ON TRIGONOMETRIC SUMS WITH GAPS
by
P. ERDOS

A well known theorem states as follows:!
Let ny < my < ..., myy;/n > A > 1 be an infinite sequence of real

numbers and > (a 4 b}) a divergent series satisfying
k=1

1) lim (a% + b3)% 2Na%+b%]_%=0.
Then o -
P_{g’[tg{k;l\:(akcos2nnkt—}—bksin2nnkt)<
(2) »
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<wl_§,(=2|(ak+ bk) : ZVET; e “/*du.
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E denotes the Lebesgue measure of the set in question).
; g q

In the present paper I shall weaken the lacunarity condition
Ny q/ny > A > 1. In fact I shall prove the following

Theorem 1. Let n, < ny, << ... be an infinite sequence of integers salis-
fying
C
3 Repq > M |1 X
3) > 1+ 2]

where ¢, — oo. Then

N

E«{ = (cos2nnk(t—z9,‘,)<w-NV2}
t

k=1

1
(4) lim — J G_wlz du .
N=cw P
It seems likely that the Theorem remains true if it is not assumed that
the n, are integers. On the other hand if n, ,,/n, — 1 is an arbitrary sequence
of integers it is easy to construct examples which show that (1) is not enough

! R. SaLEM and A. ZyGMUND: “On lacunary trigonometric series I. and I1.”, Proc.
Math. Acad. Sci. USA 33 (1947) 333—338 and 34 (1948) 54 —62.

For the history of the problem see M. Kac: “Probability methods in analysis and
number theory”. Bull. Amer. Math. Soc. 55 (1949) 641 —665.
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for the truth of (2). It is possible that (3) and

Ve %
lim [2 ak+b2] (Z(ak+b)]

|
where in > 5 N < My < ny suffices for the truth of our Theorem. But I can
not at present decide this question and in this paper only consider the case
ak B bk == 1.

I can show that Theorem 1. is best possible in the following sense: To

: : c
every constant ¢ there exists a sequence n;, for which n,, >n, |1+ Ty but

(4) is not true. To see this let u;, tend to infinity sufficiently fast. Put

nAz+,—7zA+Irl[7;{‘-J. 1<l<2k+1.

Clearly n,. , > n, (1 - % if ¢, is sufficiently large and it is not difficult to
r”

see that (4) can not be satisfied. We do not give the details.
Further I can prove the following

Theorem 2. Let n, < ny << ... be an infinile sequence of integers for
which for every ¢ > 0 there exists a k,= k, (¢) so that for every k >k,
(5) Mpg1 > Ny + My[en'l] -

Then (4) holds.

It is not difficult to construct sequences for which (3) holds but (5) does
not hold and sequences for which (5) holds and (3) not, or Theorems 1 and 2
are incomparable. (3) seems to be easier to verify, thus Theorem 1 is probably
more useful. We will not give the proof of Theorem 2 since it is similar to that
of Theorem 1.

To simplify the computations we will work out the proof of Theorem 1
only for a cosine series, the proof of the general case follows the same lines.

Theorem 1’ Let n, < ny, << ... be an infinite sequence of integers satis-
fying (3). Then

w

L_ J e s du .
V2 2

A well known theorem of Chebyshev implies that to prove Theorem 1
it will suffice to show that for every [, 1 < [ < oo

1 2 o 0 ifZisodd,

(4) lim
N=o

N N\ %
E{Zcos2nnkt<w(;} } =
t

k=1 &

Mz

cos 2mn,t

—l———N—yz—— dt = (27,)—% xl e_x,/’ dx = l !

