
ON A FAMILY OF SUBMONOIDS 

by 

M. P. SCHÜTZENBERGER1 

§ 1. Introduction 
As it is well known, only few of the properties of the subgroups of a group 

are still enjoyed by all the submonoids of a monoid [1] and in the applications 
it is sometimes useful to consider more restricted families of stable subsets 
(i. e. of subsets A which are such t h a t А2 с A). 

In remote connection with a problem in communication theory (Cf. 
[12]) one encounters a family fk(F) of submonoids of a monoid F tha t is 
characterized by extremal properties and that , consequently, admits several 
slightly different definitions. When Я is a group, Ü(F) reduces to the lattice 
of the subgroups of F ; in the general case, it is not necessarily a latt ice and its 
simplest definition is the following one. 

Definition. The submonoid M of a monoid F belongs to ®(F) if and only 
if it satisfies the following three conditions : 

1. There exists at least one homomorphism y of F , compatible with A 
(i. е. y-1 y A = A) which is such tha t y A is isomorphic to a monoid admitt ing 
minimal left and right ideals ; 

2. (N,.) : A intersects every right and every left ideal of F ; 
3. A is maximal among the submonoids of F t ha t have the same inter-

sectoin with an arbitrarily small two-sided ideal of F . 
Let us abbreviate by N d ( N n N N k ) the condition tha t A intersects 

every two sided (right, left , right and left) ideal of F (i. e. tha t A is " n e t " in 
P. D U B R E I L ' S theory [5]), by Md(Mr, M h Mk) the condition tha t y F admits 
minimal two-sided (right, left, right and left) ideals for some homomorphism 
y compatible with A. 

We shall verify tha t A(F) can also be defined by the following set of 
three conditions : A satisfies 

1'. M r ; 
2'. Nt ; 
3'. There exists some right representation of F by mappings of a set 

into itself t ha t is such tha t A is submonoid which lets invariant one element 
from the set. 
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Let us recall t h a t L E V Y ' S condition [8] t h a t a stable subset + of a free 
monoid F is isomorphic to a free monoid can be expressed in the form (Cf. [12]). 

(Ud): / + П + / П + Ф 0 only if f ( A 

which remains meaningful even when F is no t a free monoid. 
We shall also verify that Ü(F) is characterized by the following set of 

conditions on + : 

1". Mk ; 
2 " . Nk ; 
3". Ud. 
When F is f ini te , the conditions 1 , 1 ' or 1" become vacuous. Then Sl(F) 

can be characterized by 3, 3' or 3" and the requirement that + contains at least 
one positive power of each element from F . 

In § 2, as A preliminary step, we apply the classical theory of S U S C H K E -

W I T S C H [18] and R E E S [11] for obtaining a direct characterization of $(F) 
when F admits minimal left and right ideals. I n §§ 3 and 4 respectively we 
discuss the sets of conditions (1", 2", 3") and (1', 2', 3'). In order to make the 
paper self contained several results which are special cases of theorems due 
to other authors are given complete proofs. 

Applications of the remarks developed here to the less restricted family 
of the submonoids which satisfy Ud only will be considered in another paper. 

§ 2. A direct definition of $t(F) 

Let us verify f i rs t the following 

Remark 2.1. If the stable subset .1 of a monoid F satisfies Nr and admits 
minimal right ideals, then, F also admits minimal right ideals. 

Proof. Let us consider any a£A such tha t a A is a minimal right ideal of 
+ ; by definition this is equivalent to the s tatement that , for any a ' ( A , there 
exists at least one a"£ A which is such that aa'a" = a since, unless, the right 
ideal aa'A would be a proper subset of aA. 

Trivially, if a A is minimal, the same is t rue of a n y a " w h e r e a"' (A a A. 
Let us show t h a t if A satisfies Nr, a2F is a minimal right ideal of F. 

Indeed, for any f ( F , Nr implies t h a t А П afF =f= 0 , i. e. tha t a f f = ax £A for 
some f £F ; multiplying on the left by a, we obtain a2 / / ' = aav By our 
previous remark, there exists a t least one a[Ç + which satisfies aaxa\ = a. 
Thus, a2ff'a[a = a2 and the result is verified. 

