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1. Our starting point is the following well-known problem: remove two 
squares at two opposite corners of a checker board and try to cover the rest 
with dominoes. (Each domino covers exactly two adjacent squares of the board.) 
The question arises: how is it possible? The answer is: it is impossible. Proof: 
each domino covers one light and one dark square and thus among the covered 
squares there are light and dark ones in equal number. However, the opposite 
corners are of the same colour (dark, say) and so the rest consists of thir ty dark 
and thirty-two light squares. 

This problem can easily be generalized in many ways. S . W. C O L O M B 
([1] and [2]) has dealt with several generalizations. He replaced the dominoes 
with various "polyominoes" and examined the possibilities of different cover-
ings of the common checker board. 

In this paper we are dealing with an other kind of generalization. From 
the polyominoes used by C O L O M B we maintain only two types: the "straight 
polyominoes" (called polyominoes here) and the "monominoes" (called simply 
squares). But the checker board is generalized, as an arbitrary large board is 
considered instead of the usual 8 x 8 one. 

After these introductory remarks let us formulate the problem more 
exactly. 

2. Let к and n be natural numbers. Consider a "generalized checkerboard" 
(called board in what follows) which consists of kn x kn squares. Deleting к 
squares of this board (called deleted or omitted squares), try to cover the rest 
(all the other squares) with k-ominoes i. е. k x 1 rectangles covering exactly к 
consecutive squares in one row or column. The question is: what conditions 
must be fulfilled by the omitted squares in order to make the covering of the 
rest possible. 

A certain position of the deleted squares on the board (related to each 
other) is called a configuration. Since this determines the localization of the 
remaining squares as well, we use the term "configuration" also for the whole 
board. (I.e., we say tha t a configuration is coverable if its rest is coverable, 
and tha t the conditions are fulfilled by a configuration if they are fulfilled by 
its deleted squares.) 

The case к = 1 is trivial whatever n is; in the following we shall confine 
ourselves to cases к > 1. The case к = 2 is essentially solved by the aid of the 
proof mentioned in the introduction. However, we shall seek conditions valid 
in general and these will contain к = 2 as a special case. 
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Our first condition is also based on the solution mentioned before. Let us 
colour the board with к colours in such a way tha t к consecutive squares in one 
row or in one column should be all of different colours. So the &-ominoes cover 
always к squares of different colours. Therefore, if among the deleted squares 
there are two of the same colour, it is sure tha t the configuration cannot be 
covered. 

This colouring, however, may be carried out not only in one way. The 
permutation of the colours does not give an essential change but we may alter 
t h e colouring essentially e. g. b y permuting several coloured rows. Evidently, 
w h a t we have s ta ted about an arbitrary colouring, it concerns every possible 
colouring as well. Consequently, we may state (without the need of any proof) 
t h a t the following Condition has to be necessarily fulfilled if a configuration is 
coverable. 
,p , The rest can be covered only if the deleted squares are of different colours — 
* 1' and this is valid for every colouring. 

In what follows we shall call some configuration "good" if it satisfies the 
above condition. 

3. The condition (Cx) is formally very simple. However, if we want to 
ascertain whether a configuration may be or may not be considered good, we 
are confronted wi th great difficulties. First, we have to colour the board, then, 
t o inspect if the deleted squares are of different colours or not. If they are, we 
m u s t repeat the whole process over again till for a certain colouring there are 
found two deleted squares of t he same colour, — or until we shall have exa-
mined every colouring. But this is almost impossible if к is great; the number of 
different colourings is equal to the number of Fside Latin squares. 

In the following we state a (similarly necessary) condition which is much 
more convenient for use. 

Let us number the rows and the columns of the board modulo k. This 
w a y we gave double indices to each square. We say two squares congruent by 
row if their row indices are equal. (The congruency by column is defined in the 
same manner.) Two rows (columns) are congruent if their squares are congruent 
by row (column). So, the mentioned Condition is: 

In order that some configuration should be coverable, its deleted squares have 
(C2) to be pairwise incongruent by row (resp. by column) and sim ultaneously all 

of them have to be congruent by column (resp. by row). 
We assert conditions (Cf) and (C2) to be equivalent. 
Proof. In the proof we may restrict ourselves to the case when the omitted 

squares are congruent with each other by column.1 

The properties of colouring imply that going along a row or column in the 
board we find the same colour again just after к steps. (Squares of the same 
colour may not be nearer by definition; if they would be farther, between the 
two equally coloured squares there must be at least к squares, the number of 
different colours used for these, however, is fc — 1.) Therefore the congruent 
columns (and congruent rows similarly) are coloured in the same manner. So, 
if t h e deleted squares are congruent by column, we may regard them — in 
respect of colouring — as belonging to the same column (leaving every square 

1 This is no restriction of the generality: turning the board by 90° the possibility of 
cover ing does clearly not change. 
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in its original row). Now, in one column two squares are of the same colour if 
and only if they are congruent by row. However, deleted squares are — by 
(C2) — all ineongruent, consequently they are all of different colours. 

