ON THE PROBLEM OF MIKUSIŃSKI'S LOGARITHM

by L. MÁTÉ

A very important question in the application of Mikusiński's operational calculus is, to settle the question, whether a certain operator is logarithm or not. This problem was solved by Mikusiński [1] for S^a and by Wloka [4] for $e^{\gamma s}$. In this paper there is given a necessary and sufficient condition for an operator, to be a logarithm of a certain type. We shall give also conditions, sufficient only, which can be easily applied.

Concerning to the used definitions and theorems, we refer to Miku-siński's book [1]. However, we give some of the most important notations

and notions as follows.

Notations. N1. A Greek letter means a real number and a Roman letter means an operator. N2. Product is always the structure product, generated from the convolution. N3. C is the ring of continuous functions in $[0, \infty)$ with the convolution product and with the topology generated by the quasi-uniform convergence. (It is called C-convergence). N4. If $f, g \in C$, then we shall write

 $||f|| \leq ||g||$

if and only if

 $\sup_{t < t_{\bullet}} |f(t)| \le \sup_{t < t_{\bullet}} |g(t)|$

for every t_0 .

Definition of the exponential function. The exponential function $\exp(-\lambda\omega)$ is an operational function which satisfies the differential equation¹

(1)
$$x'(\lambda) + \omega x(\lambda) = 0 \qquad x(0) = 1$$

for $\lambda > 0$.

Definition of the logarithm. The operator ω is called a logarithm, if

$$\exp[(-\lambda\omega)]$$

exists.

Definition of bounded logarithm. We say, that a logarithm ω is bounded, if the exponential function $\exp(-\lambda \omega)$ is bounded in the following sense:

 $^{^{1}}$ We remember [1] that this equation has at most one solution and so the definition is correct.

There exists $f \in C$ that $f \exp(-\lambda \omega) \in C$ for every $\lambda \geq 0$ and

$$||f \exp(-\lambda \omega)| \leq ||f||$$
.

We remark, that even from

(2)
$$||f \exp(-\lambda \omega)|| \le e^{\beta \lambda} ||f||$$
 $\beta > 0$

follows, that the logarithm $\omega + \beta$ is bounded.

In this paper, we are going to give a characterization of the bounded logarithms.

Examples. I. If $a \in C$ then

$$\exp(-\lambda a) = \sum_{k=0}^{\infty} (-1)^k \frac{\lambda^k a^k}{k!}$$

and if $f \in C$ then (1) will be in the form of the integro-differential equation

$$\frac{\partial}{\partial \lambda} x(\lambda, t) + \int_{0}^{t} a(t - \tau) x(\lambda, \tau) d\tau = 0 \qquad x(0, t) = f.$$

II. The operator S is a logarithm. If $f \in C$ than

(3)
$$f \exp(-\lambda S) = \begin{cases} 0 & \text{if } t - \lambda < 0 \\ f(t - \lambda) & \text{if } t - \lambda \ge 0. \end{cases}$$

If $f, f' \in C$ and f(0) = 0 then (1) is in the form of the partial differential equation

$$\frac{\partial}{\partial \lambda} x(\lambda, t) + \frac{\partial}{\partial t} x(\lambda, t) = 0 \qquad x(0, t) = f$$
$$x(\lambda, 0) = 0.$$

III. The operator e^{-S} is also a logarithm. If $f \in C$, then (1) will be in the form of the difference-differential equation

$$\frac{\partial}{\partial \lambda} x(\lambda, t) + x(\lambda, t - 1) = 0 \qquad x(0) = f$$

(where

$$x(\lambda, t - 1) \equiv 0$$
 if $t - 1 < 0$

S is bounded logarithm and e^{-S} satisfies (2) as will be seen in corollary 1 and 2.

Lemma. If $\{\omega_n\}$ is a sequence of logarithms, $\lim_n \omega_n = \omega$ and there exists a continuous function $M(\lambda, t)$ that

$$\sup_{\lambda<\lambda_0}\|f\exp{(-\lambda\omega_n)}\|<\|M(\lambda_0)\|$$

then w is also a logarithm and

(5)
$$\lim_{n} \exp(-\lambda \omega_{n}) = \exp(-\lambda \omega).$$

Proof. Let $g \in C$ and $\{g \omega_n\}$ be C-convergent. Then

$$f^{2} g \exp(-\lambda \omega_{n}) - f^{2} g \exp(-\lambda \omega_{m}) =$$

$$-\int_{0}^{\lambda} \frac{d}{dt} \left\{ g t \exp(-\lambda \omega_{m}) + t \exp(-\mu \omega_{m}) \right\}$$

