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1. In the present paper we are going to consider quadratic matrices of
order p, the elements of which are real or complex functions defined in the
interval [ —x, #]. In the sequel such matrices will be called functional matrices.
If we state a condition for a functional matrix, this must be taken in the sense
that the condition must hold for all elements of the matrix. In this sense we
speak of bounded, measurable, integrable, continuous etc. functional matrices.
By the integral of an integrable functional matrix we understand the matrix
formed from the integrals of its elements, and denote this by writing the
functional matrix in question as integrated behind the integral sign. The unit
matrix and the zero matrix will always be denoted by E and O respectively,
and the spur of a matrix will be denoted by an ‘“Sp” written before the sign
of the matrix.

A Hermitian matrix will be called positive definite, if the corresponding
Hermitian form vanishes only in the point 0, and takes in every other place
positive values. If the form takes the value zero also outside the point 0, while
it is nowhere negative, the corresponding matrix will be called positive semi-
definite. The positive definite and the positive semidefinite Hermitian matrices
will have the common name of nonnegative definite matrices. Let A4 and B be
Hermitian matrices. We say that A > B, if A — B is nonnegative definite,
and A > B if A — B is positive definite.

In the sequel » runs through the rational integers, n through the nonnega-
tive integers, k, I through the integers from 0 to n, and a through the integers
from 1 to p. z and 2, denote respectively an arbitrary row vector of the p-
dimensional space with complex elements, while &, stands for a quadratic
matrix of order p built from arbitrary complex numbers.

2. Let f(x) be a Lebesgue measurable Hermitian matrix, positive definite
on a set of positive measure, and nonnegative definite elsewhere. With the aid

of this functional matrix we form the matrices

", = (L3 J f(x) e~ > dx
2n
and with the aid of these the hypermatrices
a, a Sl 20
a_, a d e
(1) T.(f) = R :
) T T TR
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T, (f) and the determinant D, (f) = Det T, (f) will be called the n-th Toep-
litzian matrix and determinant respectively, generated by the functional mat-
rix f(x). (For the case p = 1 see [2], 17, 38.)

As one easily sees, these are Hermitian matrices. It is also easy to show
that they are positive definite. Indeed, we form with the vectors 2, the Hermi-
tian form

n
(2) = zkal—kzl*— s J
KI=0

2 2 eth

n
elkx]

—7

Since f(z) is a Hermitian functional matrix, positive definite on a set of positive
measure, the function
)*

n
is positive on a set of positive measure, if only > z, 2% > 0, i. e. if the right
k=1

2 z e'*x| f(x)
k=0

hand side of (2) is positive.
The purpose of the present paper is to demonstrate the following

Theorem. If f(x) is a Lebesque measurable, nonnegative definite Hermitian
Sfunctional matrixz, then

D,f) (0 |
T, | exp l s J log Det f(x) dalcI

-7

(3)

and this limit is to be taken equal to zero, if
(4) i! log Det f(x) dx = — oo.

The author has investigated matrices of the form (1) in several papers
([31, [4], [6]). In all three of these he has derived the theorem just formulated
under more special conditions. So, in his paper [4], the author has obtained
the limit (3) under the assumption that f(x) is a continuous, real, symmetric
functional matrix, and

(5) inf 2f(z)2*=m > 0, 2€[—=n, 7], 22*=1.

In papers [3] and [5] the expression (3), and its equivalent form based on the
limit relation

n+1
(6) tim =220 1 D, 7)

n—1 n—-»o

has occurred as a special case of more general theorems. Indeed, this was the
case in [3] for continuous Hermitian functional matrices satisfying condition
(5), while in [5] the condition of continuity was replaced by boundedness and
measurability.

As is well known, eigenvalues of Toeplitzian matrices in the case p = 1,
i.e. when the generating functional matrix is replaced by a generating function,
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have first been investigated by G. Szegd ([8], [9], [10]). He was also the first
to obtain for the case p = 1 the result expressed in our theorem ([8], [9], [10]).
In the proof of our theorem we make use of the following theorcm of
Herson and LOWDENSLAGER ([6], 186):
If f(x) is a Lebesgue measurable nonnegative definite Hermitian matrix and
dM an arbitrary measure taking as values nonnegative Hermitian matrices and

having the absolute continuous part 2i f(x) dx, then
T

n

(1) 'int - JSp [(xy + P) (xy + P)* dM]=exp Eohs Jﬂ Sp log f(x) dazcl ;
WP P . |22p J

where x, runs through all unimodular matrices and P through the trigonometric

polynomial matrices

(8) P(e™) =k§) @, eikx.

(7) must be taken equal to zero, if
f Sp log f(x) dx = — oo .

