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A well known theorem states as follows:1 

Let < T&2 < • • • j Пк +i I > A > 1 be an infinite sequence of real 
00 

numbers and ^ (ak -f- Ь() a divergent series satisfying 

(1) lim {al + Ы ) * + = 0 . 
N = o o \k=I I 

Then 
! ( N 

lim I E > 2 {ak cos 2 nnkt -f- 6fcsin 2 n n k t ) < 
rt-voo ! t I A:=°= 

(2) 

< ft> ^ 2 H + K) 
1 2 fc=i 

y2i 

1/2 
L ('*-»• 
In J 

i- du. 

( I E { } j denotes the Lebesgue measure of the set in question). 

In the present paper I shall weaken the lacunarity condition 
nk+ilnk > A > 1. In fact I shall prove the following 

Theorem 1. Let n] < n2 < ... be an infinite sequence of integers satis-
fying 

(3) 

where c^—Then 

" k + i > Щ № 

(4) lim 
N = 00 

E [ 2 [ c o s 2 л nk (t - êk) < со • A 7 4 = - L = F e~u,b du. 
t U = 1 I ) p 2 л j 

I t seems likely tha t the Theorem remains true if it is not assumed that 
the nk are integers. On the other hand \î nk+fnk-^- 1 is an arbitrary sequence 
of integers it is easy to construct examples which show that (1) is not enough 

1 R . SALEM and A . Z Y G M U N D : "On lacunary trigonometric series I. and I I . " , Proc. 
Math. Acad. Sei. USA 33 (1947) 3 3 3 - 3 3 8 and 34 (1948) 5 4 - 6 2 . 

For the history of the problem see M. KAC: "Probability methods in analysis and 
number theory". Bull. Amer. Math. Soc. 55 (1949) 641 — 665. 
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for the truth of (2). I t is possible t h a t (3) and 

Z < + bi lim 
N=oo 

Уж N 

k = 1 

— Уж 
= о 

l 
where in — nN < nk ^ nN suffices for the t ruth of our Theorem. But I can 

Là 

not a t present decide this question and in this paper only consider the case 
« к = ък = 

I can show t h a t Theorem 1. is best possible in the following sense : To 

every constant с there exists a sequence nk for which nk+1 > nk 11 -|——j but 
I kv* ] 

(4) is not true. To see this let uk t end to infinity sufficiently fast. Put 

» * • + ! = nk + lc 1 , 1 ^ I ^ 2 к + 1 . 

Clearly nr+1 > nr 1 + — 
7*72 

if с, is sufficiently large and it is not difficult to 

see t h a t (4) can not be satisfied. We do not give the details. 
Further I can prove the following 

Theorem 2. Let nx < n2 < . . . be an infinite sequence of integers for 
which for every e > 0 there exists a k0 = k0 (e) so that for every к > ktl 

(5) « k + i > n k + n k _ U k > L ] 

Then (4) holds. 
I t is not difficult to construct sequences for which (3) holds but (5) does 

not hold and sequences for which (5) holds and (3) not, or Theorems 1 and 2 
are incomparable. (3) seems to be easier to verify, thus Theorem 1 is probably 
more useful. We will not give the proof of Theorem 2 since it is similar to that 
of Theorem 1. 

To simplify the computations we will work out the proof of Theorem 1 
only for a cosine series, the proof of the general case follows the same lines. 

Theorem 1'- Let nx < n2 < . . . be an in 
fying (3). Then 

sequence of integers satis-

(4') 
I í N 

lim E Z 
N=co I t I k = I 

cos 2 7Г n,.t < со 
IN I h 

о 
1 = - L Í e~u'l'du . 
I f 2 л J 

A well known theorem of Chebyshev implies that to prove Theorem 1' 
it will suffice to show that for every I, 1 ^ I < 0 0 

0 if I is odd, 

dt = (2 л)~У' xl e~x'l' dx= I! lim = lim 
N=c 

(6) 

N=00 

N \ I 
cos 2nn k t 

k = 1 

0 

NV' 

ï l / 2'/2 I 
• ifZis even. 