Thus (C2) implies (C,). Let us now prove the implication in the opposite 
direction. 

First we establish tha t in a good configuration (i.e. satisfying (Cx)) it is 
impossible for two squares to be congruent by row and by column simultane-
ously. For, in such a case, they would have the same indices and hence they 
ought to be of the same colour in any colouring — contradicting (Cx). 

Similarly, in a good configuration there are not two squares which are in-
congruent by row and by column simultaneously. Suppose — opposing to our 
assertion — that two such squares can be found. Let these be called a and b. 
Consider a colouring. Let a be, say, red, and b greert. (They may not be of the 
same colour because of (Cx).) Let the square in the row of b and in the column 
of a be coloured blue. (This one may not be red or green: in the first case a 
and b would be congruent by row, and in the other ease they would be congruent 
by column.) Starting from this blue square and going towards b let us seek the 
first red and first green square. The green will be the jth and the red will be 
the / th one. Evidently j =f=l, j,l < к (the kth square is blue again). Starting 
from the column of a we exchange the jth and Ith column. So we get an other 
colouring where in the row of b the jth square will be red. Extending this new 
colouring to the whole board in the row of b every green square becomes red 
(therefore also b itself), while a remains red unchanged. But this is impossible 
because these squares belong to a good configuration. 

So we are ready essentially. Namely, choosing two deleted squares from 
a good configuration these are congruent either by row or by column (and by 
no means by both). Let these be, say, congruent by column. Now, choose a 
third square. If this is congruent by row with one of the preceding squares 
(and therefore ineongruent with the other), it must be ineongruent by column 
with them according to our first establishment. But in this case the third is 
ineongruent simultaneously by row and by column with one of the preceding 
squares — in contradiction to our second conclusion. Therefore, if the third 
square belongs to a good configuration, it must be ineongruent by row with 
the preceding ones — and necessarily congruent by column with them. The 
assertion may be successively seen for the other deleted squares in the same way. 

So we have proved the equivalency of (Cx) and (C2). In what follows we 
shall always refer to the condition (C2) because the verification of its fulfilment 
is incomparably simpler than in the case of (Сх). We maintain the expression 
"good configuration" concerning (C2) too. 

4. Condition (C2), as we have seen, is necessary for the possibility of 
constructing a covering. We cannot prove (C2) to be sufficient too. Indeed, (C2) 
is not a sufficient condition in general. Moreover, n and к must be very special 
in order to make (C2) sufficient. 

In the case n = 1, whatever к may be, (C2) is sufficient too. Then it is 
easy to see the omitted squares of a good configuration may he placed only in 
one row or in one column; the other rows (columns) we can easily cover with 
Fominoes which cover an entire row (column) here. 

In the case к = 2 (n is arbitrary) (C2) is a necessary and sufficient con-
dition. Although it would be very easy to prove this, we shall obtain this result 
as a special conclusion from the general sufficient condition to be worded later. 
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The above mentioned cases are the only ones where (C2) is sufficient and 
necessary. Already in the simplest case n = 2 к = 3 we can show a good con-
figuration which is not yet coverable2 (Figure 1). 

• 

Fig. 1. 

We note that this is not the only similarly uncoverable configuration. Such a 
configuration can not be covered being just at any place of this board. More-
over, there exist some another good yet not coverable configurations. 

5. Our next purpose is to find a sufficient condition as strong as possible 
for the general case. 

First we shall show that if we can cover a complete rectangle which con-
tains every omitted square and one side of which is a multiple of к then the 
board is simply coverable. Suppose this rectangle consists of m rows and I 
columns where m = d-k (d = 1, 2, . . ., n) and 1 ^ I < n- k. (The role of the 
rows and columns may be evidently exchanged.) Thus beside the rectangle we 
can put d fc-ominoes in one column. So we may extend the covered rectangle 
to an mxnk one. The nk — m empty rows can be easily covered by fc-ominoes: 
each row is coverable with n fc-ominoes. 