AN | B

x
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lim 7§} = lim

N N—o iflis even.
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It is easy to see that (e = +1,1 <1 <)
1

1
oL 5 ;
; 1 <5 h(ny, -ty
7 s2ant=— N cos|2 2 PR AP PG LR
(7) J l=1[ cos 2 m; 2’J / q(os( 4 &M, ) ~

8y niy i=1

0 0
1
where A(n,, ..., n;) denotes the number of solutions of M ¢&; n; = 0. From (7)
i=1
we have
N2 1
where ¢, ... ,% runs through all the Il-tuples formed from the integers
1 < r £ N (where order counts). Clearly X h(n;, ... ,n;) equals the number
of solutions of
!
(9) 26 n,=0, 1=r, <N (order counts here too).
i=1

Thus to estimate 1) we only have to estimate the number of solutions of (9).
Assume first [ even | = 2s. Then (9) has trivial solutions such that among the
terms in (9) each n, occurs the same number of times with a positive as with
a negative sign. The number of these trivial solutions clearly equals

|
(10) 1+ 0(1))%‘_ N2,
—|!
3
Now we prove the following
Lemma 1. Let {n,} be a sequence of integers satisfying (3). Denote by
g/(A, N) the number of solutions of
1

(11) Den, =4, 1sn<...2n<N
=7
where the trivial solutions are excluded.
T hen
(12) max g,(4, N) = o(N"?) .
A

(The trivial solutions can only occur if 4 = 0 and [ is even).
From Lemma 1, (8) and (10) it follows that

I 0 if 7 is odd
lim I = !

Ne=w 912

— if I is even
LA
3
which implies Theorem 1. Thus to complete our proof it will suffice to prove
Lemma 1,and in fact Lemma 1is the only new and difficult part of our paper.
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First we show that the Lemma holds for / = 1 and [ = 2. For I = 1 the
Lemma is trivial, the number of solutions of (11) is at most one for I = 1.
Now we need

Lemma 2. The number of n; satisfying (k — <o)
mrl<m<nx

is o(k* log x) + o(1) + o((log x)?).

The Lemma follows immediately from (3). (The term o(1) is needed only
for small x and the term o((log x)2) only for very large «.)

If 4+ n, 4+ n,, = A(n,, > n,,) we must have (by (3))

(13) ‘g <n, <|A|N.

From (13) and Lemma 2 we obtain that the number of solutions of (11) for
Il = 2is o(N"% log N)=o(N) uniformly in 4 which proves Lemma 1 for ! = 2.

Now we use induction with respect to /. Assume that (12) holds for all
I’ < 1, we shall then prove that (12) holds for I too. We assume now [ > 3
and distinguish four cases.

In case I.
] 1
(14) N N S Ny, S My
holds for all 1 <: <17 — 1.
Put (1<s<1—1)
(15) 2" < max ngfny,,, = v, /n,,, < 2"
Clearly 0 < n < log N/log 2. Evidently there are at most N choices for =,,.
Let + <l —1.If mn,, ... ,n, have already been determined then by (15)
and Lemma 2 there are at most o(N*n) choices for n,, . Now we show that
N% : .
for n,, there at most are o(N%/2") 4 o(1) = o‘ﬂ choices (if n,, ..., %,
n

has already been chosen). To see this observe that from (15) we have

!
(16) l p T P e
i=s+1 2
Thus from (11) and (16)
& 01
(17) A—2einizesn,,—}—?,n,,,\0[<1.
i=1

(17) implies that n,, must lie in an interval (a, 8) with o < < « (1 i 5 ;—i) -

1,

Thus from Lemma 2 there are at most o

N%
—Z—n—) +o(l) =0

nr, as stated. Finally if »,, ... ,n,_ has already been determined there are
=1

N7 .
2) choices for
2n/4

at most 21 choices for n,, (i. e. > & n,, can be chosen in 2/-! ways). Thus the
=1
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total number of choices for n , ny, satisfying (15) is at most

ry c oot

18 N(o(% m))-30[ 2\ = oqavuzy ™=
(18) oN (o(N¥% m)) 0(2,,,4 — o) 2.

From (18) we evidently obtain that the number of solutions of (11) in
case I is

o(NU2) > E o(N'2) .
n=0 214
In case IT (14) holds for ¢ < j,j = 3andfor¢t =353 <1 — 1
(19) Ny, < 1772,7. :
We show that if n,, ..., n,_ hasalready been determined, then there are
only a bounded number of choices of n,,. To see this observe that by (19)
[ -] l
&My, | < =5 My,
[:%1 ] i N i
Thus from (11)
j—1
(20) A— 2 gn,=¢ n,,+6 R