(6)
$$= \int_{0}^{\lambda} \frac{d}{d\mu} \{ gf \exp(-[\lambda - \mu] \omega_{m}) \cdot f \exp(-\mu \omega_{n}) \} d\mu =$$

$$= \int_{0}^{\lambda} (\omega_{m} - \omega_{n}) g \cdot f \exp(-[\lambda - \mu] \omega_{m}) \cdot f \exp(-\mu \omega_{n}) d\mu$$

and from (4) and (6)

$$\sup_{\lambda < \lambda_0} \|f^2 g \exp\left(-\lambda \omega_n\right) - f^2 g \exp\left(-\lambda \omega_m\right)\| \leq \|\omega_m g - \omega_n g\| \lambda_0 t^2 \|M(\lambda_0)\|^2$$

hence $\{f^2g\exp(-\lambda\omega_n)\}\$ C-converges uniformly in $[0, \lambda_0]$. So (5) holds.

Theorem 1. If $\exp(-\lambda \omega)$ is bounded then

(*)
$$\left(\frac{\alpha}{\omega + \alpha}\right)^k f \in C \quad \text{and} \quad \left\| \left(\frac{\alpha}{\omega + \alpha}\right)^k f \right\| \leq \|f\| \qquad \alpha > 0, \ k = 1, 2, \dots$$

holds.

Proof.

$$\|\int_{n}^{m} e^{-a\lambda} f \exp(-\lambda \omega) d\lambda\| \le \|f\| \int_{n}^{m} e^{-a\lambda} d\lambda.$$

So

$$\int_{0}^{\infty} e^{-a\lambda} f \exp(-\omega \lambda) d\lambda$$

exists and

(7)
$$\|\alpha \int_{0}^{\infty} e^{-a\lambda} f \exp(-\lambda \omega) d\lambda \| \leq \|f\|.$$

The equation

(8)
$$(\omega + \alpha) \int_{0}^{m} e^{-\alpha \lambda} f \exp(-\omega \lambda) d\lambda = \int_{0}^{m} (\omega + \alpha) e^{-\alpha \lambda} f \exp(-\omega \lambda) d\lambda$$

hold, because of the continuity of the product. The right hand side of (8) can be written in the form

$$-\int_{0}^{m} \frac{d}{d\lambda} \left[e^{-\alpha\lambda} f \exp\left(-\omega\lambda\right) \right] d\lambda$$

from which follows

(9)
$$\alpha \int_{0}^{\infty} e^{-a\lambda} \exp(-\omega\lambda) d\lambda = \frac{\alpha}{\omega + \alpha}.$$

From the identity

$$\frac{1}{\alpha - \beta} \left(\frac{1}{\omega + \beta} - \frac{1}{\omega + \alpha} \right) = \frac{1}{\omega + \alpha} \cdot \frac{1}{\omega + \beta}$$

and from (9) follows that

$$-\frac{d}{d\alpha}\frac{1}{\omega+\alpha} = \frac{1}{(\omega+\alpha)^2}$$

and by the use of induction we get

$$(10) \qquad (-1)^k \frac{\alpha^k}{k!} \frac{d^k}{d\alpha^k} \frac{1}{\omega + \alpha} = \frac{\alpha^k}{(\omega + \alpha)^{k+1}}.$$

From the identities

$$(-1)^k \frac{d^k}{d\alpha^k} \left(\frac{1}{\omega + \alpha} f \right) = \int_0^\infty e^{-a\lambda} \, \lambda^k f \exp\left(-\omega \lambda \right) d\lambda,$$

(11)
$$\frac{\alpha^k}{k!} \int_0^\infty e^{-a\lambda} \, \lambda^k \, d\lambda = 1$$

and from (10) follows

(12)
$$(-1)^{k-1} \frac{\alpha^k}{(k-1)!} \int_0^\infty e^{-a\lambda} \lambda^{k-1} f \exp(-\omega \lambda) d\lambda = \left(\frac{\alpha}{\omega + \alpha}\right)^k f.$$

From (12) and (11) we get (*).

Theorem 2. If (*) is true, then ω is logarithm and

$$||f\exp(-\omega\lambda)|| \leq ||f||.$$

Proof. I.

$$\frac{\alpha\omega}{\omega+\alpha}$$
 is a logarithm for every $\alpha>0$.

