x = z(s) and
y = y(s) where the functions z(s) and y(s) have continuous third derivatives
(s is the natural parameter of the curve -7). The initial values are assumed to
be given parametrically by three times continuously differentiable functions
u(s) and v(s). The points (z(s), y(s), u(s), (s)) should lie in D for all possible
values of s. Finally, we shall need the hypothesis that the direction of - is
nowhere identical with one of the two ““characteristic directions” determined
by the vectors [1, 2,(s)] and [1, A,(s)] respectively:

(y'(5) — 24(s) () (¥'(8) — Aa(s) 2/(8)) O

where J,(s) is an abbreviation for 7(x(s), (s), u(s), v(s)).
We replace the system (la)—(1b) by the so-called characteristic system

(2a) hhag—ye =0,
(2b) hr, —y, =0,
| #
(2¢) f;-lau_bu by T — @y uf — a1 0% | =10
| Ay — by By — ag U — agvf |
W g * *
(2d) | Aalyy — bis hlln— Ay, UF — Qyp V) [ e
| Ay gy — by iy T, — Qg Uy — Qg U l

where x = x(§, 1), y = y(&, 1), u* = u*(&, n) and v* = v*(§, 7) are unknown
functions of the new coordinates £ and 7. Expanding the determinants on
the left side of (2c¢) and (2d) the characteristic system can be brought into
the form

(3a) M —ye =0,
(3b) by, —y, =0,
(3c) afuf +afhof +hfa, =0,
(3d) azuf +anpvy +hiz, =0.

It is easy to show (see, for example [ 2], p. 75) that

A —1 0 0
e =% 0 0

\ , |0
RS 0 ajy ai
hy 0 a3 aj)

at every point of D.

By the so-called equivalence theorem (see, for example [2], p. 76) our
initial value problem for the system (la)—(1b) is equivalent to the following
initial value problem for the characteristic system: determine solutions
x =z(§ 1), y = y(&, n), u* = wu*(, n) and »* = v*(§, ) of the characteristic
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system (3a)—(3d) such that these solutions on the line & 4 7 = 0 satisfy
the following initial conditions:

x (£(8), 1(s)) = x(s) ,
y (&s), n(s)) = 9(s),
u*(&(s), 7(s)) = u(s),
v* (&(s), 1(s)) = v(s) ,

where s is now the natural parameter of the line & 4+ n = 0. It is a well-
known result of FriepricHs and LEwyY (see [2], pp. 79 ff.) that the initial
value problem for the characteristic system has uniquely determined solutions
x =& n), y =y n), u*=u*, ) and v* = v*(&, n) inside a trapezoid!
T bounded by the initial segment AB of the line & 4 n = 0, the line 7 =
= const. through A4, the line & = const. through B and a line parallel to the
line & -+ 7 = 0 ; moreover the functions «, y, »* and »* have continuous second
partial derivatives inside 7. Then by the equivalence theorem the trans-
formation

has an inverse

& = é&(z,y) 7=z, y)
and the functions

u(x, y) = u*(é(z, y), 1@, y)) v@, y) =ov*E@, y), 9z, y))

are the (unique) solutions of our original initial value problem in a trapezoid-like

region S of the z, y-plane, bounded by the curve &, the curves 1 = const.

and & = const. through the end points 4* and B* of the curve 7, and a

curve parallel to /; moreover the func-

tions u(z,y) and »(x,y) have continuous : A 7

second partial derivatives in 8. A C
Massau’s method can now be N

described as a processin the &, #-plane. 5

We choose a sequence of (not neces- N

sarily equally spaced) grid points on the o

segment AB of the line & 4 n=0.

These grid points will be called the grid

points at the 0-thlevel. If P, and P,

are two adjacent grid points at the

7 — 1-th level and the 7 coordinate of

P, is greater than that of P,, then the z

point of intersection @ of the line

7 = const. through P; with the line Figure 1.

& = const. through P, will be, by defi- '

nition, a grid point at the j-th level. By successive application of this con-

struction we get a system of grid points in the triangle 4 BC (see Fig. 1). It

should be noted that at each level there is one point less than at the pre-

ceding one.

