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§ 1. Introduction

In paper [1] F. J. AxscomBE proved the following

Theorem 1. Let Y, (n =1,2,...) be an infinite sequence of ramdom
variables. We suppose that there exists a sequence B, (n = 1, 2, ...) of positive
numbers and a proper distribution function F(x), such that the following con-
ditions hold :

a) For any continwity point of F(x)

lim P{Y,<2B,}=F(=)),
n—-+oo
where P {4} denotes the probability of the event A.

b) Given any positive & and 1 there is a positive integer n, and a positive
nwmber ¢, such that for any n = n,

P{|Y, — Y, |<e B, simultaneously for all integers n’ such that n — n'|<<en} >
>1— 1.

Let further v, (n =1, 2, ...) be an infinite sequence of positive integer-
valued random variables and k,(n =1, 2, ...) a sequence of positive integers
tending to infinity. We suppose that v,[k, converges to 1 in probability as
n — + oo. Then, if the sequence of random wvariables Y, satisfies conditions

(a) and (b),

n'[

lim P{¥, < B.)=Flz)
n-—>-+ oo
at all continuity points of F(x).

We mention that nothing is supposed about the dependence of », on
the random variables V.

The importance of the investigation of the behaviour of the sum of a
random number of random variables is well known in sequential analysis, in
random walk problems and in connection with Monte Carlo methods.

The conditions of the above mentionned Theorem 1 are sufficient.
F. J. AxscomBE conjectured that condition (b) is also necessary if no further
condition than (a) is supposed. The present paper deals with the proof of the
necessity in the case when

Yn:§1+§2+ SR +§n
where &, &, ..., &, ... is a sequence of independent random variables, and
gives in this case a simpler condition equivalent to (b).
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We will prove the following

Theorem 2. Let us suppose that &, &, ..., &, ... is a sequence of inde-
pendent random variables and there exists a sequence B, (B, — + coasn — -+ oo)
of positive numbers such that the random variables &, /B, (k =1,2,...,n) are
infinitesimal [2] and

(=%

(a P <z —>F(x (n—> + oo
at all continuity points x of the proper distribution function F(x). Let us suppose
further that v,(n = 1,2, ...) is a sequence of positive integer-valued random
variables and k,(n = 1,2, ...) is a sequence of positive integers tending to infi-

nity such that v,/k, converges to 1 in probability as n — —+ oo. In order that
the distribution function of the sums

converge to the law F(x), it is necessary and sufficient that the condition

By,

(b”) lim lim sup - =1

050 n>te Bp,aiy)
be satisfied.
Here 6 is a real number (6 > — 1) and [2] denotes the integral part
of the real number .
We will prove this theorem in the case when k, = n. The general case
can be proved similarly.

We mention here without proof two lemmas needed in the proof of
Theorem 2.

Lemma 1. Let us suppose that &, &, ..., &,. ... is a sequence of inde-
pendent random variables and {B,} is a sequence of positive numbers tending
to infinity, such that &,|B, (k =1, 2, ..., n) are infinitesimal [2] and

where F(x) is a proper distribution function. Then there exists also a monotoni-
cally increasing sequence {C,} of positive numbers tending to infinity such that
B IC, -1 and

lim P' gf,— < ’L‘]' = F(x)
B il ' Cn < ] = - 1

Lemma 1 is an easy consequence of Theorem 2, p. 155 of the book [2].
By virtue of Lemma 1 we will suppose in the sequel that B, (n =1, 2, ...)
is a monotonically increasing sequence tending to infinity.
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Lemma 2. Let {B, } be a sequence of positive numbers tending monotoni-
cally to infinity and suppose that the sequence {B,} satisfies condition (b")
with k, = n. Then

WL A8
lim lim inf n_—=1.
o= ke Diyg+a)l

Lemma 2 is almost obvious and therefore we omit here the proof.
It follows from Lemma 2 that for any 0 << ¢ < 1 there exist a positive integer
n, and a positive number 6 such that for n = n,

B
]l —e<——2 < 1+e.
[n(1 %)l

This fact will be used in the sufficiency part of the proof of Theorem 2.

