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Introduction

Let us suppose that N balls are distributed at random among » boxes,

so that each ball may fall into any box with the same probability %, inde-

pendently of what happens to the other balls. Let {,  denote the number of
boxes which remain empty. I. Wriss-[1] has proved that if » — 4 oo and

: : & ¥ B o
N = N(n) is a function of » such that lim — = a > 0 then {, y is in the
n—»-+o

limit normally distributed, its expectation and variance being asymptotically
N N N

equal to me " and ne "[1 — 14 o e | respectively; by other words

we have (denoting by P(...) the probability of the event in the brackets)
for any real x

u?

(1) lim P|— e :L_J(, 7 du

frefo N[ N
%*" V'ne—_”_[l—(l—i~£7)e_7
n’ o

WEeiss used the method of moments, which in this case leads to rather
cumbersome calculations. In view of the simplicity of the question (which is
in striking contrast with the difficulties of the proof) and the importance
of its various possible practical applications, we considered it worth while
trying to find a simpler proof.

We succeeded in finding three new proofs for the result of Weiss all using
the method of characteristic functions. All these proofs are definitely simpler
than that of I. WEIss, though a certain amount of subtle asymptotic analysis
is indispensable. Besides their simplicity, these proofs are of a certain metho-
dological interest. as they may serve as patterns for the solution of other
similar problems.

These proofs yiels also a more general result, namely that (1) remains

valid also if el 0 or i -+ oo provided that
N, N _N '
ne "(1—[1—{—7].9 ")—>+oo
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e : : N s, - N : N

this is equivalent in case =k 0 with _—n-——>+ oo and in case i + oo
s iy )

with e log n—> — oo|. We prove the generalization of the theorem of

WEISs to the case inv—> -+ oo g — log n —> — oo by the second method, and

N N2
the generalization to the case o 0, " + oo by the third method.

The problem in question is essentially that of proving the central limit
theorem for certain not independent but weakly (and symmetrically) dependent
random variables.) The situation is similar to that of sampling from a finite
population (see [2]). The variables in question are the indicators of the empti-
ness of the different boxes; as a matter of fact {, y can be written in the form

Can=86 +8+ ...+ &,

where ¢, is 1 or 0 according to whether the k-th box is empty or not
(k=1,2,..., n). The dependence is in this case not negligible in the limit,
as is seen from the formula for the variance.
. -
As a matter of fact, the mean value of ¢, being |1 — ~q n if the

dependence would be in the limit negligible, the variance would be asymptotic-
N N

ally equal to ne 7(1 i F) ; while as mentioned above, the variance is defi-

nitely smaller [by the factor 1 — — < 1| which shows that there is
n(eNm — 1)

a not negligible negative correlation among the variables ¢,.
As a matter of fact, the variance D*(, ) of {,  is

,

2

D2, N) = n? [(1 . s (1 s %)m (- i’N e (1 Ec %

n

4

i

and therefore

o - o)

n®

In § 1 we give the first proof which is worked out only for the case when

s i 0.1In § 2 we present the second proof. In § 3 we give the third proof

and in § 4 add some remarks.

This paper was written during the stay of the author, as a visiting pro-
fessor, at the Department of Statistics of the Michigan State University during
the summer term of the year 1961. The author is indebted to Prof. H. Runin
for calling his attention to the paper of I. Weiss.
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§ 1. The first proof

Let P, y(k) denote the probability that there are exactly k& empty
boxes if » denotes the total number of boxes and N the number of balls.
By other words we put

P, n(k) = P(Con=1k) (k=0,1, .uoan)s
The following two recursion formulae hold:
(2) Py s1(k) = Py (k) [1 S RE e Bl
and
(3 PunlB)=Pontb— 11— 1] + EN HET R e St

Weobtain (2) by considering what happens if after throwing &V ballsinto the boxes,
one ball more is added: this may fall in a box which already contains a ball,
or into an empty box. The two terms on the right correspond to these two pos-
sibilities.

As regards the less evident recursion formula (3) this can be obtained
by the following argument: Let us label the boxes by the numbers 1, 2,..., n
and let us denote by ! the number of balls which fall into the first box. We
distinguish between the cases I = 0 and 1> 1. If I = 0 (the probability

N

of which is |1 — %

) then the N balls are distributed among the remaining

n — 1 boxes so that among these £ — 1 boxes remain empty. This gives the
first term on the right of (3). If however [ is some positive integer, 1 < I < n

N-I
(the probability of which is A l(1 .
l)nt n
balls are distributed among n — 1 boxes so that £ boxes remain empty. Thus
we obtain the sum on the right of (3).

