ON THE PROBLEM OF MIKUSINSKI’S LOGARITHM

by
L. MATE

A very important question in the application of MIKUSINSKI's operational
calculus is, to settle the question, whether a certain operator is logarithm or
not. This problem was solved by MikUsINSKI [1] for §¢ and by Wroxra [4]
for e7%. In this paper there is given a neccessary and sufficient condition for an
operator, to be a logarithm of a certain type. We shall give also conditions, suffi-
cient only, which can be easily applied.

Concerning to the used definitions and theorems, we refer to Mixu-
SINSKI's book [1]. However, we give some of the most important notations
and notions as follows. )

Notations. N1. A Greek letter means a real number and a Roman letter
means an operator. N2. Product is always the structure product, generated
from the convolution. N3. C is the ring of continuous functions in [0, o)
with the convolution product and with the topology generated by the quasi-
uniform convergence. (It is called C-convergence). N4. If f, g ¢ U, then we shall
write

Il = llgll
if and only if
sup |f(t)| < sup |g(t)|
t<t, t<t,
for every ¢,.

Definition of the exponential function. The exponential function
exp (—Aw) is an operational function which satisfies the differential equation!

(1) 2(A) + wa(d) =0 2(0) =1
for 2 > 0.

Definition of the logarithm. The operator o is called a logarithm, if
exp (— Aw)
exists.

Definition of bounded logarithm. We say, that a logarithm w is bounded,
if the exponential function exp (—Aw) is bounded in the following sense:

! We remember [1] that this equation has at most one solution and so the definition
is correct.
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There exists f ¢ C' that fexp (—Aw) € C for every A = 0 and

|If exp (— dw|| < || f]] -
We remark, that even from

(2) If exp (— o) || < e || f]| p>0

Jfollows, that the logarithm o + B is bounded.

In this paper, we are going to give a characterization of the bounded
logarithms.

Examples. I. If a ¢ C' then

o k Kk
exp(— Aa) = ST (= 1) lk"‘

k=0

and if f € C then (1) will be in the form of the integro-differential equation
t

%x(}., t) + Jﬂ a(t —t)x(d,t)dr =0 2(0,8) = .
0
II. The operator § is a logarithm. If f € C' than
0 if t—21<0
3) fexp(—48) = i
-l & 1120,

If f, f/ € C and f(0) = 0 then (1) is in the form of the partial differential equa-
tion

9 3 2(0,t) = |
— (4, ¢ —z(A,t) =0
T b (2, 0) = 0.

III. The operator ¢S is also a logarithm. If f € C, then (1) will be in the
form of the difference-differential equation

%x(l,t)—{—x(l,t——l):() 2(0) = f
(where
FAt—1j=0 B -1 <t
S is bounded logarithm and e~S satisfies (2) as will be seen in corollary 1 and 2
Lemma. If {w,} is a sequence of logarithms, lim o, = o and there exists
a continuous function M(A,t) that :
(4) sup ||f exp (= Aay)|| < [| M)

then o is also a logarithm and

(5) lim exp (— Aw,) = exp (— iw).
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Proof. Let g € C and {g w,} be C-convergent. Then
f*gexp (— dw,) — f2 g exp (— Aw,) =

i
©) =j;%{gfexp(—[z—u]wm)-/exp(—uwn>}du=
0

= [ @n— o exp(~ 12— ko) foxp (— po) di
0
and from (4) and (6)
fggllfzgexp(— Awy) — f2g exp (— Aop)|| £ ||ong — .9 40 1| M(4)|[*

hence {f?gexp(—Aw,)} C-converges uniformly in [0, 4,]. So (5) holds.
Theorem 1. If exp (—Aw) s bounded then
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(*) e )kfec and “ - kf <||fl a>0, k=1,2,.
-+ o o+ a
holds
Proof.
| f e fexp (— Aw)dA)|| < ||| [ e dA.

So

fe““‘-fexp(—wl)dl

0
exists and
(7) o | e fexp(— Aw)d | < |If].

0

The equation
(8) (0 + @) j("e‘“’-fexp(— wA)di= "fn(w + a)e % fexp (— wA)dA
0 0

hold, because of the continuity of the product. The right hand side of

can be written in the form
m

8 J E% (e~ fexp (— wA)]dA
0
from which follows

(9) o [ e~ exp (— wh)dAd = —— .
o+ o
0

From the identity
1 1 1

1 (R (e |
o.—ﬂ[w—}—ﬂ_m—,L-a ~w+a o+ p

(8)
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and from (9) follows that
o 1

da ow+o (0+a)?

and by the use of induction we get

(10) B oS I R
k! dof o --a (0 + a)kt?