If $\frac{\alpha\omega}{\omega+\alpha} \in C$, then

$$f\exp\left(-\frac{\alpha\omega}{\omega+\alpha}\lambda\right)=e^{-a\lambda}\sum_{k=0}^{\infty}\frac{\alpha^k\lambda^k}{k!}\left(\!\frac{\alpha}{\omega+\alpha}\!\right)^kf$$

since in this case the power series of the exponential function is convergent. We show, that this is alwys true if (*) is satisfied. Let

(13)
$$\varphi_n = \varphi_n(\alpha, \lambda) = e^{-a\lambda} \sum_{k=n}^n \frac{\alpha^k \lambda^k}{k!} \left(\frac{\alpha}{\omega + \alpha}\right)^k.$$

With the notation (13)

$$\|(\varphi_n - \varphi_m)f\| \le \|f\| \sum_{k=n}^m \frac{\alpha^k \lambda^k}{k!}$$

and

$$||\varphi_n f|| \leq ||f||$$

SO

$$\lim_{n} \varphi_{n} f = \varphi f$$

uniformly in every finite $[0, \lambda]$. Here

$$\varphi = \varphi(\alpha, \lambda) = e^{-a\lambda} \sum_{k=0}^{\infty} \frac{\alpha^k \lambda^k}{k!} \left| \frac{\alpha}{\omega + a} \right|^k.$$

Since

$$\frac{\partial}{\partial \lambda}\varphi(\alpha,\lambda) = -\alpha\varphi(\alpha,\lambda) + \frac{\alpha^2}{\omega + \alpha}\varphi(\alpha,\lambda) = -\frac{\alpha\omega}{\omega + \alpha}\varphi(\alpha,\lambda)$$

and

$$\varphi(\alpha,0)=1$$

thus the statement I is proved.

.

II.
$$\lim_{\alpha \to \infty} \frac{\alpha \omega}{\omega + \alpha} = \omega$$

It is easy to verify, that

$$\left\| \frac{\alpha \omega}{\omega + \alpha} f \cdot g \right\| \leq t \|\omega g\| \|f\|.$$

Thus

$$\left\| \left(\frac{\alpha \omega}{\omega + \alpha} - \omega \right) f \cdot g^2 \right\| = \left\| \frac{\omega^2}{\alpha + \omega} f g^2 \right\| \le \frac{t}{\alpha} \left\| \omega^2 g^2 \right\| \left\| f \right\|.$$

III.

$$\left\| f \cdot \exp\left(-\frac{\alpha \omega}{\omega + \alpha} \lambda \right) \right\| \le \|f\|$$

This is an immediate consequence of (14).

The theorem follows from I, II and III considering the Lemma. And now, we give two conditions only sufficient conditions for to be a logarithm of bounded type.

Corollary 1. If
$$\frac{1}{\omega} \in C$$
, then $\frac{\alpha}{\omega + \alpha} \in C$ too. If in addition
$$\frac{1}{\omega} \ge 0 \; ; \quad \frac{\alpha}{\omega + \alpha} \ge 0 \quad \text{for every } \alpha > 0$$

then (*) is satisfied.

Proof. If $\frac{1}{\omega} \in C$, then

$$\frac{\alpha}{\omega + \alpha} = \frac{\frac{\alpha}{\omega}}{1 + \frac{\alpha}{\omega}} = \sum_{k=1}^{\infty} (-1)^{k+1} \frac{\alpha^k}{\omega^k} \in C.$$

If

$$\frac{1}{\omega} > 0 \; ; \quad \frac{\alpha}{\omega + \alpha} > 0$$

then

(16)
$$\frac{\alpha}{\omega + \alpha} \frac{1}{\omega} \leq \frac{\alpha}{\omega + \alpha} \frac{1}{\omega} + \frac{1}{\omega + \alpha} = \frac{1}{1 + \frac{\alpha}{\omega}} \left(\frac{\alpha}{\omega} + 1 \right) \frac{1}{\omega} = \frac{1}{\omega}.$$

Because of (15), from (16) follows

$$\left\| \frac{\alpha}{\omega + \alpha} \frac{1}{\omega} \right\| \le \left\| \frac{1}{\omega} \right\|.$$

From the inequality

$$\left(\frac{\alpha}{\omega + \alpha}\right)^k \frac{1}{\omega} = \left(\frac{\alpha}{\omega + \alpha}\right)^{k-1} \left(\frac{\alpha}{\omega + \alpha} \cdot \frac{1}{\omega}\right) \le \left(\frac{\alpha}{\omega + \alpha}\right)^{k-1} \frac{1}{\omega}$$

by induction follows, that

$$\left\| \left(\frac{\alpha}{\omega + \alpha} \right)^k \frac{1}{\omega} \right\| < \left\| \frac{1}{\omega} \right\|.$$

The second condition (Corollary 2) based on the following lemma.