We observe tha t when the homomorphi.sm y is compatible with A any 
of the conditions Mx, Nx or Ux(x = d, r, I, k) defined in the introduction (or 
later) is true for y A in y F if and only i f i t is t rue for + in F. Since we have seen 
t h a t when + satisfies Nk the condition 1 implies J I k , there will be no loss in 
generality for the description of a given + from ft( F) in assuming tha t F itself 
admits minimal ideals. 

This convention will be kept in the §§ 2 and 3 and we shall use the follow-
ing standing notat ions : 
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The monoid F admits the minimal right ideals It, (i £ I ) and the minimal 
left ideals Lj ( j £ J). The minimal two-sided ideal of F is denoted by D and the 
following facts are classical (Cf. [18], [3], [16]) 

1 . D = U Ri = U L • 
m ю 

2. every quasi ideal Kt j — R, П L} is isomorphic to a certain group G, 
the S U S C H K E W I T S C H group of F. ( A quasi ideal is the intersection of A left and 
of a right ideal [16]). 

3. The idempotent e,- • of K t j is such tha t de,= d and e,j d' = d' for 
a n y d £_Ly and d' £ R, ; thus, identically, K,j = e,j F e,j . 

We select a f ixed arbitrary quasi ideal Kxx and isomorphism a : KX1 -> G 
and we introduce the following standing notations : g,, = a(exj eiX) ( = eG, 
the neutral element of G when i or j is equal to 1 since e l y e1 1e i l = exi iden-
tically). 

G0 = the subgroup of G generated by the elements g -h,. 
a' = the mapping D -> G which is defined by a'd = a(eXj dex x) where 

j is the index of the left ideal L, containing d. 
t j j = the mapping G-^K,j which is defined by r, jg=ei x • a~Hgj>g) • eXj-
I t is classical t ha t r • and the restriction of a' to K,j are mutually inverse 

isomorphisms (onto) (Cf. [11], [2], [10]). Indeed, r,j is a homomorphism 
because of the following more general formula valid for any g, g' £G 

(+,/ 9) (ri',r 9') = eiiX • o'Hgrf 9) • eXJ • er>x • а~Цдрк. g') • eXJ- = 

= ei,i • o~Hgj-}i9") • elyj- = T,J. g" 
where 

9" = 9j'j 9f,i 9 9jj' 9fj- 9' ; thus, when i= i' and j = j', we have 
simply 

(rij9)(rrj9')=ri,j(99')' 
Because of the formula 

ri,j 9 = с ( D j (C,i (gfi 9) eXJ) ehX) = 

= j ei,i) • gj,} g • a(eU ei,i) = 9' 

we see that r, • is a monomorphism (i. e. isomorphism into). Finally, it is proved 
t h a t r / j (and consequently the restriction of a') is an isomorphism (onto) by 
the formula valid for any d £ ; 

r t j a'd = eix • a-1 (gj} a (eXJ d ехл)) • eXJ == 

= • ( 9 u ea)--e\,j) • d • eXJ = eu deX J = d. 

We still need to recall the following simple s tatement . (Cf. [15], [17]). 

Theorem 2.2. For any non empty stable subset В of D the three follo-
wing conditions are equivalent 

(i) For at least one Kl ; having a non empty intersection Q with В the 
subset a'Q of G contains the inverse of each of its elements; 
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(ii) There exist nonempty subsets IB of I and JB of J and a subgroup 
G' of G that have the following properties: G' contains every g,, {(i,j) ( I в X B\, 
В = {d(D : a'd(G' and d(Kitj[(i,j) ( I B x J B ] } 

(iii) В admits minimal right (and left) ideals. 

Proof, (i) implies (ii). Because of the fact tha t the restriction of a' to 
K j j is an isomorphism, there is no loss in generality in taking (i,j) = (1,1) 
in t h e condition (i) which then, (because В is stable) becomes equivalent to 
t he condition tha t G' = oQ is a subgroup of G. Thus exx = a~x eG belongs to B. 

Trivially, if b ( R,U В and b' (LjC\ В, we have'bb' (Kt j f ] В and, thus, 
K j j C\B =f= 0 if and only if (i,j) ( Iв X JB where IB and JB are subsets of I 
a n d J respectively. 