It is also known that the theorem just quoted of HELsox and LowDENs-
LAGER has been proved for the case p = 1 by G. SzecS under the assumption
that f(x) is absolutely continuous, and later without this assumption by
Kormogorov ([7]).

In order to establish a connection between our theorem and that of
HersoN and LOWDENSLAGER, we shall need the matricial generalization of the
Lagrange transformation relative to positive definite Hermitian hypermatrices
built from matrices of order p. This generalization will be given in 3. The theo-
rem itself will be proved under 4. There it will also be pointed out that from a
special case proved earlier [5] of the theorem of the author formulated in this
paper the special case of the theorem of HELsSON and [LOWDENSLAGER can easily
be derived.

3. Let the positive definite Hermitian matrix of order (m + 1)p

@y @y, ... Q

alo an & > alm
(9) Am =

Qny Ay - -+ Ay

be given, which is built from matrices a,, of order p. By the form belonging to
the matrix (9) we understand the matrix

m

(10) k%‘() e ot = (8%, ...9,).

Now we prove the following lemma, constituting a generalization of the
well known Lagrange transformation:
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Lemma 1. By the transformation

(EorEis oo v s Em) = (Xo, &y, .., 2) B
defined with the aid of the hypermatrix
. 0 B s B
1301 E o e O
b= Boo B2 E c.:e O

lﬂ()m ﬂlm ﬂ2m ... E

built from matrices of order p which depend only on the elements of the matrix (9)’
the positive definite Hermitian form (10) can be given in the form

IIm(wO’wl’ "°’mm) =§oyo§§+§171§f+ AL +§m}’m§;’

where Yy, yy, .. ., Y, are positive definite Hermitian matrices of order p.

For p = 1 our theorem gives the Lagrange transformation for positive
definite Hermitian forms.

Proof. Let

=1 e
a;, Gy = Py, (1i=L1 i)
and
So = o + wl/jm e 'l’mljom'
Since
- * K
&0 @gy §F = X Qoo Ty + Xy Ay &+« - o A+ By Wpng Xy + X Aoy XY +
+ X @ XF + . . . + Xy Ay ), - are members which do not contain x,,

using the notation a,,= y, we obtain
H, (o, ®,, . . ., &) = 5 Po &5 + Hny(®y, .., ) -

Let B,, denote the matrix which arises from B, if we replace by zeros all ele-
ments of B with the exception of those in the first column and in the diagonal,
and let 4,,_, denote the matrix of the form H,, | (x,, ..., a,), then from the
equality
Yo (0) *
B B:,=A4
# (<o> 4, " "

it is clear that A,,_, is a positive definite Hermitian matrix of order np. But
then, by the foregoing

Iim—l(wp o wlice )wm) = gl J’1 .E;k + Hm_2(m2, &: [o: % ,wm) A

Continuing this process, we obtain the theorem to be proved.
From our theorem there follows

Yo
4.=R i B*
(o) PYm
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and from this
Det A,, = D,, = Det y, Dety, ... Det p,,.
In view of
BT 0 50 Oy v w05 ) 5 By Y
ij=0
= (@ + ®; for + - -+ + BsBos) Po(®o + Xy By + « -+ + & Pog)* +
+ (@, + BB+ - -+ X Bys) Y1+ X frat - X By)*
+ i @y, 27,

if we denote by D, the determinant obtained from Det A4,, by leaving only the
first (s ++ 1) p rows and columns while cancelling everything else, the relation

(11) D, = Dety,Det p, ... Det yp,

follows.
Lemma 2. If the eigenvalues of y,, are 2™, and x,, runs through all unitary
matrices, then

(12) inf%SpHm(wo, Biss va'y W) =%[l(1’") + oo AM.

If, moreover, ax,, runs through the matrices, whose determinants have the absolute
value 1, then

P
inf L 3™ D,
1nf;SpHm(wo, By ey lig) = YA B9 = s
Proof. By Lemma 1 Sp §; y; £f = 0, and therefore
(13) Bp ML (0 s 506 ) = BPR Y B

Let y,, have the Jordan normal form
Yy UAL®, UU* =K.

If the sum of the squares of the absolute values of the elements standing in the
a-th row of the matrix U* ¥, is denoted by s2, then

(14) %Sp Xy et — %Sp/l (u* a2y 2, u) = %[sfiﬁ’") + ... F82AM].

If ¢, is unitary, in which case U* &} is also unitary, we have s2= 1, and
so (14), together with (13), already proves (12), the relation expressing the first
half of our theorem.