=0
S

ND

1 In what follows we shall regard the half-plane above the line & 47 = 0 only.

5 A Matematikai Kutat6 Intézet Kozleményei VI. A/3.
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We replace the characteristic system (3a)—(3d) by the finite-difference
equations

(4a) ¥(Q) — F(Py) = A4(Py) [B(Q) — T(Py)],

(4b) ¥(Q) — F(Py) = &y(Py) [Z(Q) — T(Py)),

(4c) aGH(Py) [aX(Q) — uX(Py)] + alay(Py) [0*(Q) — o*(Py)] +
+ h(Py) [9(Q) — 2(Py)] = 0,

(4d) a3(Py) [2*(Q) — u*(Py)] + a(Py) [0%(Q) — 0*(Py)] +

. +hE(Py) [#(Q) — 2(Py) =0,
where ,(P,) is an abbreviation for A(z(P,), #(P,), @*(P,), v*(P,)) and aj(P,)
is an abbreviation for aj(z(P,), §(P,), @*(P;), 5*(P,)). The initial conditions
for the system (4a)—(4d) are

(5) T(Ro) = 2(8o) ; y(Ro) = y(89); u*(Ry) = u(sy); v*(R,) = v(s)

where R, is an arbitrary grid point at the 0-th level and s, is the correspond-
ing value of the parameter s. If the values of z(P)), #(P;), @*(P,) and o*(P,)
are already known (¢ = 1, 2) and

N ., | 0 0 |

. LB =1 0 0 |

A(P,) = | — N g =0,
hE(Py) 0  afi(P;) af(Py)
hy(Py) 0 an(Py) agp(Py) |

then we can determine z(Q), 7(Q), #*(Q) and *(Q) from the linear equations
(4a)—(4d).

Since the coefficients of the equations (4a)— (4d) do not contain explicitly

the &, n coordinates, MassAu’s method can also be formulated as a process

in the z, y-plane. The grid points on the

‘ c* line £ 4+ 1 = 0 correspond to grid points

Y . T"j\; on the initial curve &/ such that the dis-

T o i tance between two adjacent grid points on

oL Lt / the line & + =0 is equal to the arc

AT ’ length between the corresponding grid points

W on the curve 7/ ; the coordinates of these grid

e 4/ points and the corresponding values of @

—1 and # can be determined from the initial

s . \NB*

conditions (5). By successive application of

——  the equations (4a)—(4d) we can find the

¥ coordinates 7 and 7 of a system of irregu-

Figure 2. larly spaced grid points in the z, y-plane

(see Fig. 2) and the corresponding values

a(z, §) and ¥(z, ) which may be taken as approximate values of u(z, 7) and
v(z, ) respectively.

Let & denote the maximum arc length between two adjacent grid points

of 7 (that is the maximum of the distance between two adjacent grid points
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of the line £ + 5 = 0)," and r denote the number of grid points on the curve
A. We shall prove the following theorem:

If the ,stability condition’ rh = O(1) is satisfied® then as long as the point
(z, y) lies in the region S, there exists a grid point (xz, §) such that the inequalities

v —x=0(h); y—y=0(@"); uz,y)— u y) = O(h);

o(x, y) — v,(z,y) = O(h)
hold.

In order to prove our theorem we shall return to the formulation of
Massau’s method as a process in the &, n-plane. Instead of the characteristic
equations (3a)—(3d) we shall first consider the simpler characteristic system

(6a) anfe + o9 =0,
(6b) g fn =} OgggJpn =0

for the two unknown functions f = f(£, ) and g = g(§, 7). We assume that
the coefficients a; = a,(f, g) have bounded third partial derivatives in a
domain D, of-the f, g-plane and the inequality

(7) |0ty Ggp — Ogp gy | = 0 > 0

holds in D,. The functions f and g should satisfy on the line & + 5 = 0 the
initial conditions

f(&(s), m(s)) = f(s), g(&(s), n(s)) = g(s),

where f(s) and g(s) are three times continuously differentiable functions of the
natural parameter s, and the points (f(s), g(s)) are in the domain D,.
The finite-difference equations corresponding to (6a)—(6b) are

(8a) an(Py) [A(Q) — A(Py)] + ay(Py) [9(Q) — g(Py)] =0,

(8b) a0 (P1) [(Q@) — f(Py)] + an(P1) [9(Q) — g(P2)] =0,

where a,,(P,) is an abbreviation for a,,(f(P;), g(P;)).