Let b be any element f rom KitjC\B ; we have a(ex xb3 exx) = g' (G' 
and, since G' is a group, b' = bo~x(g'~x) b belongs to K, j f) B. A s traightforward 
computation shows tha t bb' = et • and, thus, we have ( В and , ( G' for all 
(i,j) ( IB x JB. Consequently, for any such pair (i, j), the mappings riti and a' 
can be carried out by using multiplications by elements from В only. I t follows 
ins tant ly that for any such (i, j) and g(G (rspectively, d ( Kt j) one has r, y g (В 
(resp. a' d ( G') if and only \ig(G' (resp. d ( B) and this is precisely the formula 
given in (ii). 

(ii) implies (iii). Let IB and JB be any non empty subsets of I and J 
and G' any subgroup of G containing all the elements g (i, j) ( I B X J B. 
I n order to prove tha t В as defined in (ii) admits right and left ideals it is 
enough to show t h a t for any (г, j) ( (IB X JB) one has 

{xuQ')B{x,jG') =TjjG'. 

This again is a straightforward computation, which also shows tha t B2 

is contained in B, i. e. tha t В is stable. 
(iii) implies (i). Let us assume only tha t the stable subset В admits mi-

nimal right ideals and, for simplicity, tha t b ( K1X f | В is such t h a t bB is mini-
mal. This implies in particular t h a t , to any b' ( K 1 X C \ B , there corresponds at 
least one b" in some suitable Ki X t h a t is such tha t bb'b" = b ; writing g = 
= ab, g' = ab', g" = a'b", it follows tha t gg'g" = g, i. e. t h a t g" = g'~\ 
Thus, since b'b"b" (Kx x, the set G' = в(Кх,хГ\В) contains a(b'b"b") = g'~x 

whenever it contains g'. Consequently, G' is a subgroup of G and the proof 
is concluded. 

I t is useful to observe t h a t t he apparently weaker conditions (iii)' below 
is in fact equivalent to (iii). 

(iii)'. There exists a homomorphism y of F which is such that 
f ) U у - 1 у В = В and thai у В admits minimal right ideals. 

Indeed, since Kx x FKX1 = Kx x, any homomorphism у of F sends 
Kx x onto a minimal quasi-ideal of y F = F and, consequently, y induces an 
epimorphism y' (homomorphism onto) of G onto the S U S C H K E W I T S C H group G 
of F: 

Let us assume now that у В admits minimal right ideals ; because of 
theorem 2.2, yB admits minimal quasi-ideals and, since (КХХГ\В) B(Kxxf)B) 
is contained in Kxxf)B, at least one of these minimal quasi ideals, Qxx say, 
is contained in K1X — yKl x. Thus y' Qx x is a subgroup G' of G and the stable 
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subset G" = у' у(К1Л(~)В) of G satisfies the conditions G' G" G' — G' and 
G'CZG". 

From this we conclude tha t G' = G", t ha t is, QX1 — y(KlxQ\B). 
This ends the proof because, when D(~\y~l У В = В, it shows tha t the 

stable subset KXXP\B = Dfly-1 Qxx is equal to а"1 y ' - 1 G' where y ' - 1 G' is 
a subgroup of G, and that , consequently, the condition (i) is satisfied. 

Let us define a mapping y f rom F to the set of right cosets of G over G0 
by the rule 

Xf = G0a(ehifehl). 

We have 

Remark 2.3. (i) If f(D, yf = G0o'd ; 

(ii) for any /, / ' £ F, *(//') С ( * / ) ( * / ' ) . 
Proof. We verify first tha t for any / £ F and j £ J, cr(eLi;/e1,1) belongs to y f . 
Indeed, fevl belongs to a well defined Kux and, using rin we obtain 

Кi = еиГо-\д(} а'(/е1л))-е1Л = eiya~\o'(fe 1Д)) . 
Thus, for any eXj , 

Фи K i ) = Фщ G.i) <Y(Ki) £GoXf-

This proves the statement (i). 
Let now /, / ' £ F. The product el x f belongs to a well defined KX j and 

we have 
Ф1Л t f ' ei,i) = Ф1л K i f pi,i) = ff(ei,i K i ) Фи /' ei,i)' 

t h a t is, 
y ( f f ' ) = ( y f ) o(e1 • /' ein) and the statement (ii) follows from our initial 

remark. 

Theorem 2.4. A necessary and sufficient condition that A belongs to 
is that 

A={f£F: xf С G'} 

where G' is any subgroup of G that contains G0. 
Proof. The condition is necessary because, if A belongs to ®(F), its 

intersection В with any K t • is not empty (condition 2) and, according to the 
condition 1, it satisfies the condition (iii)' of theorem 2.2. Thus, by theorem 
2.2 and remark 2.3 (i), we have В = Ap\D = {d£D : xdoG'} where G' is 
a subgroup containing G(i. Since remark 2.3 (ii) shows trivially t h a t BfB is 
contained in В if and only if xf is contained in G' the condition 3 of the intro-
duction implies tha t A is precisely the set of those elements f rom F . 

The condition is sufficient because, if A = {/ : %/CÖ'}, remark 2.3 (i) 
and (ii) show t h a t A2 a A, and tha t A f)D = В is a stable subset which satisfies 
the conditions of theorem 2.2 and BAB — B. Thus the conditions 1 and 2 
are satisfied and since, as above, BfB is contained in В only if yJC.G', the 
maximality condition 3 is also verified. 

As a consequence we have 
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Corollary 2.5. If A belongs to Sl(F) and if the index m in G of the subgroup 
G' defined above is f ini te , at least one positive power fm', m' gm of each f 
belongs to A. 

Proof. Let us observe that , for any /, / ' £ F, one has G'x(ff') = G'xf' 
if and only if G'xf = G', tha t is, by theorem 2.4, if and only if / belongs to A. 

Since, by hypothesis, not all the m -f- 1 cosets 

G', G'xf, G'xf2, . . . , G ' x f m 

are distinct, one must have G'xf"1'' = G'xfm +m", i. e. fm' Ç A for some positive m' 
at the most equal to m. 

§ 3. The conditions U x . 

In this § we use the following conditions Ux (x = d, r, /, k) for charac-
terizing A(F). We recall tha t Ud is defined by 

(Ud): fAÇ)Afr\A=f=<2 only if f ç A . 

Thus, if A is a nonempty stable subset satisfying Ud, it is a submonoid 
(i. e. it contains the neutral element e of F) because eA f)Ae,p\A =f= 0 . I t is 
readily verified that , when A is stable, equivalent forms of Ud are 

fA П А ф 0 and Af Г\ Аф 0 only if f ÇA ; 

(because a, af = ax ÇA, and a', fa' = a[ Ç A imply (a[ a) f = f(a' a f ) = 
= axa[Ç A) 

and, also 
a, a f , faÇ A only if f Ç A. 
We define Ur by 

(Ury. AfCi А ф 0 only if f Ç A. 

Then, Ur (or t he symmetric condition U t, fA (~)A ф 0 only if f ÇA) 
implies Ud. As it is easily checked (Cf. the beginning of 4 below), Ur is equi-
valent to the condition 2' of the introduction. 

When A is a submonoid, the conjunction Uk of the conditions Ur and 
TJl is more expeditiously written as 

(Uk): A f ) A f A ф 0 only if fÇA. 

A theory of the subsets, which satisfy Ux (x = r, l, k) ("les complexes 
unitaires") is due to P . DITBREIL [6]. 

We first verify the following 

Remark 3.1. When the submonoid A of F satisfies Mk, Nd and Ud, the 
condition Nr (respectively Nt) is a necessary and sufficient condition 
that it satisfies Ur (respectively Uf). 

Proof. Because of Mk we can assume without loss of generality tha t F 
itself admits minimal right and left ideals and we use freely the notations of 
§ 2. The condition Nd can be taken as the hypothesis tha t AÇ)K1X is not 
empty. 

Let us first ver i fy tha t В = A f | D satisfies the condition (i) of theorem 
2.2 (i. e. G' = a(A Г\К1Л) is a subgroup of G). Indeed, if д = aa Ç G', for some 
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a£A ПЛ'1,1, the element b = o~4g~x satifies the relation ba2 = a2b = a, tha t is, 
bAC\Abp\A =f= 0 . Thus, by Ud, bÇ_A and, finally, g'1 = ab^G'. 