From (14) one gets

1 P
(15) 2 SP X P X 2 Yoy ... 8,2 2™ ... 2™,

and in view of the well known determinant theorem of Hadamard, by which

(81 -..8,)% = Det e, ®n
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and by the equality
M., .. 80 =Detyy, = Dn_
Dm—l

resulting from (11), we get the inequality
P

P
(16) %Sp & Ymith = Deba, b 4™ ... A = VDetwmm,’}‘, DD'"I
m-—

Let | Det a,, | = 1. From inequality (13) we get through inequality (16)
the relation

1 fa L5 5
(17) ;Sp By, -o o 8) & VA, L 080 = m

m—1

Now it remains only to be shown that the left hand side of (17) actually attains
the lower bound given in (17). Indeed, if

1 P
wmz(ﬂp siee ﬂp), Iﬂa‘zz }'——V Am l(m)

then |Detx, | =1 and
%SP L Yim X, = %U‘{"’ Bf* + -+ A6, — Vi RV LE

From the proof of Lemma 2 it is clear that the second assertion valid also for
| Det @, | =. 1.

By the proof of Lemma 2 and by Lemma 1 it is clear that there holds
the following

Corollary. The minimizing matrices &,, &y, . ... &, are given in both cases
of Lemma 2 by

(Ep, iy s+ o 5 BR)=H050, . 0 G B

if ax,, denotes an arbitrary unitary matriz, resp. a matrix satisfying the condition
| Deta,, | = 1 and minimizing the expression Sp &, P, Th.

4. In this section we are going to prove our theorem.

Since T',(f) is a positive definite Hermitian matrix, we can employ the
generalized Lagrange transformation defined in our Lemma 1. By giving
closer attention to the procedure which led us to this transformation, we re-
mark that the matrix yp, arising in the diagonal in the k-th step depends only
on the matrices @, a,, . . ., @,. From this it follows that continuing this proce-
dure for all values of n, we make correspond to the matrix (1) a sequence {y,}
of positive definite Hermitian matrices of order p.

Lemma 3. The sequence {y,} is monotonically nonincreasing.
In order to prove this we start with the form

Hn(mo’wl’ ’wn) = §o?o§:+§171§f+ oiels +§n?n§ﬁ

gained by use of the generalized Lagrange transformation of the form belonging
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to the matrix T,(f). Indeed, hence we get

1 L ¢ 1
’n —__<— Hn(o! Ly, o 7wn—1’E) = '2—7; J(k;; €Ly elkx)f(x) } dx =

1 ' *
= j ( > x, eitk—Dx l(k—l)x) dx = H (@, oo Xnr B
Since this inequality holds for all matrices @,, . . ., @, _,, the relation y, < y,_,
follows.

All elements of the sequence {7, } are positive definite Hermitian matrices.
So we have the following

Corollary 1. The limit lim p, = yp exists.

n—»o
Indeed, by Lemma 3, the sequence {z y,2z*} is monotonically nonin-
creasing and bounded for any fixed vector 2, and so it has a limit. With the aid
of suitably chosen vectors z it is easy to show that the sequence {y,} converges
elementwise.

Corollary 2. If the ezgenvalues of y, resp. of y are in monotonically non-
decreasing order A, ..., X and 2y, ..., 4, respectively, then X |, 2,.
For a proof see e. g [1] 298, Satz 15,

Corollary 3. The sequence {DD"({ } ) } ts monotonically nonincreasing.
n—1
On the basis of (11) and of Corollary 2 we indeed have

D.(f) = Dby, = AV ... 0 = A0 .. MY = Detg,, = Dyalf) =
Dn—l(f) D:z—z(f)
Corollary 3 gives the first assertion of our theorem.

Consider now the Hermitian forms (2) belonging to the matrices T',(f).
By Lemma 2 and by Corollary 3 to Lemma 3 we have the following

Lemma 4. If f(x) is a Hermitian functional matriz, Lebesgue measurable,
nonnegative definite and positive definite on a set of positive measure, then

% p

. 1D p
1 - J Sp(x, + P) (&, + P)* f(x) dx = '}112 \/Dn:—(l)?f) = |/Det p,

where x, runs through all matrices satisfying | Det &, |=1 and P through the
trigonometric polynomial matrices (8).

It is clear that (18) vanishes if and only if 4, = 0.

In case f(x) is positive semidefinite almost everywhere, we have D, (f)= 0,

Dulf)_

(18) inf
=, P

and so the quotients are senseless. Then however the infimum (18)

n—1
can be taken equal to zero by (6), which is true for nonnegative Hermitian
functional matrices f(z), positive definite on a set of positive measure.

4 A Matematikai Kutat6 Intézet Kozleményei VIL. A/1—2.
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Using now the theorem of HELsON and LOWDENSLAGER in (18), we
obtain the limit (3), proving at the same time our theorem.