ON TRIGONOMETRIC SUMS WITH GARS 3 9 

I t is easy to see that = ± 1 , 1 á ® á 

(V 
J 
о 

У £ cos 2 л ni t — ™ N T cos 2 л ^ ei ni t J dt = 
1 = 1 ^ J e , , . . . ! u ' / = 1 ' 

h(n1, . . . ,71) 
2 ' 

where h(nu . . . , «,) denotes the number of solutions of V ni = 0. From (7) 
i = l 

we have 
f Д7 //2 1 

IN = -~2Knh> • • • >nu) (8) 

where iv ... , il runs through all the /-tuples formed from the integers 
1 rgl r f i N (where order counts). Clearly £ h(niv . . . . «,-,) equals the number 
of solutions of 

i 
(9) SEf nr, = 0 , 1 ^ r, ^ N (order counts here too). 

/ = 1 

Thus to estimate 7 $ we only have to estimate the number of solutions of (9). 
Assume first I even I = 2s. Then (9) has trivial solutions such t h a t among the 
terms in (9) each nr occurs the same number of times with a positive as with 
a negative sign. The number of these trivial solutions clearly equals 

(10) 
и 

(i + o(i)) г  

( 2 j 

NU2. 

Now we prove the following 

Lemma 1. Let {nk} be a sequence of integers satisfying (3). Denote by 
g,(A, N) the number of solutions of 

(11) £, nT{ = A , 1 ^ r, ^ . . . ^ ri ^ AT 

where the trivial solutions are excluded. 
Then 

( 1 2 ) max g,{A, N) = o(A7"2) . 

(The trivial solutions can only occur if A = 0 and I is even). 
From Lemma 1, (8) and (10) it follows that 

lim 7$ = 
N= O= 

0 

/ ! 

2 ' / 2 

if I is odd 

if I is even 

which implies Theorem 1. Thus to complete our proof it will suffice to prove 
Lemma 1, and in fact Lemma 1 is the only new and difficult par t of our paper. 
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First we show t h a t the Lemma holds for I — 1 and 1 = 2 . For I = 1 the 
Lemma is trivial, the number of solutions of (11) is at most one for 1 = 1 . 
Now we need 

Lemma 2. The number of nx satisfying (k -> 

nk X-1 < m, < nk X 

is о(ку* log x) + o(l) -f- °((log x)2)-
The Lemma follows immediately from (3). (The term o(l) is needed only 

for small x and the t e rm o( (log x)2) only for very large x.) 
If ф nri i пГг

 = Л(пГ1 > пГг) we must have (by (3)) 

(13) A 
< nr. < I A \ N . 

2 - n 

From (13) and Lemma 2 we obtain tha t the number of solutions of (11) for 
I = 2 is o(N% log N) = o(N) uniformly in A which proves Lemma 1 for I = 2. 

Now we use induction with respect to I. Assume that (12) holds for all 
Г < I, we shall then prove that (12) holds for I too. We assume now I ^ 3 
and distinguish four cases. 

In case I. 

(14) j nri g nn+i g nri 

holds for all 1 g i g I — 1. 
Pu t (1 gs g l — 1) 

(15) 2" ^ max nrJnri+i = nrJnr,+i < 2"+L 

Clearly 0 g n g log Nflog 2. Evidently there are a t most N choices for nri. 
Let г < Z — 1. If nn, . . . , nn have already been determined then by (15) 
and Lemma 2 there are at most o(N%n) choices for nr. . Now we show that 

NYt 

for nr> there at most are o(N^f2") + o(l) = о j choices (if nn, . . . , 

has already been chosen). To see this observe that f rom (15) we have 

(16) 
/ 

V l'nr. 
Z>. E: 7?,. < ф 

•I 2 " i = s + I 

Thus from (11) and (16) 
S—1 QL 

(17) A — £ e,-ra 4 = e s n r , + — п г , . | 0 | < 1 . 
1 z. 