§ 2. Proof of Theorem 2

Necessity. Let us suppose that condition (a) holds and that », (n =
=1,2,...) is a sequence of positive integer-valued random variables for
which »,/n converges to 1 in probability. Let us suppose further that

Plﬁ<x}—>F(.r) as n— -+ oo

\ B,

at all continuity points of the proper distribution function F(x). Then (b")
necessarily holds.

Let us suppose the contrary. Then
B
lim limsup——% =1
850 n>to By

does not hold. This means that there exist an ¢ > 0 and a sequence 0, (l =
=1,2,...) such that 6, — 0 and

B
(1) lim sup — -<1—e.
=179 B[n(1+61)]
(The case, when

’ By
limsup——"—>1+¢
I B[n(l-i—bl)]
hold, can be treated similarly.)
It follows from (1) that for fixed / there exists an infinite sequence of

Indices My, Masy =05 Wiy s (li= 1,25 =) for which
(2) .B”L = 1l— i
Bingi+on 2
We have thus for any I =1, 2, ... a monotonically increasing sequence of

positive integer-valued indices {n,} (k =1, 2, ...) tending to infinity. It is



368 MOGYORODI

easy to see that one can pick out from these sequences a new sequence m,,
My, ..., my, ... for which m; < m;,, and m; > + o~ as l - 4 .

We define now the random variable v, (n =1, 2, ...) as follows:
Af my £ n < myyq we put

i | n with probability 1/n
1[71, 1+ 6,)] with probability 1 — 1/n .

It is easy to see that if n — 4 oo then I — -+ oo and thus »,/n converges in
probability to 1.

Denoting by F,(x) the distribution function of the random variable
Y,/B,, the relation

HYn<x1=P”r<xv—nt+ﬂyﬂﬂ@<&m=Mﬂ+®ﬂ

=, " 18, R T J
gives
- B, 1
(3) pl 1 léFWme~ =
] ’ [n(1+6)] n
Now if we take espema]ly n = m, then for I = 1, 2, ... by (2) and (3) we have

B’"? _*_,L

b 4
P[ = <'7“] <F[mz(’¢61)](

\ B, |~

Let now [ tend to 1nf1n1ty. Then from the preceding inequality we obtain

B m+a01) MYy

MméFPP—E)

for all continuity points of F(z). This is a contradiction since F(x) is a proper
distribution function.

Sufficiency. We will prove the equivalence of conditions (a), (b) and
of conditions (a), (b’). Thus we prove that condition (b’) is sufficient, if no
further condition than (a) is supposed.

First we shall show that (a) and (b) follow from (a) and (b’). For the
sake of brevity and simplicity we restrict our treatment to the case when the
variance of random variables &, exists and Var &, = D,. We can suppose
without loss of generality that the mean value of random variable &, is zero.
Now Y, =& + &+ ... 4+ &, and we can put B, = |D? 4 ... + D2 ([2],
p- 153, Theorem 1.). Clearly the probability in condition (b) is larger than
(4) P{Yn— Ying—en| + R Y ina—a1 — Yo | < €Bp}.

Thus it is sufficient to show that for arbitrary & > 0 and 7 > 0 there exist

a positive integer n, and a positive number ¢ such that (4) is larger than
1 — nif n = n, . For this purpose we will prove that the following inequalities

(5) P=

sBlgﬁ
g (T2

k [n(]—‘c)]+1
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and
(6) P' max 1 2?! &

o
Ll P ey B

= éﬁ

L5 3
2 "
hold for suitably chosen ¢ > 0 and ny(n, < n).

By TcHEBYCHEFF'S resp. KOLMOGOROFF’'S inequality we have

(7) PII : 5 2 i ] < _4_( {B[n(]_ﬁjr)
l k=[n(1—c)]+1 2 J 3 B,
and
(8) Pl s 3 ATRS ls 4 B[n<l+c)1—B[n<n—c>1
l |n—n’|<cn k=[n(1—’c)]+1 2 ’ B'%

It follows from Lemma 2 that there exist a positive integer n, and a positive
number ¢ such that for n > n,

(1_

Bini120) )2’ & e

and thus the right-hand sides of (7) and (8) are smaller than 7/2. We have
from (7) and (8)

PL Yy — ¥ ] +! max |Ying—o)— Yo |2 6B} <7
i n—n’|<cn

and thus we conclude that (4) is larger than 1 — 7 if n, and ¢ > 0 are chosen
suitably.