(Reciprocally if F reduces to the union of D and a neutral element e, 
it is easily checked tha t for any В satisfying the conditions of theorem 2.2 
the submonoid union of В and e, satisfies the condition Ud. Indeed, for any 

dB П В ф 0 and Bd f | В ф 0 imply d £ KUj with (i, j) £ IB x JB 

and, then b, db £ В implies a'd ££?'). 
Now we have : 

Nr implies Ur. 
Because of our hypothesis, Nr is equivalent to the requirement tha t 

every е,д (г £ / ) belongs to A, or, in the notat ions of theorem 2.2, t h a t I = IB. 
I t follows that for any d£Z>, if bdÇ_A for some &£B, then d belongs to A ; indeed, 
bd(fA implies d £L y , where j £ JB and a'd £ G' since G' is a subgroup which 
contains all the elements gjd with (/, j) £ I x J B . 

This practically ends the proof because if a, af £ A, the element d = fexl 

f rom D satisfies the condition bd £ A with b = e11a £ B. Thus wc have, a, a f , 
en> /ex 1 € M and, by Ud, we conclude tha t a, af£A only if / £ + , t ha t is, Ur. 

The 
reciprocal statement ( Ur implies Nr) is contained in the following 

slightly less special implication which will be needed later : 
When Mr, Nd and Ur imply Nr. 

We assume tha t F itself contains an element r which is such tha t the ideal 
rF is minimal ; thus , because of Nd, A contains a t least one element b £ FrF()A 
which is such t h a t bF is a minimal right ideal. 

Let us show t h a t Ap\fF ф0 for all / £ F, (i. е., Nr) ; indeed since bF 
is minimal, there exists at least one / ' which is such tha t b = b f f . Because of Ur 
the product / / ' belongs to A and this concluedes the proof. 

Theorem 3.2. If the submonoid A satisfies Mk, necessary and sufficient 
conditions that it belongs to &( F) are Ud and Nk or Ur and N, or Uk and Nd. 

Proof. Let us assume tha t A belongs to ík(F) and use the notat ions of 
theorem 2.4 ; by corollary 2.5 every idempotent of F belongs to A, and con-
sequently A satisfies Nk ; the fac t tha t AfA f | А ф 0 only if / £ + (i. e. Uk) 
has already been verified in the proof of theorem 2.4. 

Reciprocally, we observe tha t , according to remark 3.1, the three con-
ditions "Ux and Nx," are equivalent to "Uk and Nk" when A satisfies Mk. 
Using the notations of remark 3.1, the condition Nk imposes tha t В = Af\ D 
intersects every Ktj and consequently B= {d(D : yßc. G'} where G' is a 
subgroup containing G0 ; once more, since BfB с В only if yj is contained 
in G' we finally obtain + = {/ : yf f) G'} and the result is entirely proved. 

§ 4. The set of conditions (U, 2% 3 ) 

In order to make the proof clearer we recall first the following well 
known result (Cf. [19]) : 

Theorem 4.1. To any nonempty subset X of F there corresponds one 
quotient monoid yx F which is characterized by the following properties 

(i) The homomorphism yx is compatible with X ; 
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(ii) If y' is any homomorphism of F compatible with X, yx F is a 
homomorphic image of y'F. 

Proof. Let us consider the mapping Ax of F to the subsets of F t ha t is 
defined by 

(Cf. [5]). 

We have 
1. if x £ X, Ax / = Xxx only if / £ X (because Ax / contains e if and only if 

f a x ) ; 
2. if Ax / = Ax / ' , then Ax (//") = Ax(/'/") for all /" € X. 
Consequently, if S denotes the set of all A x / ( / £ X ) , we can define a 

representation (S, X) -> S by 

(Ax /) / ' = Ax(// ') for any Ax/ £ N and / ' £ X. 

We denote t he corresponding homomorphism of F by yx and we observe 
t h a t the congruence relation y x / = y x / ' (i- e. Ax(/"/) = Ax/(/"/') for all 
f" £ X) can be expressed in the symmetrical form : 

for all fv f2 € F, f x f f 2 £ X if and only if fJ'U £ X. 
This shows instantly tha t yx is compatible with X since efe £ X if and 

only if / £ X. 
Let now y' : F -> F be any homomorphism and define X = y' X ; 

we can construct in the same manner as above a quotient monoid y x F and 
for any /, / ' £ F we have yxy' f = y x y' f only when for all fv /2 £ F 

У' kth £ y ' X if and only if / f x f ' f 2 £ y ' X. 
Consequently, when y ' - 1 y' X — X, we have yx y'f = yx y'f only if 

yxf — yxf and the result is proved. 
Incidentally, the notations introduced provide the formal verification 

t h a t Ur is equivalent to the condition 2' of the introduction, because on the 
one hand, if A is s table and if it satisfies Ur, we have e £ A and XAa = A 
for any a £ A ; t hus AA E = Aa / if and only if / £ A and A is precisely the sub-
monoid which lets XA e invariant in the representation (S, F) -> ,S' described 
above. On the other hand, if S' is any set and (S', a representation, 
for any given s £ S', the submonoid A' = {/ £ F : sf = «} satisfies Ur because 
of the associativity. 

Theorem 4.2. If the stable subset A of F satisfies Mr, X, and Ur, it 
belongs to ®(X). 

Proof. Since N, is stronger t han Nd, we already know by the last par t 
of the proof of remark 3.1 that A satisfies Nr and we shall repeatedly use this 
fact . 

Without loss of generality we shall assume tha t F — yA F ; conse-
quently, because of theorem 2.1 and Mr, the monoid F itself admits minimal 
r ight ideals ; it will be enough to verify tha t it admits also minimal left ideals, 
because, then, by remark 3.1, Ut is a simple consequence of Mk, Nk and Ur. 

The verification involves three steps, 
i. Let b £ A be a f ixed element such tha t bF is a minimal right ideal (such 
an element exists because of Nd). We verify t h a t for any / £ F there exists 
at least one / ' £ F which is such tha t Aa fb = AA f'b2. 
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Indeed, by Nr, fbfx £ A for some fx ; by N,, f'b2fx £ A for some / ' ; by 
the hypothesis tha t bF is minimal, bfxf'x = b for some f j . Thus 

XAfbfx = XAf'b2fx = A 

because of the hypothesis t h a t A satisfies Ur. Finally, multiplying by /] we get 

XA fb = XA fbfx f[ = XA Г Ъ2 fx f[ = Ад /' b2 

and our remark is proved. _ _ 
ii. Let us keep the same notat ions and define b by the condition tha t b2 6 = 6. 

From the relation XA fb = XA fb2, we deduce by multiplication by 6 6 tha t 
Ад/666 = Ад/' Ъ2ЪЪ = Ад/ '62 = А д / 6 . 

Since this holds for each / £ F, it follows from the hypothesis yAF = F 
tha t 6 66 = 6. Consequently 6 6 is an idempotent. 

The last step is classical (cf. [3], [15], [16]) but we include its proof 
here for the sake of completeness : 
iii. If F contains an idempotent с which is such tha t с F is a minimal right 
ideal, then, F с is a minimal left ideal. 

Indeed, for any /L £ F, we have cfxcf2 = с for some f2 and c/3c/3 = с 
for some /3 because of t he minimal character of cF. Multiplying the last 
equality by cfx we get 

c / i с/з с/з — c/ic> tha t is cc/3 с — cfxc. 

Consequently, cf2cfxc = с2 = с and the result is proved since we have 
shown tha t с belongs to any left ideal Ffxc. 

Remark. Counter examples (cf. [13]) show tha t i t is not possible to 
dispense entirely with some requirement on the minimal ideals in the various 
implications between the conditions Nx and Ux, described here. 

For example, let F be the monoid of permutations of the set of integers 
generated by the translation n n + 1, and n -> n — 1 and the permutation 
which lets invariant the negative integers and which consists of the cycles 

(1,2) (3,4,5) (6,7,8,9) . . . . 
77 - 77 — 1 7 7 - 7 7 — 1 , 71-77 + 1 

i - 1, . . . , -
2 2 2 

Let A be the submonoid of F tha t lets 0 invariant. I t is easily checked 
tha t yAF = F, that F has no minimal ideals and tha t A satisfies Nk and Uk. 

We conclude by giving a simple characterization of yл F for any A from 
St(F) (cf. [14]). 