In the following we need some definitions. 
We look a t the board always so that the the omitted squares should be 

congruent by column.3 Columns which are congruent with ones containing 
omitted squares we call significant columns. Since the row index is characte-
ristic for each deleted square, row indices may be regarded as "names" of 
different deleted squares. Starting from the first row of the board and going 
on row by row we can establish a natural order of the deleted squares; thus 
their "names" form a permutation of the numbers 1, 2, . . ., k. We call this 
one the permutation of the configuration. In what follows, the circular permu-
tations will have an important role; we call a permutation circular if putting it 
around a circle it is indistinguishable from the identical one. 

A minimal rectangle is the smallest rectangle which contains all the 
omitted squares. A period consists of к consecutive rows or columns of the 
rectangle eventually in question (let it be just the minimal rectangle as well 
as the whole board). 

2 We don' t prove the impossibility of covering; anybody can easily verify it by-
t ry ing . 

3 In this section we regard good configurations exclusively. 
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We shall prove the following simple sufficient condition : 

(S) A good configuration is coverable if its permutation is circular. 

Proof. Since in this case the number of rows of the minimal rectangle is 
evidently divisible by к in order to prove (S) it is enough to show the minimal 
rectangle to be coverable. (We note that the number of the columns of any 
minimal rectangle is congruent with 1 modulo k, because its f irst and last 
columns are both significant ones and so they are congruent.) 

In the minimal rectangle first we cover the rows which contain omitted 
squares. (There are к such rows.) Such a row is cut by any significant column 
(the possible places of the omitted squares) into two parts the length of which is 
a multiple of к (eventually zero). So we can cover these rows separately with 
/fc-ominoes. 

As the permutation of the configuration is circular the rows covered be-
fore either are neighbouring ones or between two covered rows there are one 
or more empty periods. Thus these rows are coverable by periods setting k-
ominoes along columns. 

So we have obtained a covering of the minimal rectangle. Thus (S) is 
proved. 

6. In this section we want to give some sharpening of (S). 

Some, good configuration is coverable if from its permutation we can make a 
circular one with the following discrete changes,4 Two or three consecutive 
elements may be changed among themselves if the corresponding deleted 
squares are in different columns. Before the row of the first deleted square 

(S*) there must be as many rows as the number of those elements of the obtained 
circular permutation which precede the first element of the original permu-
tation. Similarly, after the row of the last deleted square there must be as many 
rows as the number of those elements of the obtained circular permutation 
which follow the last element of the original permutation. 

If we add other conditions, some of the requirements listed in (S*) may 
be cancelled. Indeed, covering is possible even in some cases not satisfying (S*). 
However, as we have said, we state some sharpening of (S) and not the strongest 
one. 

Proof. We regard the permutation of the given configuration as a "per-
turbed" circular one. If the first and last element of the respective circular 
order are also the first and last element of the given permutation then the num-
ber of the rows of the minimal rectangle is divisible by k. In the opposite case, 
if the outside elements are changed ones we must augment the minimal rect-
angle by so many rows as the number of elements of the circular order pre-
ceding the first (resp. following the last) element of the original permutation ; 
thus this augmented rectangle has rows of a number divisible by k. Therefore 
it is enough to show the covering of the minimal resp. the augmented rectangle. 

4 We don' t permit repeated changes a t any element since then no restriction would 
be done for t he permutations. 

5 I t is easy to see, in the cases к < 6 we can of ten get different circular permutations 
f rom a given one: e. g. from 32154 bo th 12345 and 23451 are obtainable. I n such a case 
we may choose t h e most convenient order. 
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These rectangles are coverable as in the case of the circular permutation 
(see the proof of (S)) except the parts where the circular order is "perturbed". 
Take out such a part from the permutation and consider the corresponding 
deleted squares. These (two or three) squares also determine their own minimal 
rectangle. We augment this rectangle by one or two rows above and by one or 
two rows below so t ha t the index of the first row of the rectangle so obtained 
should be equal to the smallest of the indices of the omitted squares of this 
rectangle and the index of its last row should be equal to the greatest of the 
same indices.6 The rectangle so obtained we call elementary rectangle. 

The first and the last column of any elementary rectangle are significant. 
Therefore, beside these rectangles the minimal rectangle has entire periods 
of columns and so these parts are also coverable. 

In order to complete the proof we show how the different kinds of ele-
mentary rectangles can be covered. Ways of covering may be seen in Figure 2.7 

I t is easy to see, t ha t all the possible elementary rectangles may be ob-
tained from these types by the simplest geometrical transformations. 

7. In this section we seek answer to the question : among all possible con-
figurations how many ones can be covered ? More exactly: if in a lenx kn board 
we choose the к omitted squares at random what is the probability tha t the 
configuration so obtained will be coverable? 