Now let us introduce the characteristic funtion ¢, y(f) of {, n, ie.
we put

(4) (pn N 2 B

) then the remaining N —

We obtain from (3) the recursion formula
N
N1
5 aun =13 | e gnt+ >
=y

L|nt
Let us now introduce the generating function

1\N-
__} '(pn-—l,N—l(t) .

(6) Gmwzzéﬁﬁﬁﬂﬂ

N!

N=0

Il

We obtain from (5) easily
(7) G,(t,2) =G,_,(t,2) (e + e —1). ETE R N



206 RENYI

As evidently

et for N=0
8 t) =
(8) P1,n(t) 1 W=
and thus

(9) Gy(t,z)=¢é' 4 — 1
we obtain by (7) the surprisingly simple formula
10) G (t,2) = ("4 & — 1)".
One can deduce (10) also from (2); as a matter of fact from (2) we get

—it _
for ¢, the partial differential equation 880” = nQ, + 5 g ~5t-"~; taking

(

2 i
into account that G, (t,0) = @, ,(t) = e™, we get (10).

Now to prove (1) we apply the method of Laplace to obtain from (10) an asymp-
totic formula for ¢, n(f). We have by Cauchy’s formula

N! (ﬁ(e”—{—e’— Vi

11 t) =
( ) (pn,N() 7&N'27ti ZN+1

where the integration may be carried out on any circle around the point
2="0,
We shall prove that putting

N
(12) By =
and
N N
=N T
(13) D:—e¢ n(l—[1+in—-e n)
we have :
y _itn-e~n Wit
14 lim — e Dn =g %,
yeal n»+w(pn’N 1 Vn]
N

——a

((14) is clearly equivalent to (1)).
Let us choose as the path of integration in (11) the circle |z| =,
by putting z = a,{ with { = €% (—a2 < v < + n). Then we obtain, by

Stirling’s formula, putting » — S
Vn’an
+nVna,
(15) e o el J En . ooV dp
“"\D, Vn V2n
Lhi=

where
v

it \ (V_ )
(16) E, = (eDnVn - lJ-e”"u+e"" i

n
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Clearly for | ——=|> 6 > 0 we have for n > n, (D, and a, being
nao
bounded from below b; a positive constant)
(17) E,£q<1

where ¢ depends only on ¢ and «. It follows that
(18) lim 5 |E,|"dv=0.

>+ sYa,n< vl <aVarn

7——— —_—
On the other hand for Jna, < |v| < 8§ /na,, in view of

; 2a,.(cosL - l) { t
(19) |E,2=e Vna ) L 2e-2u|1 — cos —| —
-Dn Vﬂ
v
alCos —— —
—de \ Vna )-sin e e
2)n 2Yn  Jna,
we get
t
(20) Efs1—0 +0[ =
where C; > 0 depends only on 6, which implies
GVnﬂn
(21) lim { |E,"dv=0.
n+>+o ¥
na,
Thus we obtain from (13), (18) and (21)
itne " +V"ﬂn i _ itne—“n
(22) ¢ (—t— e oln o X [ Ere " b ay.
n,N Dn E V’;l_ n
bt l;nan
Now we get by an elementary calculation
£V o)
eV line=h N0 (:_Dl_)_ o3
(23) Er-e Din — ¢ 2 : +0VT].
n

Thus it follows from (22) that (14) holds. As mentioned already, this
proves (1).
§ 2. The second proof

In this § we give a second proof for (1) which leads at the same time
to the following more general
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Theorem 1. If we distribute at random N balls among n boxes where N =

o

= N(n) s a function of n such that e

N(n)

lim —— — log n — — oo, then we have, putting o, =
n—»-+ oo

is bounded from below and

N(n)

n

for any real x

Cn,N(n) — ne” %

§o !
lim P L8 el 2du .
o Vne‘"n [1—Q14a,) e <x] V2—7Z Je

n—+-4 o

Remark. In case o, — + oo of course the result can be written also in
the simpler form

x 2
Bk p(Mﬁ<x] :LJ s

N>t [ ne=n V2

o

Proof. The idea of the proof which will be given in this § is one already
applied in the paper [3]. Let us put
(24) S, =M(

> €y Ekg + + -+ Eky)

1ISk<k.<...<k=n
where M(. . .) denotes the expectation of the random variable in the brackets.
Then evidently

e - 17
(25) 8,= 2P|,
J=r
and thus
(26) ﬂSr(x_ 1)r: :Pn,N(j) xj'
=0 j=0

Now we can give a simple formula for §,; in fact we have

) .
(27) 8, = (r]

