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by
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1. According to a well-known theorem the integrals of the linear equation
u'" + a(t)u = 0 are for positive continuous non-decreasing a(t), with lim a(t) =
t=o

= oo all bounded and there is at least one solution tending to zero as ¢ — oo.
It is an interesting problem how further conditions must be imposed on
a(t) so that every solution may behave similarly. The theorem mentioned in the
title gives reply on this point. In order to be able to quote this theorem we need
the knowledge of two notions: one from set-theory, another from function-
theory.

a) Density of an interval-sequence: Let {(a,, 8,)} (n = 1,2, ...) be an
interval-sequence on the half line £ > 0 having no point in common. It is said
of density ¢ (¢ > 0) on (0, o) provided that

n

= Bi—ay)

=,
n-—+o ﬂn
b) Function tending to infinity ‘‘quasi jumping’’ respectively ‘‘varying
regularly’’: The function F(¢) being positive continuous non-decreasing, tending
to infinity as t — oo is said “tending to infinity quasi jumping”, if to every
e > 0 number there is an interval-sequence {(c,, )} of density less than ¢

so that on its complementary set — on the set (0, c0) — > (&, 8,) — thein-
n=1

crease of F(t) is finite. In the opposite case F(t) is called tending to infinity
“regularly”.

The theorem of ARMELLINI-TONELLI-SANSONE (s. [1]p. 60.) is as follows.

If in the equation u'" + a(f) = 0 a(t) is positive non-decreasing continu-
ous together with its derivative, lim a(f) = oo and log a(t) tends to infinity

t=c

regularly, then every integral of the equation tends to zero as t — oo.

Z. OpIAL generalized this theorem for more complicated a(¢) and showed
that the differentiability of a(f) need not be supposed (s. [2]).

2. The purpose of the present paper is to find an extension of the A.—T.—
S.-theorem to the nonlinear equation

(1) u’ + a(t) flu) = 0.
This is intended by the following
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Theorem. If in equation (1)
1. a(t) > 0, is conttnuous non-decreasing, lim a(t) = oo, log a(t) tends to infinity
regularly, S
2. f(u) is a continuous non-decreasing odd function,
3. i O(1) (u—0) and flw) 18 mom-increasing for w > 0,
u u
4. | f(uy) —fluy) | < o (| u, — uy| ), where w(z) is positive non-decreasing and

d :
j (z) = oo (uy > 0), then every solution of (1) tends to zero as t — o.
w(z

Proof. As is well-known these hypotheses assure the existence and uni-
queness of an oscillatory solution (for ¢ > 0) with given initial conditions
(s. [3] and [4]). Let us suppose there exists a solution u(f) contradicting this

r P
theorem. Its “amplitude’” defined by A(t) = V = () is non-increasing

a(t)
u
(s. [4]) (F(u) means here f f(2)dz). Let its limit be denoted by 4. By our

0
assumptions 4 > 0. Taken (1) into account
t

+J dA(t) = A%(0) +J

u’z 2u u”

a(t)

A2(t) =2 F(u) + 2 f(u) u at —

t t

> w2 i u’? da()
= la(t) = A%(0) — da(t) = A%(0) — | — .
J e A= | P b OJ a(t) alt)

This may be written in the form
t

2) A2(t) = 42(0) — [ [42(t) — 2 F(u)]
0

too. Tending log a(t) to infinity regularly there is such a number ¢, > 0, that
the growth of log a(t) on the complementary set of all sequences {(a,, 8,)}
(o, < B, < a,.,) of intervals of density less than ¢, is infinite, i.e. the series

da(t)A
a(t)

o

N floga(or) — loga(p)] = S'log™ ;"
=1 i=1 '

is a divergent one. It will be proved later, that one can choose (to ¢)) such a
number 7 > 0, that the sequence of all the intervals (a,, 8,), where the in-
equality A%(t) — 2F(u) < 7 is satisfied, have a density less than ¢,. On account
of (2)

L ¥%%

da(t)
A%(a,) < A2(0) — A2 (t) — 2 F(u)] —-~.
(an) (0) E [42(t) (u)] (

a(t)
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But on the intervals (8;, ; ,,) we have 42%(f) — 2F(u) = 7, therefore,

[/ ST

S [ datt) S 1og Ui+1)
A2(a,) < A2(0) — 2 = A2(0) — 21 o e 8
a,) (0) —n P f o) (0) ni=l og a(6)
B

However this results in 4%(a,) < 0 for n large enough, what is impossible. —
Hence we have still to show, that a choice of 7 like above is possible.

3. The inequality 42(f) — 2F(u) < 7 implies

N e e
S O TRy o ST

where o denotes the greatest lower bound of A(¢) for ¢t > 0. This is a positive
number accordingly to our assumption on u(f). Therefore it is sufficient to
show that a number 7* > 0 can be chosen so that the sequence of the intervals,
where

(3) A(t) — V2 F(u) < n*,

is of a density less than ¢, Namely multiplying (3) by A(t) + J2F(u) < K
(A(t) and consequently u(t) are bounded) we have A%(t) — 2F(u) < n* K = 7

and 7 satisfies our requirements. Being lim A (f) = A there is a place ¢, > 0

t=o
so that the inequality 4 + n* = A(f) > 4 — »* is fulfilled for ¢ = ¢,. In other
words: every number ¢ > ¢, satisfying (3) satisfies the inequality

S 2 =
A—YV2Fu)<29* or 4 [1— % < V2 F(u)

too. Since the density of a sequence of intervals does not change by omission
of a finite number of intervals (preceding t,), it is enough to prove the existence
of such a number 0 < o < 1, that the density of the interval-sequence S,.