(17) implies that nr> must lie in an interval (a, ß) with a < ß < a 

i NVA , ч (NU 

cl i 
2", 

/ N гл / N'a \ 
Thus from Lemma 2 there are at most о -I- o(l) = о choices for 

\ 2 " I 1 2 " / U 

nr, as stated. Finally if nn, ... , has already been determined there are 
z - i 

at most 2 ' - 1 choices for nn (i. e. ^ e , nri can be chosen in 2 ' - 1 ways). Thus the 
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total number of choices for nri, ... , nr, satisfying (15) is at most 

2 " / 4 

/ A M 
( 1 8 ) c # ' ( o ( t f * n ) ) , - < o l — U o ( № ) 

From (18) we evidently obtain that the number of solutions of (11) in 
case I is 

o(N"2) 2 ^ = • 

In case I I (14) holds for i < j , j ^ 3 and for i — j I — 1 
1 

(19) nr,+l < — nn . 

We show tha t if nrv ..., nri_t has already been determined, then there are 
only a bounded number of choices of nTj. To see this observe that by (19) 

i 

2 einn I < 
Thus from (11) 

J - i / „ 

(2°) A - >' e, nu == ej nn + ]0| < 1 
N 

or nrj must lie in an interval (a, ß) with a < ß < a 1 + ^ 
N 

. Thus by Lemma 2 

there are only a bounded number of choices for nrj. 
Put 

(15') 2" è max nrJnr. = nrJn < 2" + 1 . 

As in case I. there are at most o(N läj2nli) choices for n r i , o (AM) choices for 
n{, \ <i<j,i=f=s and at most N choices for nri. Thus we see as in case I 
tha t for nn, ... , nrf there are at most o(A7J'2) choices. If nri, ... , nr. are already 

j 
chosen there are 2J choices for 2einn • Hence there are only 2'o(N'12) = 

i = i 
j 

— o(Njli) choices for 2 L n u • By our induction hypothesis there are o(A( -M2) 
i= 1 

solutions of 
j I 

( 2 1 ) A - 2 s i M = 2 £ , n n 
i = i i = i + i 

in n j+l, ..., nn. Thus finally there are o(A"2) solutions of (11) in case II . 
In case I I I (14) holds for i = 1, but 

The same proof as in case I I shows that if nn lias already been chosen there are 
only a bounded number of choices for nr%. Thus since there are at most N 
choices for nri there are at most cn choices for e1 nn -f- e2 пГг. Hence arguing 
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as in (21) we see that by our induction hypothesis the number of solutions of 
(11) is o(N"2) in case I I I too. 

In case IV nr% < ^ nri i. e. (14) never holds. We see by the same argu-
ment as in (20) that there are only a bounded number of choices for n n and 
therefore again arguing as in (21) we obtain by our induction hypothesis tha t 
in case IV (11) has o(N"2) solutions. 

Thus combining the four cases we obtain tha t the number of solutions of 
(11) is o(N"2) uniformly in A, or (12) — and therefore Lemma 1 is proved. 
Hence the proof of Theorem 1 is complete. 

Let f(k) —*• °° monotonically. I t is easy to see t h a t 

(22) nk = [ekV* «*>] 

satisfies (3), hence Theorem 1 holds for the sequence (22). 
I t is not difficult to see that Lemma 1 is best possible in some sense, 

namely if (3) is replaced by 
с 

lk+1 > n u 1 + k* 
independent of к 

then (12) in general will not hold. On the other hand (12) may very well hold 
for special sequences which do not sat isfy (3). In particular I would guess tha t 
(12) and therefore Theorem 1 will hold if nk = \ek"] for every a > 0. I cannot 
even prove this for a = 1/2. 

(Received August 25, 1961.) 

О ЛАКУНАРНЫХ ТРИГОНОМЕТРИЧЕСКИХ РЯДАХ 
Р. E R D Ő S 

Резюме 

В работе доказывается следующая теорема: пусть п < п2 < . . . по-
следовательность натуральных чисел для которых 

Пк +1 > » * 

где 

1 + 
Ц) 

(к= 1 , 2 , . . . ) , 

lim ск = + оо. 

Пусть SN(t)= cos 2nnk(t — &k) где вещественные числа ^произвольные . 
/с= I 

Пусть E { } обозначает множество тех чисел t в интервале 0 ^ t ^ 1 

для которых условие в скобках выполняется, и пусть |Е| — мера Lebesgue-a 

множества Е. Тогда имеем для всех со (— оо с со < оо) 

lim j E {SN(t) < со У N} ! = - L Г е ~ и ' / 2 du . 
V2n J 
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