ON KOLMOGOROFF'S INEQUALITY

by A. RÉNYI

§ 0. Notations

Let $S = [\Omega, \mathcal{A}, \mathbf{P}]$ be a probability space, i.e. Ω a set (the set of elementary events), \mathcal{A} a σ -algebra of subsets of Ω , and \mathbf{P} a probability measure on \mathcal{A} . We shall denote the elements of \mathcal{A} (called random events) by capital letters and we denote by $\mathbf{P}(A)$ the probability of the event $A \in \mathcal{A}$. Random variables (i.e. functions defined on Ω and measurable with respect to \mathcal{A}) will be denoted by greek letters. We denote by $\mathbf{M}(\xi)$ the mean value and by $\mathbf{D}^2(\xi)$ the variance of the random variable ξ . We denote by $\mathbf{P}(A \mid B)$ the conditional probability of the event A with respect to the event B.

§ 1. Introduction

In the present paper we deal with the celebrated inequality of A. N. Kolmogoroff ([1]) according to which if $\xi_1, \xi_2, \ldots, \xi_n$ are independent random variables with mean value 0 and with finite variances $d_k^2 = \mathbf{D}^2(\xi_k)$ $(k = 1, 2, \ldots, n)$ then putting

(1)
$$\zeta_k = \xi_1 + \xi_2 + \ldots + \xi_k$$
 $(k = 1, 2, \ldots, n)$

and

(2)
$$D_k^2 = d_1^2 + d_2^2 + \ldots + d_k^2 = \mathbf{D}^2(\zeta_k) \qquad (k = 1, 2, \ldots, n)$$

one has for any $\lambda > 1$

(3)
$$\mathbf{P}(\operatorname{Max}_{1 \le k \le n} |\zeta_k| \ge \lambda D_n) \le \frac{1}{\lambda^2}.$$

As well known, this inequality is extremely useful in proving the strong law of large numbers, the law of the iterated logarithm and other related theorems.

In § 2 we generalize this inequality by considering instead of (3) the conditional probability of the inequality $\max_{1 \le k \le n} |\zeta_k| \ge \lambda D_n$ with respect to some condition A having positive probability. We prove the following

Theorem. If the random variables ξ_k are independent, have zero means, finite variances d_k^2 and finite fourth moments $f_k^4 = \mathbf{M}(\xi_k^4)$ (k = 1, 2, ..., n), then if ζ_k resp. D_k are defined by (1) resp. (2) and we put

$$(4) F_n^4 = f_1^4 + \dots + f_n^4$$

then one has for any $\lambda > 1$, and for any event A with P(A) > 0,

(5)
$$\mathbf{P}(\max_{1 \le k \le n} |\zeta_k| \ge \lambda D_n |A|) \le \frac{2 + \sqrt{3 + \left|\frac{F_n}{D_n}\right|^4}}{\lambda^2 \sqrt{\mathbf{P}(A)}}.$$

It is known that in the proof of Kolmogoroff's inequality the supposition of independence of the random variables ξ_k can be replaced by the weaker supposition that the conditional mean value of ξ_k given ξ_1, \ldots, ξ_{k-1} is identically equal to 0, that is that the variables ζ_k form a martingale (see [2]). It will be seen from the proof that the same supposition is sufficient for the validity of our Theorem.

§ 2. Proof of the generalization of Kolmogoroff's inequality

In this § we shall prove the Theorem formulated in § 1.

Let A be an arbitrary event, having positive probability $\mathbf{P}(A) > 0$. Let α denote the indicator of A, i.e. a random variable, which is equal to 1 on the set A (i.e. if the event A takes place) and equal to 0 on the complementary set $A = \Omega - A$ (i.e. if the event A does not take place). Let B_k $(k=1,2,\ldots,n)$ denote the event that $|\zeta_k|$ is the first term of the sequence $|\zeta_1|, |\zeta_2|, \ldots, |\zeta_n|$ which is not less than λD_n , i.e. B_k takes place if $|\zeta_1| < \lambda D_n, \ldots, |\zeta_{k-1}| < \lambda D_n$ and $|\zeta_k| \ge \lambda D_n$. Let β_k denote the indicator of B_k . Then clearly

(6)
$$0 \le \sum_{k=1}^{n} \beta_k \le 1, \text{ further } \beta_k \beta_l = 0 \text{ if } k < l$$

and β_k depends only on ξ_1, \ldots, ξ_k , and thus is independent of ξ_{k+1}, \ldots, ξ_n . Let finally C_n denote the event $\max_{1 \le k \le n} |\zeta_k| \ge \lambda D_n$, that is C_n is the union of the sets B_1, \ldots, B_n . We have clearly