=1

or n,must lie in an interval (a, ) with o < f < « (1 -+ CFZJ Thus by Lemma 2

there are only a bounded number of choices for n,,.
Put

(15%) 28 = 1;2}{171”/””“ =N, [n,, <2,
i<j

As in case L. there are at most o(N%/2"*) choices for n,,, o(N*n) choices for
nyl< i< j, 1 5 s and at most N choices for n,,. Thus we see as in case I
that for n,, ... , n, there are at most o(INJ'2) choices. If n ny; are already

L CNCRTS

chosen there are 2/ choices for 2 &; ny,. Hence there are only 2/o(N/"?) =
i=1

J
— o(N/"2) choices for > ¢;n,,. By our induction hypothesis there are o(N(—/2)
i=1

solutions of

(21) e Nan . X g
i=1 i=j+1
inn.,, , Ny Thus finally there are o(N"?) solutions of (11) in case II.

In case 111 (14) holds for ¢ = 1, but

B, 7 B, -
The same proof as in case II shows that if n,, has already been chosen there are
only a bounded number of choices for n,,. Thus since there are at most N
choices for n,, there are at most cn choices for ¢, n, + & n,,. Hence arguing
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as in (21) we see that by our induction hypothesis the number of solutions of
(11) is o(N*?) in case III too.

In case IV n,, < %nh i. e. (14) never holds. We see by the same argu-

ment as in (20) that there are only a bounded number of choices for », and
therefore again arguing as in (21) we obtain by our induction hypothesis that
in case I'V (11) has o(N"?) solutions.

Thus combining the four cases we obtain that the number of solutions of
(11) is o(N"?) uniformly in A, or (12) — and therefore Lemma 1 is proved.
Hence the proof of Theorem 1 is complete.

Let f(k) — o= monotonically. It is easy to see that

(22) my = [k 18]

satisfies (3), hence Theorem 1 holds for the sequence (22).
It is not difficult to see that Lemma 1 is best possible in some sense,
namely if (3) is replaced by

Rigq =M (1 + {?) ¢ independent of k
then (12) in general will not hold. On the other hand (12) may very well hold
for special sequences which do not satisfy (3). In particular I would guess that

(12) and therefore Theorem 1 will hold if n, = [¢¥“] for every a > 0.1 cannot
even prove this for a = 1/,.

(Received August 25, 1961.)

0 JJAKYHAPHbBIX TPUTOHOMETPHUECKHUX PSAAX

P. ERDOS
Pe3ome
B paloTe joKa3biBaeTcsl Clieyloliasi Teopema: MyCTb 7 < Ny < ... IIO-
CJIe/10BaTeJIbHOCTb HaTyPaJIbHbIX UMCeJI JIJIsT KOTOPBIX
Ck
’nk+1>'n,\. l+ﬁ) (’\":1,2,...),

rie
ilm ¢ = -+ oo.
i

Mycts Sn(t)= > cos 2m,(t — ¥,) rjie BeluecTBeHHbIE UKCiIA ¥ POU3BOJIBHbIE.

k=1
[Tyctb !;{ } o003HayaeT MHOXeCTBO Tex uYuces ¢ B uHTepBajie 0 < f <1
JUIs1 KOTOPBIX yCJI0BUe B CKOOKaX BBHINOJIHSETCS, U MyCTh llél — mepa Lebesgue-a
MHO)KeCTBa !tE Torna umeem 1Jisl Bcex @ (— oo < @ < o)

lim | E {Sx(f) < oYV} = —— J 12 du
ravlly = Van
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