§e
n

Thus we get for the characteristic function ¢, y(f) defined by (4) the
explicit formula

(28) () = D

r=0

n’ (1 - %)N (et — 1) .

r

Of course (28) can be deduced also directly from (11).
In order to prove theorem 1 we consider the function

itVne on ( N—na,.)
S e
) e D,. n

(29) ¥n,N(t) = Pnn

D, n
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where N is now not identical with N(n), but is an independent nonnegative
it
integral-valued variable. Then we have by (28), putting y = eP»Vn

—a N (n 7\N S

(30) Ynn(t) = y—ne (1o 2 ( 7.) A ;{J (=1
1=0
It follows that putting
: (2 n)Ne-—a,,~n

31 K () = ki il IS Adeviees
(31) n(t) g Y =
we have
(32) Kn(t) M- ea‘.n(ye*"n__l) y-ne_f'ﬂ(l+a")(1 + (y = 1) e—a,,y""")n .

Now if @, is bounded from below and a, — log » — — oo the right hand
side of (32) can be evaluated as follows

~£+o('—_)
(33) K(t)y~e 2\l

Thus we obtain
ll
(34) lim K,(t)=e 2.
n—+>+o
Now evidently |y, n(f)| < 1 and thus by the central limit theorem, if
w, = log (na,) then we have

N p—na,
(35) lim ¥, n(t) [L57Y  i 0
n—»+ o PR ’ N'
|N—a,-n|>w, V na,
and
g (na,)Ne=nwm
36 lim Sce T )
(36) n—+ o 2 o N!
IN_"“uISwnyn“u
We shall show now that for
(37) IN —na,| < o, V?To?n‘
we have
log3 n
(38) |¥n,n() — Yo ney(t)| =0 ?:; ' .

This implies by virtue of (34), (35) and (36) that
(39) lim Yo, Nm)(t) = e—t'h.
n—->-+ o
As we have
itVne—on

t
(40 - N = @ nen ——_)e D,
) Y, Ney() ‘P,N()[DnVn

it will follow from (39) that (14), and thus Theorem 1 holds.

14 A Matematikai Kutaté Intézet Kozleményei VII. A/1—2.
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Thus it remains only to prove (38). In view of (2 ( ) we obtain,

ite—9n BV
(41) Ponsa() — Pon(t) = (V7 — 1)y, w(t) + (L—I—ZP,,N ke,

where

(k—ne~%(14a,)+(N+1)e—")

6 = eD»V"
Thus we obtain
ite—an 4 it 1 N
B8 — 9= o297 —1— (6" 297 — )12 ot +

(42) it

Dan &
_|_. L}) ZPn,N(k) (k L (1 = %]N) ek
k=0

n

Thus we get for [N —na,| = O0(a, |na,)

_ o [(ogn)*s
(43) ]'Pn,N+1(t) = ‘Pn,N(t)l =0 (T] &1
1 = 1\N
+0(D -n‘/aZP"'N(k)'lk—n[l";; l).
As clearly * Ie=0
N
(44) s P, (k) |k —n|1— % = D(,N)

where D, n) denotes the variance of , y and we have

D, n) ~nD2
it follows /
) log n)*:
l'/"n,N+1(t) 'pn,N(t)l =0 [(_._En_)_] )
us if |7 na,| < o, Vn a; we have

1
(45) YN — %0 Nwy(t) | = O ( ogin .

Vn

This proves (39), and thus Theorem 1.

§ 3. The third proof

In this § we shall prove the following
Theorem 2. If we distribute N balls at random among n boxes, where

N = N(n) is a function of n such that for n — - oo —ZY—(——) 18 bounded from above
and
N2(n)

(46) lim B
n—»-4co n
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and Gy, () denotes the number of empty boxes, then we have, putting o, = igi)—

for any real x

(47) lim P il M <w)=-_ e Zdu.
n~to (fne=s[1—(1+ a,)e=)

Remark. In case a,— 0, the result can be written in the simpler form

u?