From the identities

d" 1
7 e

f =5 1 fexp (— wA)d i,
0

k o
(11) -“—Je—ﬂu"dzzl
k!

and from (10) follows

o

k

. K
(12) (— 1)x-t = J e k-1 fexp (— wld) dA = (-——a—— 1t
(k—1)! o+ a
From (12) and (11) we get (*).
Theorem 2. If (*) is true, then w is logarithm and
[fexp(—wd)| < [If]].
Proof. L.
am ! :
e is a logarithm for every o > 0.
aw .
If -w+a€(/, then
o kjk K
e e
w—}—a’ & k! w4«

since in this case the power series of the exponential function is convergent.
We show, that this is alwys true if (*) is satisfied. Let

n k 1k k
(13) B = Pl 1) = e=o STE2 ( ; ] '
P k! o4+ a

With the notation (13)

(@ — @a) | < 11 271
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and

(14) llen Il < |1

SO
limg, f=g¢f

uniformly in every finite [0, A]. Here

= ak Ak a
¢ =g(a;4) = e -
2>

k

= —k'— (_u + a

Since

?—w(a‘ i) = —apla, i) 4+ = pla, d) = — 2 g(a, &)

oA w + o o+ a
and

@(a,0) =1
thus the statement I is proved.
' aw

10§ k.n; g w

It is easy to verify, that

|52 1| ol 11
Thus
i w , 2 Al B oo
’ (m:_ ~ma . A L OT_%"(;/QZ = ;—”arglh A1} -
III. ’f-exp(— ﬁ—&z”ls_ Il

This is an immediate consequence of (14).

The theorem follows from I, II and III considering the Lemma.
And now, we give two conditions only sufficient conditions for to be a logarithm
of bounded type.

11
Corollary 1. /f £ €C, then o _(:_ 2 € C too. If in addition
£
120' = Y for ever >0
220 o3g % roevery o ]

then (*) is satisfied.
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Proof. If % € C, then

a
o o — a
L= == (—1)k+‘—eC’
ok S 3 k==2|
w
If
1 a
(15) 2;>0, QTFE>O
then
o 7 1 .. . 3 1
1) TTecaZata a+w+a~l+a{— e
o
Because of (15), from (16) follows
w+a 0] H_ ”
From the inequality
3 kl_' a Vel g l<_——(l__k——ll
{w+a o 'o+a (w+aw Zlw+a )
by induction follows, that
k—]__- l |
‘w-{—a ol < a_)‘

The second condition (Corollary 2) based on the following lemma.

Lemma 2. Let be C a closed linear subspace of C. o be a bounded loga-
rithm and

(17) il B esi{ 38
Then

cuice k,,,,ai,,, —kw
(18) ’;‘( Wt U

for every feC, and a > 0.

Proof. From the boundedness of w follows, that

2(——1)k (___'_krl, —kw/1§ |f|12( +1)k+x for a > 0

k=n

(19)
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and from (17) follows
n

0 _lk_a——kw C. .
iy k:zo( Marym €%

From (19) and (20) follows (18).

Corollary 2. If » is bounded logarithm and (17) is valid, then e~ - 1
is also a logarithm of bounded type.

Proof. If f ¢ C, then

21 — " — = N — k—ai, —ko
o it g( Vagym !
and
N - e _
(22) %(—U"(- T "f‘<lmk=20( ey =

From (21) and (22) follows, that the condition (*) is satisfied for & = 1.
From lemma 2 follows, that

‘*A“_ ]je k=1,2,...
s o e ol
and from (21) and (22)
= K
23 =
e ‘r”+1+a)f
a o kS a Lo
[l sl
From the inequality (23) follows, that
el
e +14+a

is a monoton decreasing function of & and so, condition (*) of theorem 1 is
valid for every k. Q. E. D.

(Received December 27, 1961.)
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0 MNMPOBJIEME JIOTAPU®PMOB MUKYCUHCKOI' 0O
L. MATE

Pe3lome

HepaBencTBo (*) siBnsieTcst HEOOXOAMMbBIM M JIOCTATOYHBIM YCJIOBUEM TOTO,
ytoObl ypaBHenue (1) umeno Taxoe exp (— Aw) pelleHue, KOTOpoe Y/I0BJIET-
BOPSIET CJIEAYIOMIMUM YCIOBUSIM :

a) Eciu f € C, Torna fexp (— Aw) € C

JUIS BCeX TMOJIOKUTENbHBIX A.

6) sup sup | fexp (— )| < sup |f| .

>0 t<t, t<t,

B cneacrBusix 1 v 2 aBTop /1aeT jierko npuMMeHsieMble JJOCTaTOUHbIE YCJIOBUS
Ansi BbinonHeHus (*).




	7. kötet / 1-2.sz.�������������������������
	MÁTÉ, L.: Ont he problem of Mikusinski's logarithm���������������������������������������������������������

	Oldalszámok������������������
	117����������
	118����������
	119����������
	120����������
	121����������
	122����������
	123����������
	124����������


