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by 
A. R Ë N Y I 

Introduction 

Dedicated t o P r o f . P . Erdős, a t 
h i s 50th b i r thday . 

Let us suppose that N balls are distributed at random among n boxes, 
so tha t each ball may fall into any box with the same probability ~ , inde-
pendently of what happens to the other balls. Let N denote the number of 
boxes which remain empty. I . W E I S S [1] has proved that if n —> + °° and 

N 
N = N(n) is a function of n such that lim — = a > 0 then Cn,N 1S i r l t h e 

n—+ ш П 
limit normally distributed, its expectation and variance being asymptotically 

N _N 
equal to ne " and ne " N] N 

1 - 1 + — e " 

I n 
we have (denoting by P(. 
for any real x 

respectively; by other words 

. ) the probability of the event in the brackets) 

( 1 ) lim P 
N 
n 

4 ,N ne 
<x 

\ ne i • N ) 1 + d e n 

X 

2 du 

W E I S S used the method of moments, which in this case leads to rather 
cumbersome calculations. In view of the simplicity of the question (which is 
in striking contrast with the difficulties of the proof) and the importance 
of its various possible practical applications, we considered it worth while 
trying to find a simpler proof. 

We succeeded in finding three new proofs for the result of Weiss all using 
the method of characteristic functions. All these proofs are definitely simpler 
than that of I. W E I S S , though a certain amount of subtle asymptotic analysis 
is indispensable. Besides their simplicity, these proofs are of a certain metho-
dological interest, as they may serve as pat terns for the solution of other 
similar problems. 

These proofs yiels also a more general result, namely t h a t (1) remains 
N N 

valid also if »- 0 or >- + provided t h a t n 

ne 1 + 
N 
n + 

203 
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, . . . , N this is equivalent in case  0 with N2 

+ °° and in case — —*• + n 

with N log n We prove the generalization of the theorem of 

N 
W E I S S to the case — • —»- 4 - °° n 

the generalization to the case 

N 
n 

N 

log n —> — °° by the second method, and 

N2 

0, >- + 0 0 by the third method. 
The problem in question is essentially that of proving the central limit 

theorem for certain not independent but weakly (and symmetrically) dependent 
random variables.) The situation is similar to that of sampling from a finite 
population (see [2]). The variables in question are the indicators of the empti-
ness of the different boxes; as a matter of fact t„ iN can be written in the form 

= By + e2 + ... + sn 

where ek is 1 or 0 according to whether the &-th box is empty or not 
(k = 1, 2, . . ., n). The dependence is in this case not negligible in the limit, 
as is seen from the formula for the variance. 

i \N N 
As a matter of fact, the mean value of ek being 1 n e " i f the 

dependence would be in the limit negligible, the variance would be asymptotic-
N _ N 

ally equal to ne " ( l — e ") ; while as mentioned above, the variance is defi-

nitely smaller by the factor 1 „ — < 1 n(eNm - 1) 
a not negligible negative correlation among the variables ek. 

As a matter of fact, the variance D2(C„ N) of Cn N is 

which shows tha t there is 

D2(C, n.N) = " 2 [ | 1 2 \N 

n 1 1 \2N 

n 
+ 71 

f ! N 2 N-

I 1 -
1 n 

and therefore 

D2(Cn>Jv) = ne ' 
N N 

1 +0 
АП \ 

1 ~ 1 e~ " 1 +0 - ï L n 
1 +0 

n J J 

In § 1 we give the first proof which is worked out only for the case when 
N 

>- a > 0. In § 2 we present the second proof. In § 3 we give the third proof 

and in § 4 add some remarks. 
This paper was written during the stay of the author, as a visiting pro-

fessor, at the Department of Statistics of the Michigan State University during 
the summer term of the year 1 9 6 1 . The author is indebted to Prof. H . R U B I N 

for calling his attention to the paper of I . W E I S S . 
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§ 1. The first proof 

Let Pn N(k) denote the probability that there are exactly к empty 
boxes if n denotes the total number of boxes and N the number of balls. 
By other words we p u t 

ün>N(*) = P(ín>N = *) (1 = 0 , 1 , . . . , » > . 

( 2 ) 

and 

(3) 

The following two recursion formulae hold: 

k 

Pn,N(k) = Рп_фк - 1) 

n + Pn,N(k+ 1)-

1 n 
N N 

1 = 1 

N\ 1 
71 

1 -
N — l 

n-l,N- -A*)-

We obtain (2) by considering what happens if after throwing N balls into the boxes, 
one ball more is added: this may fall in a box which already contains a ball, 
or into an empty box. The two terms on the right correspond to these two pos-
sibilities. 

As regards the less evident recursion formula (3) this can be obtained 
by the following argument: Let us label the boxes by the numbers 1, 2,. . ., n 
and let us denote by I the number of balls which fall into the f irst box. We 
distinguish between the cases I = 0 and I ^ 1. If 1 = 0 (the probability 

I 1 N \ 
of which is 1 — — I then the N balls are distributed among the remaining 

n — l boxes so that among these к — 1 boxes remain empty. This gives the 
first term on the right of (3). If however I is some positive integer, 1 g l g n 

n I 
balls are distributed among n - 1 boxes so that к boxes remain empty . Thus 
we obtain the sum on the right of (3). 

Now let us introduce the characteristic funt ion <pn N(t) of Çn N, i.e. 
we put 

the probability of which is 
N\ 1 
lid 

then the remaining N — I 

(4) 
k=0 

Pn.dk) e" ikt 

We obtain from (3) the recursion formula 

(5) <Pndt) 1 1 N 

/=1 

N — l 
• <Pn-l,N-l(t) • 

Let us now introduce the generating function 

( 6 ) 
г и Tn.dt) • (nz)f 

N=0 * ' 
We obtain from (5) easily 

(7) Gn(t,z) = Gn_1(t,z)(eu + e*~ 1). ( » = 2 , 3, . . . ) . 
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for N = 0 
1 for N 

As evidently 

(8) 9>I,N(<) = 

and thus 

(9) Gx(t, z) = e" + e* - 1 

we obtain by (7) the surprisingly simple formula 

.10) Qn(t,z) = (€» + * - 1)". 

One can deduce (10) also f rom (2); as a ma t t e r of fact f rom (2) we get 
3 Gn 1 3 G„ 

at 
; taking for Gn the partial differential equat ion — - = nGn -|  

dz i 
in to account t ha t Gn(t, 0) = <pnfi(t) — eint, we get (10). 
Now to prove (1) we apply the method of Laplace to obtain from (10) an asymp-
tot ic formula for f r u N ( t ) . We have by Cauchy's formula 

( И ) 
N\ С (e" + <?- 1)" 

dz 

where the integration may be carried out on any circle around the point 
2 = 0. 

We shall prove that put t ing 
N 

( 1 2 ) a « = V 

and N 
(13) 

we have 

(14) 

D* = e 

lim <Pn.N 
П—+ 0° 
N 

1 N 

I1- 1 + — 
n 

•e " 

t I 

D j n \ 

itn • t-° 
Djn _ = e 

((14) is clearly equivalent to (1)). 
Let us choose as the p a t h of integration in (11) the circle |г| = a „ , 

by putting 2 = a n £ with £ = e'u ( — л ^ и ^ + «). Then we obtain, by 
V 

Stirling's formula, putting и = 
\ n a n 

+ яУпа„ 
(15) 

where 

(16) 

<Pn,N 
t \ ~ 1 f 

D j f n j ' 1/2« J 
a"dv 

- л X nan 

E, 
it * 

'n = (eD'< — 1 ) • е-а» + е"» ' 1 па" -1) _ 
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Clearly for 
\ n a n 

ô > 0 we have for n > n, (Dn and an being-

bounded from below by a positive constant) 

(17) Engq< 1 

where q depends only on b and a. I t follows tha t 

(18) lim J \EJ"dv = 0. 
Л- + » ô\ann<,\v\^n\an-n 

7 
On the other hand for Y n a n ^ g ô f « a n , in view of 

(19) E,A* = e 
2aH(cos-A— - l) 

= о I KfW« / _L Ç + 2 e-2"» 1 — cos 

a(cos » _2j . t i t V 
- 4 « ' ' • 8111 zz- sin I — = — 

we get 

(20) 1 - С , — + 0 

Пп 1In 

2 |?й ( 2 ]/й I ' 

f2 + If« 

where C6 > 0 depends only on b, which implies 

(21) 
eVna„ 

lim j \En\"dv = 0 . 
Л-.+ СО ' 

\na„ 
Tlius we obtain from (13), (18) and (21) 

7 

itne~°n + Кпа» 
( 2 2 ) 9 V N 

Ь—=\е ojn 
Dn-Vn) 2л J 

E»-e 
. ,r— Une — ivVna„ -

Dn\n (Jv . 

- Vnan 
Now we get by an elementary calculation 

f (-ÇHT 
(23) En„-e 

- iv \ nnn - Une 
= e + 0 

vf 
Yn 

Thus it follows from (22) t h a t (14) holds. As mentioned already, this 
proves (1). 

§ 2. The second proof 

In this § we give a second proof for (1) which leads at the same time 
to the following more general 
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Theorem 1. If we distribute at random N balls among n boxes where N = 
N(n) 

N(n) is a function of n such that ——— is bounded from below and 

lim —- — - — log n —у — » , then we have, putting an = ^[iHl j o r any rea[ x 
П-*- + oo n 

lim P 
Л- + » 

Ä,,N(n) ~ П е "" <X = —L_ [ du . 
У2л J 

Remark. In case a, 
the simpler form 

]fne-"n[l - (1 +a„)e-°»"] 
— oo 

+ oo of course the result can be written also in 

lim P 
n — + OO 

Mr,) ne 
/ne~a» 

< x 

X 

j _ u* 
e 2 du. 

Proof. The idea of the proof which will be given in this § is one already 
applied in the paper [3]. Let us put 

(24) S r = M ( £ь. a fciefc2 

where M(. . .) denotes the expectation of the random variable in the brackets. 
Then evidently 

(25) 

and thus 

sr= ÊPnMi)\[ 
j= r 

( 2 6 ) 

(27) 

r=o y=o 

Now we can give a simple formula for Sr\ in fact we have 

r 
sr = 1 

Thus we get for the characteristic function pn<N(t) defined by (4) the 
explicit formula 

(28) fn 
r = 0 

Of course (28) can be deduced also directly from (11). 
In order to prove theorem 1 we consider the function 

(29) VnM1) = <Pn,N 

. . it Vn e~"n / N-nan\ 
e Dn \ n ) 

D j n 
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where N is now not identical with N(n), but is an independent nonnegative 
a  

integral-valued variable. Then we have by (28), put t ing y — e D ^ n . 

1 (y 1)" yNt°* • 

V ! 

Np-On n 

(30) Wn,N(t) = y-ne-°V+°n) 2 
/=0 

It follows that putt ing 

(31) = — 
N=0 

we have 

(32) Kn(t) = e"*«* ""-'> y-™-c'U i«n)(i + (y— l) e-"»i>'~ay . 

Now if an is bounded from below and an — log n—*• — °° the right hand 
side of (32) can be evaluated as follows 

(33) 

Thus we obtain 

(34) 

- 1 + o i + l 
2 IN ' Kn(t)~e 

lim Kn(t) = e 2 . 
П-+00 

Now evidently |уп,л/(0| ^ 1 a n d thus by the central limit theorem, if 
ojn = log (nan) then we have 

(35) 

and 

(36) 

lim 
n-*+ со 2 

|N-o„- л|>ш„ V naH 

(n an)N e 
N\ 

= 0 

lim 
П-»+ oo 

We shall show now that for 

£ ~ N\ 

(37) 

we have 

(38) 

- nanI ^ (on Упа„ 

log3 n 
I VnM1) - fn,N(n)(t) I =0 

b 

This implies by virtue of (34), (35) and (36) t ha t 

(39) limy»n,N(n)(«) = « - " / • . 
Л-»+ OO 

As we have 
_ il 1 n e "» 

e D-(40) Vn,N(n)(0 = <Pn,N(n) 
t 

Djr 

i t will follow from (39) t ha t (14), and thus Theorem I holds. 

14 A Matematikai Kutató Intézet Közleményei VII. А/1—2. 
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Thus it remains only to prove (38). I n view of (2) we obtain, 

(41) y>n>N+1(t) - v„,ivW =(eD-Vn - VfnMt) + L 2J Pn.N(k)k-ek 

where 
k = l 

ek - e°nV" 
(k-ne~a*0 +a*)+(N+ 1)«-°") 

Thus we obtain 
ite—аш 

Vn.N+i(t) - V>n,N(t) = _ 1 _ (e+ ОпГп _ i) 1 — 1 \ N 

n V>n,N(t) + 

(42) 

+ 
(e ояУп _ i ) 

eL . 