By the preceding considerations it is necessary and sufficient for the
validity of (4) that 2, = 0 be valid, resp. that the Lebesgue measurable func-
tional matrix f(z) be almost everywhere positive semidefinite.

As we have already mentioned in the introduction, the author has ob-
tained the theorem just proved also independently of the theorem of HELsON
and LowDENSLAGER for the case when f(x) isa Lebesgue measurable, bounded,
positive definite functional matrix satisfying the condition (5). Of course our
Lemma 4 can also be used in order to prove with its help the theorem of
HeLsox and LowDENSLAGER for a functional matrix f(«) having these properties.
Indeed, it even follows from our remark on Lemma 2 that (7) remains also for
| Det a8, | = 1.

In his paper [11] T. BarLogH has investigated the infimum of

Sp _fnP(x) P*(x) f(x) de, where P(x) runs through all matrix polynomials of

grade n and of order p, which also satisfy the condition P(a) = E, where a
is an arbitrary fixed complex number. Formula (12) of Lemma 2 also answers
this question by a method and in a form different from those of T. BALOGH in
the special case, when o = 0, and in the more general case, when P(0) is an
arbitrary unitary matrix. The result of T. BaLogH is a generalization of a
theorem of Szrc6 ([2], 38).

Finally it is worth mentioning, that a new possibility would arise for
generalizing the theorem of SzEc6 mentioned in the introduction and to be
obtained from our theorem by putting p = 1, by determining the limit y of
the sequence {y,}, which exists in view of Corollary 1 to Lemma 3. This would
perhaps give a new matricial generalization of the theorem of Szec6. Namely
a matricial generalization of this theorem has already been given in the paper
[5] by the author.

(Received November 11, 1960.)
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OBOBI{EHUE OIHON TEOPEMBI SZEGO
B. GYIRES
Pe3iome

B HacTosilleii paboTe aBTOpPOM jl0Ka3biBaeTcs Clleflyiollasi Teopema:

[yctb f(x) ompenenenHast B uHTepBasie [—x, ] usmepumasi no JleGery
(GyHKUMS ¢ MaTPUUHBIMU 3HAUEHUSIMM, TUNA P X p, HEOTPHLATEJBLHO OIpejie-
JleHHast U epmuToBa. Ecin

D, (f) = Det (ap,-u)n

=0
rje
a, = 2—17; J.f(x) e lexdg,
TO .
DA ey 1 g o
=, Lo — o Det f(x) dx
D) v Xle_ f(@)

U 3TOT Mpejes paseH 0, eciu
-+ co
{ log Detf(x) dx = — oo

IMpu j0KasaTe/lLCTBE ABTOP YCTaHOBUT CBsi3b €O CJIEYIOIIUM Pe3yJILTATOM
HersoNn 1 LOWDENSLAGER [6], cTp. 186):

Ecnu dM pnanHas Mepa cocrosiiasi U3 HEOTPUIATeJIbHBIX CaMOCONPSIMeH-
1

HBIX MaTpUL TUIA P X P, 2—f(x) a0coJI0THO HenpepbIBHas1 YacTh Mepbl dM, P(x)
T

0€)KHUT 10 TPUTOHOMETPUYECKUM MOJIMHOMaM (HopMbl
n‘
ZAk e—ikt
k=0

KO3(pYUIMEHTBI KOTOPBIX SIBJISIOTCS MATPULIAMU THNA P X p, MOAYMHEHHBIE YCJIO-
Buio Det 4, = 1, 10

inf LS J Sp [P(x) dM(x) P*(x)] = exp .9 JSp [log f(x)] dx .
P D 2np

-

ABTOp 10JIyYHJI CBOIO Bbillle)OPMYJIMPOBAHHYIO TeOpeMYy M He3aBUCHMMO OT Teo-
pembl Xejicona—JloBjieHenarepa Uis ciyvasi, Koraa f(x) usmepumas no Jlebery
(GYHKLMS ¢ MaTPUUHBIMM 3HAYEHUSIMH, epMUTOBA U TUMA P X p, o6Jafaoas mo-
JIOKUTeJIbHOM HIDKHef M KOHeuHoit BepxHeii rpaubio. ([5]). Mcxomss u3 aroii
TeopeMbl MOYKHO JI0Ka3aTb MeTOJIOM aBTopa Teopemy XescoHa u JloBaeHcnarepa

st caydasi, Korga dM aGcoJIloTHO HenpepbiBHa, T. e. dM = 21— f(@) dx u f(z)
T

YAOBJIETBOPUT YCJIOBUSIM BblmerHBeIleHHOﬁ TEOPEMBI.

4%
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