The notations are t h a t of §§ 2 and 3. 
Remark. 4.3. If A belongs to ft(+), a necessary and sufficient condition 

tha t yAF = F is that / = / ' if and only if 

™ y ( e X j f e j д ) = 7ce(eXj /' elA) 

for all (г, j) £ / X J where л is a homomorphism of G whose kernel, E, is the 
largest normal subgroup of G contained in G'. 

9 A Matematikai Kutató Intézet Közleményei VI. A/3. 
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Proof. Let us observe tha t because of Uk and Nk, the relation /x//2 Ç + is 
equivalent to е ы /х //2 е 1 г ( A for any three elements /x , / and /2 of F . Wi th 
the help of the mapping т, ; (of. § 1) can we write elix/x and /2е1Л as (о-_10х)еы  
and eyjl(cr—1 gr2) respectively, for suitable gvg2 £ G and idempotents eli( and ejA. 

Thus, /x//2 Ç A is equivalent to 0i«(e1>(/e;il)02 £ 6" where 0X, g2 and (г, /) 
do not depend upon /. I t follows from the definitions of yA t h a t yAf if and only 
if for each (г,/) £ I xJ and, then, for all gv g2 £ G, one has gid(eb,fe]A)g2 Ç (?' 
when and only when gi<r(e1J'eJiï)g2 Ç G'. Since for each (г,/) this relation bet-
ween g = o-(e1)(/e;Vl) and g' = а(еьфе]Л) is precisely yG> g = ya-g' and since 
E is, trivially, the kernel of yG< the result is proved. 

I t follows tha t a set of necessary and sufficient conditions tha t I) = 
= yG- D is : 

i. t he only normal subgroup of G contained in G' is {ea } ; 
ii. t he J x l matrix (gr-,) has all i ts rows and columns distinct. 
As an application we can display the following example which shows 

that , even if F is finitely generated, the condition tha t for some fixed f ini te 
m, fm belongs to A for all f £ F does not insure tha t yA F has only finitely many 
minimal quasi ideals. 

Example. Let F consist of e, all the powers am of a certain element a 
and of a minimal two-sided ideal I) of the type described in § 1. The group G 
will be t he symmetric group on three elements generated by a and ß satisfying 
the relations a 2 = ß3 = (aß)2 = eG ; I, and J will be the set of positive in-
tegers. 

The element a is entirely defined by the rules : 

^ _ j Tj j+l (eG) if j is not a power of 2, 

j + / + 1 (a) if j is a power of 2. 

We define the right ideals Rt by ] j = eblF, Ri+ x = aRt and, accordingly, 
the matr ix (gr; ;) has all its entries in the subgroup Gn = {eG, a). 

Finally, + = {f £ F : yf = G0} contains the sixth power of every element 
of F and it belongs to f (F). 

By considering for each value of m ^ 0 the sub-block of the matr ix 
(gjj) determined by 1 5Í i A 2m, 1 + 2m ^ j A 2m+1 , one easily checks t h a t 
no two rows of this matrix are the same and tha t consequently, it also contains 
infinitely many distinct columns. 

Thus yAF is not f ini te and, since F is generated by a and b = t1A(ß),. 
the example has all the properties stated. 

(Received May 28, 1961.) 
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ОБ ОДНОМ СЕМЕЙСТВЕ П0ДМ0Н0ИД0В 

M. Р . S C H Ü T Z E N B E R G E R 

Резюме 

В этой заметке описывается некоторое семейство K ( F ) подмоноидов 
моноида F, имеющих свойства, возможно близкие к свойствам подгрупп 
некоторой группы. Если F — свободный моноид, тогда подмоноиды семей-
ства K(F) имеют приложения к некоторым вопросам кодирования как 
особому случаю свободных подмоноидов моноида F . Характерно, что если 
А принадлежит K(F), то для каждого fÇF найдется хотя бы один / 'такой, 
что f f ' f Ç А (существование слабого обратного элемента) и, наоборот, если 
/ и f f ' f принадлежат А, то / ' тоже принадлежит А (каждый слабый 
обратный некоторого элемента подмоноида A ÇK(F) принадлежит А). 

Большая часть статьи посвящена дисскуссии того заслуживающего 
внимания факта, что при обычных ограничениях относительно существо-
вания минимальных идеалов эти двухсторонние условия содержатся в 
еще более слабых аналогичных односторонных условиях. 

9 * 
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