(7)
$$\mathbf{M}(\zeta_{n}^{2} \alpha) \geq \sum_{k=1}^{n} \mathbf{M}(\zeta_{n}^{2} \alpha \beta_{k}) = \sum_{k=1}^{n} \mathbf{M}(\zeta_{k}^{2} \beta_{k} \alpha) + 2 \sum_{k=1}^{n} \mathbf{M}(\zeta_{k} \beta_{k} (\zeta_{n} - \zeta_{k}) \alpha) +$$

$$+ \sum_{k=1}^{n} \mathbf{M}((\zeta_{n} - \zeta_{k})^{2} \alpha \beta_{k}) \geq \sum_{k=1}^{n} \mathbf{M}(\zeta_{k}^{2} \beta_{k} \alpha) + 2 \sum_{k=1}^{n-1} \sum_{j=k+1}^{n} \mathbf{M}(\zeta_{k} \beta_{k} \xi_{j} \alpha).$$

Now put

(8)
$$\eta_{kj} = \zeta_k \, \beta_k \, \xi_j \quad (1 \le k \le n-1 \, ; \, k+1 \le j \le n) \, .$$

Clearly we have, if $1 \le k < j < h \le n$

(9a)
$$\mathbf{M}(\eta_{ki}\,\eta_{kh}) = \mathbf{M}(\zeta_k^2\,\beta_k\,\xi_i\,\xi_h) = \mathbf{M}(\zeta_k^2\,\beta_k)\,\mathbf{M}(\xi_i)\,\mathbf{M}(\xi_h) = 0,$$

further if $k < l, k + 1 \le j, l + 1 \le h$ then owing to $\beta_k \beta_l = 0$ one has

(9b)
$$\mathbf{M}(\eta_{kj}\,\eta_{lh}) = 0.$$

Further

(9c)
$$\mathbf{M}(\eta_{kj}^2) = \mathbf{M}(\zeta_k^2 \beta_k) \ d_j^2.$$

Thus the system

(10)
$$\eta_{kj}^* = \frac{\eta_{kj}}{d_j \sqrt{\mathbf{M}(\zeta_k^2 \beta_k)}}$$

is orthonormal. It follows by Bessel's inequality that

(11)
$$\left| \sum_{k=1}^{n} \sum_{j=k+1}^{n} \mathbf{M}(\eta_{kj} \alpha) \right| = \left| \sum_{k=1}^{n} \sum_{j=k+1}^{n} d_{j} \sqrt{\mathbf{M}(\zeta_{k}^{2} \beta_{k})} \cdot \mathbf{M}(\eta_{kj}^{*} \alpha) \right| \leq \left| \sqrt{\mathbf{M}(\alpha^{2})} \cdot \sqrt{\sum_{k=1}^{n-1} \mathbf{M}(\zeta_{k}^{2} \beta_{k})} \sum_{j=k+1}^{n} d_{j}^{2} \right|.$$

Taking into account that

(12)
$$\mathbf{M}(\zeta_n^2 \beta_k) - \mathbf{M}(\zeta_k^2 \beta_k) = \mathbf{M}((\zeta_n - \zeta_k)^2 \beta_k) + 2 \mathbf{M}(\zeta_k \beta_k (\zeta_n - \zeta_k))$$

and $\mathbf{M}(\zeta_k \beta_k(\zeta_n - \zeta_k)) = 0$, it follows that

$$\mathbf{M}(\zeta_k^2 \beta_k) \le \mathbf{M}(\zeta_n^2 \beta_k).$$

Thus

(14)
$$\sum_{k=1}^{n-1} \mathbf{M}(\zeta_k^2 \beta_k) \left(\sum_{j=k+1}^n d_j^2 \right) \leq D_n^2 \cdot \sum_{k=1}^{n-1} \mathbf{M}(\zeta_k^2 \beta_k) \leq D_n^2 \mathbf{M}(\zeta_n^2) = D_n^4.$$

Thus we obtain finally, taking into account that $\mathbf{M}(\alpha^2) = \mathbf{P}(A)$, that

(15)
$$\mathbf{M}(\zeta_n^2 \alpha) \ge \sum_{k=1}^n \mathbf{M}(\zeta_k^2 \beta_k \alpha) - 2 D_n^2 \sqrt{\mathbf{P}(A)}.$$

On the other hand if $\beta_k = 1$, one has $\zeta_k^2 \ge \lambda^2 D_n^2$. Thus