Lemma 2. Let be C_0 a closed linear subspace of $C,\ \omega$ be a bounded logarithm and

$$(17) e^{-\lambda \omega} C_0 \subseteq C_0.$$

Then

(18)
$$\sum_{k=0}^{\infty} (-1)^k \frac{\alpha}{(\alpha+1)^{k+1}} e^{-k\omega} f \in C_0$$

for every $f \in C_0$ and a > 0.

Proof. From the boundedness of ω follows, that

(19)
$$\left\| \sum_{k=n}^{m} (-1)^k \frac{\alpha}{(\alpha+1)^{k+1}} e^{-k\omega} f \right\| \le \|f\| \sum_{k=n}^{m} \frac{\alpha}{(\alpha+1)^{k+1}} \quad \text{for } \alpha > 0$$

and from (17) follows

(20)
$$\sum_{k=0}^{n} (-1)^{k} \frac{\alpha}{(\alpha+1)^{k+1}} e^{-k\omega} f \in C_{0}.$$

From (19) and (20) follows (18).

Corollary 2. If ω is bounded logarithm and (17) is valid, then $e^{-\omega} + 1$ is also a logarithm of bounded type.

Proof. If $f \in C_0$ then

(21)
$$\frac{\alpha}{e^{-\omega} + 1 + \alpha} f = \sum_{k=0}^{\infty} (-1)^k \frac{\alpha}{(\alpha + 1)^{k+1}} e^{-k\omega} f$$

and

(22)
$$\left\| \sum_{k=0}^{\infty} (-1)^k \frac{\alpha}{(\alpha+1)^{k+1}} e^{-k\omega} f \right\| \le \|f\| \sum_{k=0}^{\infty} \frac{\alpha}{(\alpha+1)^{k+1}} = \|f\|.$$

From (21) and (22) follows, that the condition (*) is satisfied for k = 1. From lemma 2 follows, that

$$\left(\frac{\alpha}{e^{-\omega}+1+\alpha}\right)^k f \in C_0$$
 $k=1,2,\ldots$

and from (21) and (22)

$$(23) \left\| \left(\frac{\alpha}{e^{-\omega} + 1 + \alpha} \right)^k f \right\| =$$

$$= \left\| \frac{\alpha}{e^{-\omega} + 1 + \alpha} \left(\frac{\alpha}{e^{-\omega} + 1 + \alpha} \right)^{k-1} f \right\| \le \left\| \left(\frac{\alpha}{e^{-\omega} + 1 + \alpha} \right)^{k-1} f \right\|.$$

From the inequality (23) follows, that

$$\left\| \left(\frac{\alpha}{e^{-\omega} + 1 + \alpha} \right)^k f \right\|$$

is a monoton decreasing function of k and so, condition (*) of theorem 1 is valid for every k. Q. E. D.

(Received December 27, 1961.)

REFERENCES

- [1] Mikusiński, J.: Operational Calculus. Pergamon Press, 1959.
- [2] HILLE, E.-PHILLIPS, R.: Functional Analysis and Semi-Groups. 1957.
- [3] FENYŐ, E.: "Sur la notion du logarithme d'un opérateur". Bull. Soc. Math. R. P. R. 3 (1959) 131.
- [4] WLOKA, J.: ,, Über die Anwendung der Operatorenrechnung". J. Reine Angew. Math. 202 (1959) 107.

О ПРОБЛЕМЕ ЛОГАРИФМОВ МИКУСИНСКОГО

L. MÁTÉ

Резюме

Неравенство (*) является необходимым и достаточным условием того, чтобы уравнение (1) имело такое $\exp{(-\lambda\omega)}$ решение, которое удовлетворяет следующим условиям: а) Если $f \in C$, тогда $f \exp{(-\lambda \omega)} \in C$

для всех положительных λ.

$$\sup_{\lambda>0} \sup_{t< t_0} |f \exp(-\lambda \omega)| \leq \sup_{t< t_0} |f|.$$

В следствиях 1 и 2 автор дает легко применяемые достаточные условия для выполнения (*).