X
(47a) lim P( s ) L
n—+o V_ V27t

or, pUt'ting C:,N(n) = Cn,N(n) — n(l T an)

n a2

Ghney — 1 _w
(47b) lim P| —— e Je 2du.

n—+4e V_ V27l

Proof. Let us note first that putting

(48) Dy =e=(1— (1 + a,) e=)

our conditions on N(n) imply that

(49) lim nD2% = + oo.
n—»>+ o

Let us introduce the random variables », (k =1, 2,...) defined as
follows: v, is the least number such that after distributing », balls among the
n boxes, exactly & boxes will be occupied. Let us put further 6, =, 6, =
=, — ¥, (k= 2,3,...). The random variables §, are clearly independent,

and we have 6, = 1 and
— 1)1 T
(50) P(6k=7')=kTIJJ (1—"n1] =98 550

It follows that the characteristic function of 9§, is

it (1 1
n
(51) fult) = Mot = — "1
(k —1) .
1—|——]e
n
and thus the characteristic function of », is
et (1 il
n
(52) gl(t) = ,L;l fit) = l l 7
n

14*
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Let us calculate now the expectation and the variance of »,. We have evidently

53 M(5,) = e
(53) e o
and thus
k—1

(54) M(»,) = ;: n——7 =n log = 0(1)
further
55 D?
(55) (%) = (_m] [ k_ll
and thus
(56) D(v,) = —LI‘ —n log + o(1).

] e

n

Now we calculate the third absolute moment of 6,. We have

. ..

57 M
(80 n—k+l

Thus Liapounoff’s theorem can be applied to v, = 0, + 0, + ...+ 0, if

e
n
It follows that if &k = k(n) is a function of n such that l(/n) 150
n

then for any real

v, — nlog >
l QRN o X. u?
(58) lim P SIS e W
n—>+m k V27l
S nlog 7 2t
1 —— T
n n
Now let us take into account that

(59) POL=N)=P,. xn=2~Kk).

Let us suppose that

(60) N =n log k +

/ kk nlog lk + 0(1)
P g
n n n

and solve this approximate equation approximately for k.
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It is easy to see that we get

(61) k=n(l —e=) —x Yne=(1 — (1 + a,) e=*) + O(1)

2 2
further NT—> + oo implies %—-»—}— co. Thus it follows from (58) and (59)

that

X w

e 2du.

(62) lim P i

noto | Vne—w(1 — (1 + a,) ) ¥ x] i V%_’[

This proves Theorem 2.

§ 4. Some remarks

Theorems 1 and 2 settle the question of the asymptotic distribution
of the number of empty boxes if there are n boxes at all, and denoting by
N = N(n) the number of balls, NT(_@» + oo and Ll logn — — oo.

n n
N(n)
n

In the limiting case

- — log n— 7y with some real y it can be proved by

much more elementary methods that the number of empty boxes is in the limit
distributed according to Poisson’s law, with mean value e=¢ " (see e.g. [4]

and also [5].) If-ZYh(—@ — log n— -+ o= then with probability tending to 1
there will be no empty boxes at all. On the other hand if N = o(z) then it
is almost sure that all balls are in different boxes and thus with probability

tending to 1 the number of empty boxes will be exactly equal to n — N.
Finally for N ~ 8 J/n with & > 0 the quantity ¢, y — n + N will have in the
2

limit a Poisson distribution with mean value P As these results are quite ele-

mentary, we do not go into details. We wanted only to point out that from the
results of the present paper a complete picture is obtained concerning the
behaviour of the distribution of {, y in the limit if N = N(n) tends to infinity
with » — -+ <o in an arbitrary manner.

(Received April 9, 1962.)
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TPH HOBBIX J0KA3ATEJIbCTBA U OBOBUEHUE OJHOH
TEOPEMbBI I. WEISS-A

A. RENYI
Pe3iome

B n simukoB OpoweHo Haypauy N ApoOuHOK; nycTb (,  O3HayaeT YUCJIO
NyCTHIX sSUKOB. B paoTe JaHbl TPU HOBBIX JI0Ka3aTelbCTBA TeOPEMBI, JlOKa-
sanHoit I. WErss-om [1], uto ecsiu N = N(n) ecTb Takasi QyHKUHUSI OT 7, UTO

N(n
JUIE m—> + oo UMeeM —7(1)——>a (0 <o < + oo), TOTAa UMeeT MeCTo

3|z
®

@  lmP DA Y — |

n—-»+o N N
Vne—ﬁ(l— l—i—g)e—i) =2

ITpu arom obobmaercst pesynbrar WEISS-a, TaK Kak JlokasbiBaetcsi, 4to (1)

N(n) N2(n)
MMeeT MeCTo TaloKe B clydae — —-—0 ecam — =

M—»-{- oo ecJIu )
n n

XapaKTepUCTHUECKUX (QYHKUHUI.

— + oo U B cliyvyae

—log » — — co. JloKa3aTenbCTBa HCIOJIL3YIOT METO[
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