By the existence theorem of FriepricHs and LeEwy the initial value
problem for the equations (6a)—(6b) has uniquely determined solutions
f(&, m) and g¢(&, n) with continuous second partial derivatives in a trapezoid
T, whose sides are the initial segment of the line & 4 7 = 0, the lines £ = const.
and 1 = const. through the end points of this segment, and a line parallel
o theline & + n = 0. It is clear from their proof that the points (f(R), g(R))
and (f(R), g(R)) lie in D, for all grid points R in the trapezoid 7',.

From the construction of the grid points it follows that

At=PQ<h; M=PR<h, PPsh.

2 Here and in what follows 4 = O(B) means that for all sufficiently small values
of h | A| < c| B| where ¢ is a positive constant whose numerical value may depend
on bounds for derivatives of the coefficients and the solutions but not on k and the
coordinates of the grid points.

5%
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Let us now assume that the points P, P, and @ lie in the trapezoid
T,. Then since f and ¢ have continuous second partlal derivatives in 7',

ay(Py) [f(Q) — f(P))] + aye(Py) [9(Q) — 9(Py1)] =
(9a) = 0y (Py) fe(P) A& + ay9(P) ge(P1) 4§ + O(R?)
and since  f,(Py) = f,(P1) + O(h) 5 g,(Ps) = ¢,(P1) + O(h)

o9 (Py) [/(@) — f(Po)] + aee(P) [9(Q) — g(P2)] =
(9b) = 0gy(P4) f-n(P1 ) A5 + age(Pr) go(P1) An + O(hy) .

But the functions f and g satisfy the equations (6a)—(6b) thus from
(9a)—(9b) we get

(10a) oy (Py) [f(@) — f(P1)] + apa(Py) [9(Q) — g(P1)] = hz)
(10Db) a9y (Py) [H(Q) — F(Py)] + aga(Py) [9(Q) — (Pz ]=0(®?
Let us now put

w(R) = f(R) —f(B); 2(R)=g(R)—G(R)

where R is an arbitrary grld point in T2. Then because of the continuous dif-
ferentiability of the coefficients ¢, in the domain D,, we have

o (Py) — ay(Py) = O(w(Py)) + O(2(Py)) .
Substitution of these inequalities into (8a)—(8b) yields for i =1, 2

P)IAQ) — [(P)] + an(Py) [4(@) — §(P)] =
(11) = O(w P) (@) ——f )]) -+ O((P,) [f f(P 1) +
+ O((P,) [(Q) — (P)]) + O((P; 3(P)]).

The inequalities

(@) — F(P) =0(h); g(@) —g(P) = O(h)

can easily be derived as supplementary results from the existence proof of
FriepricEs and LEwY (see [2], pp. 82—83) thus from (11) we get

oy (P [f Q) — f 14 a49(Py) [9(Q) — g(Py)] =
= O(w ) h) -+ O(2(Py) k)
gy (Py) [A(Q) — F(P)] + 0sa(Py) [9(Q) — g(P2)] =

= O(w(P,) h) + O((Py) h) .
Subtraction of these inequalities from (10a)—(10b) then yields
(12a) ay(Py) [w(@) — w(P)] + oqa(Py) [2(Q) — 2(Py)] =

= O(w(Py) h) + O(2(P,) k) + O(h?)
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(12b) g (Py) [w(Q) — w(Py)] + age(Py) [2(Q) — 2(Pp)] =
= O(w(Py) h) + O(2(Py) k) + O(R?) .

Let now M; denote the maximum of |a;(R)w(R) + ay(R) 2(R) |
fori = 1,2 and for all grid points at the j-th level, and N ; denote the maximum
of max [| w(R) |, | 2(R) |] for all grid points at the j-th fevel. Then3

(13) M;<c¢,Nj; N;<c M.

The first of these inequalities immediately follows from the boundedness
of the coefficients a;,, the second is a consequence of (7).

Because of the continuous differentiability of the coefficients a;, and the
solutions f and g we have

(@) — ay(Py) = O(h)
whence for ¢ =1, 2
(14) 0y (L) w(Q) + apn(Py) 2(Q) = 04 (@) w(Q) + a,(@) 2(Q) + O(Mj h) .
From (12a) and (13) we obtain
(15a) a1 (£r) w(Q) + ay9(P) 2(Q) =
= oy (Py) w(Py) 4 ayo(Py) 2(Py) + O(iMj-—l k) 4 O(R?) .