where ¢ A < |/2F(u), is less than ¢,. Viz., conversely, the previous inequality

; » T : . 1 4
implies A — |2F(u) < 2 n* with a certain 7* |n* = -;—A(l — a)l and this

the further inequality A(t) — n* — [2F(u) < A — |/2F(u) < 27*, ie. A(t) —
e 2 42
— J2F(u) < 3n* = 7. By the notation u = F‘l(?é) the condition ¢ 4 <

< J2F(u) takes the form |u | > u. — Let us estimate the density of the
se quence S,. Denoting the successive intervals of S by (a;, Bn) (n=1,2, ...)
we have |u (ap) | = |u (f,) | = w. Regard simultaneously with (1) the auxi-
liary comparison equation

(4) v + ala) f(v) = 0
too and take its solution wv,(f) satisfying the initial conditions v,(a;) =

= | u(ay) |, vplan) = |w'(ay) |. Let the first root of the equation v,(t) = pu
lying to the right of o, be denoted by f, resp. the first root of the equation

5 A Matematikai Kutaté Intézet Kozleményei VII. A/1—2.
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v,(t) = O situated left from a, by y,. Applying a comparison theorem of the
Sturmian type (s. [4] ) on u(t) resp. v,(t) (solutions of (1) resp. (4))

’ ’ ’ ’ ’ ’
ﬂ;:_ansﬂr';_‘an and an—}'ngan'—ﬁn—l'

Vo (1)
v
:
|
|
]

:
By ¢t

Figure.

Evaluate the lengths 8 — a;, and a, — y,. — Equation (4) may be solved.
Obtaining

(5) 2¢ V" + 2a(al) f(v) =0 resp. v'? 4 2a(ay) F(v)=K,
where

F(v) = | fle) dz and K = v*ap) + 2a(ap) F(va(an) = w(a) +
0

+ 2a(ay) F(u(an)) = a(on) A*(ay) .
Thus (5) gives
dv 1 dv

hainl P "y A%(al) — AF sp. dt = = )
5 [ A — RO T S, B s —
Hence

Unm F(vnm)

i il LR dz B . K _dj
= e J V4(a;) — 2 F(2) Va(a:o%qi @) V¥ — 22

g (4 = F(2)

where v,,,, = max v,(f) (v,(t) is symmetrical on its maxima) and
(%, Br)
1 10
: . 1 dz 1 dz
A
Valor) ) VA%on) —2 F(z) — Valay) J V4%H) —2F(2)

0

a

By the last relation

1 . dz
6 g pi 7l ¥l = . 5
(6) ﬂn ﬂn—l > Oy ﬁn—l = Op Yn = Va(a;z) Of VAz(tl) — 2 F(2)




EXTENSION OF A THEOREM OF ARMELLINI — TONELLI — SANSONE 67

2
The amplitude B2(t) ___'v(,,_(,t)) + 2F (v, (t)) of v,(t) is constant (s. [4]). For
a(a),

this reason
B%(vnm) =2 F(vnm) = Brzl(a:z) = Az(a;) ’
consequently

} Aa},) } AYa’)
da i

(aé) f(z) J A2(ay) — f(.u |/ a(ay) VA2 (@) —24

e 2VA2(a,,) — o2 A2 _ 2 VA2 4 »,, — o* 42 ks 2VA2(1 —0?) + v,
u) Va(ar) f(u) Va(ay) f(w) Va(ay)

where », > 0 and lim v, = 0. Therefore v, < » (v > 0) fore some » > n, and

N=o

prn— an =

2)/A4%(1 —o?) v

bn—apn=pr—apn= (n = nyg).
. fw) Va(or) )
By means of this and (6)
(7) /?;1 = ?;1 < 2 V!‘Az(l — %) 4 v e,
ﬂn ) ﬂn—1 f ) » dz
) J V%) — 27

and finally

N N

2 (Bn—oan) 2 (Bn—an)
B ., S < <Go,v) (N>mny).

i S A AN

The number y is increasing with o, therefore the denominator of (7) too. Once
having chosen the number », i.e. n, so that G(1,v) < ¢, is, we have also
G(o, v) < &, provided that o is near enough to 1. Therefore the left hand side
of (8) may for arbitrary N > n, be made less than ¢, by taking ¢ near enough
to 1 and just this was to be proved.

(Received April 28, 1961.)
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PACIIPOCTPAHEHME O{HOWM TEOPEMbI ARMELLINI—TONELLI—
SANSONE HA HEJIMHEWHBIE YPABHEHMS u” + a(t)f(u) = 0

I. BIHARI
Pe3iome

B craTrbe jgaercsi JJoKa3aTeJIbCTBO caeywuiero Q)aKTa. Besikoe pelueHue
HeJIMHeHOT O YpaBHEHHUS

u” + alt) flu) = 0

CTPEMUTCSI K HYJIbIO NPU £ —> ©°, eClM TOJBbKO a(f) M0JI0YKUTeIbHasl, HellpepbiB-
Hasi HeyObiBatowlasi yHkuusi, loga(f) cTpemMuTcsi «peryJisipHor K- o MpH

f(w)

t— - oo, f(u) siBnsiercsi HeyObIBalouleit Heuy€TKoii QyHKuMel, jajee, gl

f(u)

y6biBatowast GpyHxuus npu w >0, = = O(t) (u — 0) u, Haxouew, |f(u,;) —

— fluy) | £ o(]| u; — uy), rAe o(z) HeyObIBalOIAs MOJIOXKUTEIbHAST QYHKLUS U

u

' dz
=00 [ 0).
J peie (ug—0)

0
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