The general case, when the variance of the random variables does not
exist, can be treated similarly using the so called "’truncation method”’. We omit
here the proof because it is similar to that of the above simple case.

Next we turn to the proof of the second part of the equivalance. We prove
that (b’) follows from (a) and (b). First we show that if  is any continuity
point of F(x) then

e ;B =
F(z) = lim lim inf F ) ‘37 .- ] = lim lim sup Fnq1 44y (1 o _j
850 nste U Bngi+e) el g Laci-+o)l
(9)

It follows from (b) that for arbitrary chosen ¢ > 0 and 7 > 0 there exist a
positive integer n, and a positive number ¢ such that if n = n, and [§| < ¢

P iy — ¥pl <2 B} > L9,

An easy calculation shows that from this inequality

‘Bfl ’ & l Bll I —
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or, expressing this by the language of distribution functions,

B
Fo(x —e) —n = Frna+oy (-l' e LT HC I =

[n(1+9)]

We obtain from this inequality by virtue of (a) for n — + =

i
[n(1+96)]

< lim sup F[na1+s))

n—>-+4 o

F(x —¢) —n < lim inf F[n(|+a)] (Ll’ — EL =

[ [n(1+8)]

=Fx+e+9.

Let now ¢ and 7 tend to zero. Then if 6 — 0 we obtain (9). It is easy to see
that condition (b’) follows immediately from (9). Q. e. d.

Remarks. Condition (b’) is satisfied if the monotonically increasing
sequence {B,} is in the sense of Karamara “slowly oscillating”, i. e. B, =
= n® L(n), (¢ > 0), where L([cn])/L(n) — 1 for any positive number c.

Recently A. Rfxvyr [3] proved that if In converges in probability to
n
a positive random variable 7, having a discrete distribution and the random
variables &, are independent and identically distributed with mean value 0
and variance 1,

T+ <= .r]' — = J‘ e v2dy .

n—+o

lim P Gtb L
an

In a following paper we shall generalize this theorem in the case when v, /n
converges to a positive random variable 4, having arbitrary distribution.

I am indebted to Prof. A. RExyr and P. REvEsz for their valuable remarks
and helpful criticism.

(Received May 18, 1961.)
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NMPENEJIbHBIE TEOPEMbI [JId CYMM CJIYYAWKHOI0 YMCJIA HE-
3ABUCUMbBIX CJIYUYAWHBIX BEJIMUUH

J. MOGYORODI

Pe3iome

JloKaspiBaeTcst cljeaylomas

Teopema. [Tycmb &, &,,. .., &, ... N0CA006AMEALHOCITIG HE3ABUCUMBIX CAY-
YQUHBIX 6eAUYUH, MAKAS 4o

lirP P{gl . —B + &n < :r} = F(x),

20e F(x) ne eviponcoennas (PyHKyus pacnpeoesenus, U cAY4aliHble 6eAUULIHb
&/B,(k=1,2,...,n) OeckOHeUHO MQAbl.

ITycms Oanee v, (n=1,2,...) nocae006ameabHoCb HEOMPUYAIMEALHBIX
U YeA0qUCACHHBIX CAYYQUHBIX 6eAUdUH, maKuX umo v,[k, cmpemumcs no eeposm-
Hocmu Kk 1, 20e k, nocae006amenbHOCIb NOAONCUMEAbHbIX YeablX Yliced, cripems-
wyaaca k Oeckoneurocmu. Hesasucumocms eeaudur v, om eeaudut &, He npeo-
noaazaemcs. Toz20a 042 mo20, umodsl PyHKYyuS pacnpedeseHUs cAY4alHOL 6eatl-
quHb

&+ 46,
Bk"
cmpemuaach K 3akony pacnpedeaenus F(x), neo6xo0umo u 00cmamodno 661noa-
HeHue yca08us

R B

lim lim sup el

820 n>te’ Bpga+o)
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