ON KOLMOGOROFF’S INEQUALITY

by
A. RENYI

§ 0. Notations

Let S = [, oA, P] be a probability space, i.e. 2 a set (the set of ele-
mentary events), £ a c-algebra of subsets of 2, and P a probability measure
on of. We shall denote the elements of £ (called random events) by capital
letters and we denote by P(A4) the probability of the event 4 € of. Random
variables (i.e. functions defined on 2 and measurable with respect to <#)
will be denoted by greek letters. We denote by M(&) the mean value and by
D?(&) the variance of the random variable &. We denote by P(4 | B) the con-
ditional probability of the event A with respect to the event B.

§ 1. Introduction

In the present paper we deal with the celebrated inequality of A. N.
Kowrmocororr ([1]) according to which if &, &, ..., &, are independent ran-
dom variables with mean value 0 and with finite variances d} = D2(§,)
(k=1,2, ..., n) then putting

(1) =86+ &E+ .-+ & (B=1 2. . B)
and
(2) Di=d}+di+ ... +di = D¥¢,) (=125 50)
one has for any 1 > 1
(3) P(Max [¢,| 2 AD,) <~ .

1<k=n A2

As well known, this inequality is extremely useful in proving the strong
law of large numbers, the law of the iterated logarithm and other related
theorems.

In § 2 we generalize this inequality by considering instead of (3) the
conditional probability of the inequality Max |{, | = AD, with respect to

1<k<n

some condition 4 having positive probability. We prove the following

Theorem. If the random wvariables &, are independent, have zero means,

finite variances di and finite fourth moments f&= M(&) (k=1,2,...,n),
then if £, resp. D, are defined by (1) resp. (2) and we put
(4) FR=f+...+1
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then one has for any 7 > 1, and for any event A with P(A)>0

2+V3+{D

5 PMax |, | =2 A
( ) (ISkszfllC,H_ Dnl )— },2VP A)
It is known that in the proof of Kolmogoroff’s inequality the supposition
of independence of the random variables &, can be replaced by the weaker
supposition that the conditional mean value of &, given &, ..., &, _, is identi-
cally equal to 0, that is that the variables {, form a martingale (see [2]).
It will be seen from the proof that the same supposition is sufficient for the
validity of our Theorem.

§ 2. Proof of the generalization of Kolmogoroff’s inequality

In this § we shall prove the Theorem formulated in § 1.

Let A4 be an arbitrary event, having positive probability P(4) > 0. Let
o. denote the indicator of 4, i.e. a random variable, which is equal to 1 on
the set A4 (i.e. if the event 4 takes place) and equal to 0 on the complemen-

tary set 4 = 2 — A (i.e. if the event A does not take place). Let B,
(=1, 2,...,n) denote the event that |{,| is the first term of the sequence
[ &l 181, -..5 18, | which is not less than AD,, i.e. B, takes place if
|81 < ADy, ..oy | &y | < AD, and |, | = AD,. Let B, denote the indi-
cator of B,. Then clearly

n
(6) Og:ﬁslfurthorﬂkﬁ,~01f1<l
k=1
and B, depends only on &, ..., &, and thus is independent of &,,,, ..., &,.
Let finally C, denote the event V_[a‘( | £ | = AD,, that is C, is the union of

<k=n

the sets B,, ..., B,. We have c]early

k=1 k=1 k=1

n n n—-1 n
+ SM((C— L af)z SMGBa)+2 3 3 M Bié;a).
k=1 k=1 k=1 j=k+1
Now put
(8) i =CkBPes (I=ksn—1;k+1<j=<n).

Clearly we have,if l <k <j<h<mn

(9a) M0 mi) = M(EEB, £, 6) = M(ZEB) M(E) M(E,) = 0,
furtherif k < I,k +1 < j,1 4+ 1 < h then owing to 8, f, = 0 one has
(9b) M@ i) = 0.
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Further
(9¢) M(”Ik] M(CE B d}z‘ .
Thus the system
] 77/
) N7 1/ M(25.)

n

> X 4, VMR Mo o) | =

=Lj=

/_ o [ n
él/ L 2 (3B = dj -

j=k+1

Taking into account that

(12) M(C% Bi) — M(ZEBi) = M((C, — C02 Bi) + 2 M(Ei BilLn — Ci))
and M(C, Bi(C, — &) = 0, it follows that

(13) M(Z3B,) < M2 B)).

Thus
n—1 n n—1

1y Smas| 3 e )_S_ D2 > M(G3B,) < DEM(2) =D4.
k=1 j=k+1 k=1

Thus we obtain finally, taking into account that M (a?) = P(4), that

n
(15) M(Za) 2 S M(}A ) — 2 DEVP(4)
k=1
On the other hand if g, = 1, one has (} = 22 D2
Thus
(16) 2Mcipea =z ogm|a| 35| = m0rpiac,)
k=1 k=1
where C, stands for the event Max | {, | = 1 D,. We obtain from (15) and (16)
1=k<n
(17) P(40,) 2D} < M(¢3a) + 2 DR /P(4).
On the other hand,
(18) (3a) < VP(A)M(H) .

As clearly
(19) M%) = Frn+ 3Dy
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we obtain from (17), (18) and (19)

 P(4C,) I
(20) PO, [ay=—t) < - o+|/a+ £

Thus (5) is proved.
Our theorem may e.g. be used to obtain an estimate for

P( Max || =¢,)

l§k§"n
where », is a random variable, which may depend on the variables &,. Let
v, take on the values n» 4 1,n + 2, ..., n 4 s with the corresponding proba-
bilities pq, Py, ..., ps. If A, denotes the event v, =n 41 (I=1,2, ...,5s)
one has by Theorem 1, in the case |§, | <1 (k=1,2,...,n)
N
(21) P(Max || =t,)= > P(Max || >t,|4)P(4) <
1<k<n, i=1 1sksn+l
4 N 4 D? :
= — 3VP(4) D = —I* s
t:i=1 t2
Thus we obtain, putting ¢, = 4D, the following
Corollary. If &, ..., &, are independent random variables, with mean value
zero and satwfyzng | & ] s 1 further if v, is a random variable capable of the
values n + 1, , N+ 8 “and of D} denotes the variance of {=486 +6&+

4 o ans &y we have for 1 <& 21/6

g 4)s
(22) P(Max|Li| > 2AD,:) < —1‘/?
1Sk=ry

(Received June 18, 1961.)
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0 HEPABEHCTBE A. H. KOJIMOIrOPOBA
A. RENYI
Pe3lome

HokasbiBaercst crnefyrouiee 0Gobuienne u3BecTHOro HepasHectsa A. H.
Kousmoroposa. Ilycte &, (k=1,2,...) He3aBUCUMBIE ClyyaiiHble BeIUYHUHbI,
MMeIoLIe MaTeMaTUYecKoe 0XKHIaHMe O, KOHEYHBIe Jucrepcuu d, U 4YeTBepThie
momeHThl fi. Ionowum §, =& + &+ ... L &, Di=d34+d3+4+ ... + d2,
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Ft=f+ ...+ fr Tlyctb 4 npousBojbHOe COOBITHE C MOJIOXKUTENbHOM
BeposiTHOCTBI0O P(A4) > 0. Torja mmeeT mecTo sl Bcex A > 1

PR

P(max|C,| = 4 <
o e = 2P
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