We cannot compute this probability as a sufficient and necessary con-
dition is lacking. However, conditions (C2) and (S) supply lower and upper 
bounds for this probability. 

Let Pn(k) denote the probability that some chosen configuration is 
"good" (in the sense of the preceding sections), and pn(k) the probability that 
some configuration satisfies (S). (Pn(k) is an upper. pn(k) is a lower boundary 
of the sought probability.) 

I t is easy to see8 tha t 

D /М -1 nW 
2 kn2k 

n2 k2 

In order to formulate pn(k) too, let us at f irst compute the number of 
configurations satisfying (S) which have omitted squares only in a preassigned 
column. 

In this column, let the first square be an omitted one. The other к — 1 de-

In А- к 2) 

^ ways. The 
permutation must always be the identical one: this determines the place of 
the omitted squares within the periods. Cutting this column at the end of any 
period and exchanging the two sections we get circular permutations. In such 
a way n circular permutations are got from each former permutation. The 

6 The smallest and greatest indices a re to be taken in "circular sense". Therefore-
if the indices in question a re e. g. к, 1 and 2 then the smallest is к and the greatest is 2-

7 I n order to m a k e the illustration easier, in figures we have used 5-ominoes-
Furthermore, we have represented the deleted squares in position as near as possible; if 
they are far ther from each other, the intermediate entire periods are easily coverable. 

8 Now the board is considered in f ixed position. 



ON COVERINGS OF GENERALIZED CHECKER BOARDS I . 5 9 

- 1 1 

• 

1 
1 

I 

1 

• 

I 

1_ 

Т Г 
TH 

r 
-

• 

• 

1 
1 

и s 

F 1 
1 

• 

Fig. 2. 



6 0 HAJTMAN 

choice of some significant row or column and the division of the deleted 
squares into the n significant columns (rows) is likely performed as in com-
puting Pn{k). Thus we have 

[n + к — 21 

к - 1 
2 к 

( 2 ) Pn(k) =•• 
nk+1 

Ti'1 V' 

(All the formulas are valid only in the cases к 2.) Computing the quotient 
of (1) and (2) we have 

(3) 
Pn(k) 
Pn(k) 

ok— 1 
n + к — 2' 

к — 1 

= ( 4 - 1 ) ! 

1 + 
4 - 2 

1 + 
4 - 3 

! + n 

If n tends to infinity (and к is fixed) this quotient tends to (к — 1) ! f rom below. 
We are interested in the behaviour of these probabilities as functions 

of k. If n is great enough, the dependence on n of the probabilities may be 
neglected. Namely, for any fixed к we have: 

(4) Р и ( 4 ) = lim Pn(k) -
M—> со 

lim 
П-*- oo 

2 kn2k 2 k-k! 

In addition, from (3) and (4): 

P-(*) = 
Poo(k) 

( 4 - 1 ) ! 

n2k2  

к 

2 к2  

' k2k 

k2k 

Applying very rough estimations we see that pœ(k) may not be smaller 
than the square of P^ ik ) : 

( 6 ) 

and 

(7) 

PK(k) 

Poo{k) > 4 k~2k. 

The cause of this great difference is the weakness of (S). Our sharpening 
given in Section 6. is not suitable for computation, on the other hand, it would 
not change the situation essentially. Nevertheless, if we examine the probabi-
lity whether a configuration is coverable if the omitted squares are chosen at 
random, we shall see this probability to be very small. Namely, the function 
P„(k) which majorizes the preceding probability will be small already for 
relatively not great values of k. Applying the Stirling-formula, for P„(4) we 
obtain an estimation better than (6) : 

(8) 

(Received March 10, 1961.) 
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П Р О Б Л Е М Ы П О К Р Ы Т И Я О Б О Б Щ Е Н Н О Й ШАХМАТНОЙ 
ДОСКИ 

В . H A J T M A N 

Резюме 

В статье автор занимается следующей проблемой: Дана «обобщенная 
шахматная доска» содержащая кп х кп квадраты и даны также «обобщен-
ные дощечки домино», которые могут покрыть точно к смежных квадратов 
доски. Если выбросить к квадратов доски, то спрашивается, можем ли мы 
покрыть оставшиеся квадраты? Возможность покрытия зависит, конечно, 
от расположения выброшенных квадратов. Автор дает, сначала, два необ-
ходимых условия (эквивалентных между собой) для возможности покрытия 
(легко доказуемое условие Сх и хорошо применяемое условие С2), а потом 
дает еще одно довольно слабое достаточное условие S и его уточнение S*. 
Наконец, он исследует вопрос, какая вероятность возможности покрытия 
полученного расположения, если выброшенные квадраты выбрать случайно. 
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