Similarly from (12b) using (13) and the continuous differentiability of the
coefficients we get

ooy (Py) w(Q) + age(Py) 2(Q) =
(15b) = 09y (Py) w(Py) + agy(Py) 2(Ps) + O(Mj—l h) + O(W?) =
= 0y (Pp) w(Py) + 099(Py) 2(Ps) + O(Mj—l k) + O(R?) .
(14), (15a) and (15b) together yield
(L—cgh) M; < M;_; + co(M;_, h + h?)
M; <M+ cs(M;_ h+ 1) .

Since M, = 0 it is evident that if # ; satisfies for 7 = 1 the linear dif-
ference equation

Fj:(1+05h)Fj_1+05h2

and the initial condition ¥, = 0, then M ; < F;. The solution of the latter
difference equation problem is ‘

Fj=csh*(1 +csh)= + h[(1 +csh)Y "2 — 1]
thus
F; < (csh® 4 h) eshG-D

3 ¢y, €y, C3, ¢, and ¢; are positive constants whose numerical value is independent
of h and the coordinates of the grid points (but may depend on bounds for derivatives
of the coefficients and the solutions).
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whence by the ‘‘stability condition” rh = O(1) we have

F;=0(h); M;=0(h); N;=0(h)
so that

/(R) — f(R) = O(h); g(R) — g(R) = O(h)

for all grid points in the trapezoid 7',.
The considerations illustrated here are applicable without essential
modification to the general characteristic equation in » unknown functions

iy i+...+a5,ff=0,

...........................

Om1 f§+"'+amnf?=0'

1 o
am+1,1 fn + i + Amt1,n /2 =0,

Oy L TR ks

where 0 < m < n and a; = o, (f,f% ..., ). In the case of the charac-
teristic equations (3a)—(3d) we get

(16) x(R) — z(R) =0(h); y(R) —y(R) = O(h); u*(R) — u*(R)=0(h),
v¥(R) — v*(R) = O(h)
for all grid points in the trapezoid 7'.
Now let (x, y) be an arbitrary point in the region § and (&, 5) the point
in the &, n-plane which corresponds to (z, ) by the transformation
§=&,y) n=ny).

From the construction of the grid points in the &, n-plane it follows that there
exists a grid point R such that

|§—E&R)|<h, |n—n(B)|<h.

Then because of the continuous differentiability of the functions x(&, n),
y(& m), u(z, y) and v(z,y) we have

- ¢ —x(R)=O0h); y— y(R)=0(h),
7

u(x, y) — u(z(R), y(R)) = O(h); v(x,y) — v(z(R), y(R)) = O(h).
The inequalities (16) may be rewritten as

*(R) —x = O(h); y(B) —y=0(h),
(18)
u(x(R), y(R)) — w(@, y) = O(h); W(z(R), y(R)) — v(Z, y) = O(h).

From (17) and (18) immediately follows the assertion of our theorem.

(Received February 17, 1961.)
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OLIEHKA TMOrPEIIHOCTM METOJA XAPAKTEPMCTHK
(METOJIA MACCO)

L. VEIDINGER
Pe3iome

B cBsi3n ¢ Tak HasbiBaeMbIM METO/IOM XapaKTepuCTHK (MeTomom Macco)
JIOKa3bIBaeTCsl clieylolasl Teopema:

IMyctb A — MaKcuMalbHasi JUIMHA AyTH MeXKAY ABYMs COCEHUMHU TOUKAMU
CEeTKM Ha HayaJbHOH KpHMBOH &/ M 7 — 4YMCJIO TOUEK CETKU Ha KpuBOH /. IlycTb,
Jajiee, BBINOJIHSIETCS «ycJioBUe ycToiunBocTy rh = O(1). Toraa K Kakoi Touke
(z, y) B HeKOTOPO# 06s1acTh S orpaHUYeHHOH KPUBOH 5/, XapaKTepUCTUKAaMU, Npo-
XOJSIMMH Yepe3 KOHLbI &/ U KPUBOil o/ mapajjiesibHON K 5/, MOYKHO HAiTH TOUKY
CeTKH (7, ) TaK UTO BBINOJIHAKTCSA HepaBeHCTBa

v —@=0(h); y —g=O0(); ul y)—u®g) = Oh); v,y) —o(@7) =O0(h)

Tle u U v — TOYHble pelueHusi 3aa4u KoL Uisi cucTeMbl ypaBHeHuit (1a)—(1b)
a @ u v — npubimKeHHble 3HaYeHUs1 1o MeToAay Macco.
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