(16)
$$\sum_{k=1}^{n} \mathbf{M}(\zeta_{k}^{2} \beta_{k} \alpha) \ge \lambda^{2} D_{n}^{2} \mathbf{M} \left(\alpha \left(\sum_{k=1}^{n} \beta_{k} \right) \right) = \lambda^{2} D_{n}^{2} \mathbf{P}(AC_{n})$$

where C_n stands for the event $\max_{1 \le k \le n} |\zeta_k| \ge \lambda D_n$. We obtain from (15) and (16)

(17)
$$\mathbf{P}(AC_n) \lambda^2 D_n^2 \leq \mathbf{M}(\zeta_n^2 \alpha) + 2 D_n^2 \sqrt{\mathbf{P}(A)}.$$

On the other hand,

(18)
$$\mathbf{M}(\zeta_n^2 \alpha) \leq \sqrt{\mathbf{P}(A) \mathbf{M}(\zeta_n^4)}.$$

As clearly

$$\mathbf{M}(\zeta_n^4) \le F_n^4 + 3D_n^4$$

414 RÉNYI

we obtain from (17), (18) and (19)

(20)
$$\mathbf{P}(C_n \mid A) = \frac{\mathbf{P}(AC_n)}{\mathbf{P}(A)} \le \frac{1}{\lambda^2 \sqrt{\mathbf{P}(A)}} \left(2 + \sqrt{3 + \frac{F_n^4}{D_n^4}}\right).$$

Thus (5) is proved.

Our theorem may e.g. be used to obtain an estimate for

$$\mathbf{P}(\max_{1 \le k \le v_n} |\zeta_k| \ge t_n)$$

where v_n is a random variable, which may depend on the variables ξ_k . Let v_n take on the values $n+1, n+2, \ldots, n+s$ with the corresponding probabilities p_1, p_2, \ldots, p_s . If A_l denotes the event $v_n = n+l$ $(l=1, 2, \ldots, s)$ one has by Theorem 1, in the case $|\xi_k| \leq 1$ $(k=1, 2, \ldots, n)$

(21)
$$\mathbf{P}(\underset{1 \le k \le r_n}{\text{Max}} | \zeta_k | \ge t_n) = \sum_{l=1}^s \mathbf{P}(\underset{1 \le k \le n+l}{\text{Max}} | \zeta_k | > t_n | A_l) \mathbf{P}(A_l) \le$$

$$\le \frac{4}{t_n^2} \sum_{l=1}^n \sqrt{\mathbf{P}(A_l)} D_{n+l}^2 \le \frac{4 D_{n+s}^2}{t_n^2} \sqrt{s}.$$

Thus we obtain, putting $t_n = \lambda D_{n+s}$ the following Corollary. If ξ_1, \ldots, ξ_n are independent random variables, with mean value zero and satisfying $|\xi_k| \leq 1$, further if v_n is a random variable capable of the values $n+1, \ldots, n+s$ and if D_k^2 denotes the variance of $\zeta_k = \xi_1 + \xi_2 + 1$

$$+ \dots + \xi_k$$
, we have for $\lambda < 2\sqrt[4]{s}$

(22)
$$|\mathbf{P}(\max_{1 \le k \le r_n} |\zeta_k| > \lambda \, D_{n+s}) < \frac{4 \, \sqrt[k]{s}}{\lambda^2} \cdot$$

(Received June 18, 1961.)

REFERENCES

[1] Kolmogoroff, A. N.: "Über die Summen durch den Zufall bestimmten unabhängigen Größen." Math. Annalen 99 (1929) 301—319.

[2] Doob, J. L.: Stochastic processes. Wiley, New-York, 1953.

О НЕРАВЕНСТВЕ А. Н. КОЛМОГОРОВА

A. RÉNYI

Резюме

Доказывается следующее обобщение известного неравнества А. Н. Колмогорова. Пусть ξ_k ($k=1,2,\ldots$) независимые случайные величины, имеющие математическое ожидание 0, конечные дисперсии d_k и четвертые моменты f_k^4 . Положим $\zeta_k = \xi_1 + \xi_2 + \ldots + \xi_k$, $D_n^2 = d_1^2 + d_2^2 + \ldots + d_n^2$, $F_n^4 = f_1^4 + \ldots + f_n^4$. Пусть A произвольное событие с положительной вероятностью ${\bf P}(A)>0$. Тогда имеет место для всех $\lambda>1$

$$\mathbf{P}(\max_{1 \leq k \leq n} |\zeta_k| \geq \lambda \, D_n \, | \, A) \leq \frac{2 + \sqrt{3 + \left(\frac{F_n}{D_n}\right)^4}}{\lambda^2 \sqrt{\mathbf{P}(A)}}.$$