Thus we get for |iV — n an\ = 0(p)n Уn an) 

[(log np 
(43) 

+ 

+ 0 

As clearly 

(44) k — n 1 — é D(£„„) 

1 \ 

k- - n 1 -
\ n) 

2 ' PnJk) 

where D2(C„jAr) denotes the variance of f n N and we have 

D *(?„,„) ~ n Z ) j } 
i t follows 

I v W O - v W O l = 

Thus if \N — nan\ ^ ып (jn o.n we have 

(45) |v n ,NW-V n N ( n ) (<) | = 0 | 

This proves (39), and thus Theorem 1. 

log3 n I 
Yn 

§ 3. The third proof 

In this § we shall prove the following 
Theorem 2. If we distribute N balls at random among n boxes, where 

N(n) 

N = N(n) is a function of n such that for ra —»- + °° is bounded from above 

and 

(46) 

.. N2(n) . hm ——z- = + oo , 
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and, Cn,N(n) denotes the number of empty boxes, then we have, putting an = 

for any real x 

N(n) 
n 

(47) lim P 
П-* + oo 

N(n) ne' 
|/«e_a" [1 — (1 + an)e~a«] 

< x 

X 

Y ^ J 
_ u> 

e 2 du . 

Remark. In case a„ —> 0, the result can be written in the simpler form 

(47a) lim P ° " < x 
n—+ o П 

2~ 

X 

e 2 du 

or, putting C * N ( n ) = £п,Щп) — Я(1 — «„) 

/ ^ na2 \ 
*n 

(47b) lim P 
П—+ 00 

N(n) 2~ 
— < X 
n 
Y 

- ' f.-í 
У2я J 

2 du. 

Proof. Let us note first tha t putting 

(48) D2=e—(1-(1 + an)e~°-) 

our conditions on N(n) imply that 

(49) lim nD2 = + oo . 

Let us introduce the random variables vk (k = 1, 2,. . .) defined as 
follows: vk is the least number such that after distributing vk balls among the 
n boxes, exactly к boxes will be occupied. Let us put fur ther = vv bk = 
— vk — vk-1 (fc — 2, 3,. . .). The random variables ôk are clearly independent, 
and we have ôt = 1 and 

(50) P(<5fc = 1) = 
it - IV'-1 

1 — i t - 1 
n 

(k = 2,3, . . . ) . 

I t follows that the characteristic function of ôk is 

(51) m = м ( ^ ) 

e" 1 -
k - 1 

1 — к - 1 
n 

and thus the characteristic function of vk is 

(52) 9Ât)= J J f j ( t ) = f j 

e" 1-Х n 

7-1 7-0 x _ 
n 

14* 
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Let us calculate now the expectation and the variance of vk. We have evidently 

n 
(53) 

and thus 

(54) 

further 

(55) 

and thus 

(56) 

M(«fc) = n —к -f 1 

k-1 

+—1 n — i n — к j=0 i 

D 2 K ) = 
1 - к - 1 1 — к - 1 

n 

к V 
D2 К ) = p - « log + 0(1) 

к n — к 

Now we calculate the third absolute moment of bk. We have 

(57) M 
n-k+ 1 

= 0 1 -
n 

Thus Liapounoff's theorem can be applied to vk — bx + b2 + . . .+ bk if k 

>- 4- 0 0 

1in ' 
k(n) 

I t follows that if к = k(n) is a function of n such that -f oo 
yn 

then for any real x 

(58) lim P 
Л-» + OO 

vk - n log —Цг 
1 - -n 

к . 1 n log  
<X 

1 - -n 1 n 

X 

= w J e 2 du . 

Now let us take into account tha t 

(59) P K = P(C„,„ g n - i j 

Let us suppose that 

(60) N = n log у- + x 

1 n 

Г~Тс log + 0 ( 1 ) 

n 

and solve this approximate equation approximately for к. 
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I t is easy to see tha t we get 

(61) к = n( l — e-"») — x f n e - ^ i } — (1 + a „ ) r " » ) + 0(1) 

N2 k2 

further ——»- + » implies Thus it follows from (58) and (59) 

that 
X 

(62) lim p f tn.N - n e~ a n _ < J = 1 Г dv . 
n^+ a > j — (1 + a n ) е-"») J ]/2« J 

This proves Theorem 2. 

§ 4. Some remarks 

Theorems 1 and 2 settle the question of the asymptotic distribution 
of the number of empty boxes if there are n boxes a t all, and denoting by 

Ar = N(n) the number of balls, -f- oo and ^ ^ _ ]0g n —у — 
\n n 

N(n) 
In the limiting case — log n —v у with some real у it can be proved by 

much more elementary methods that the number of empty boxes is in the limit 
distributed according to Poisson's law, with mean value e~e(see e.g. [4] 

N(n) 
and also [5].) If - l o g n - > - j - ° ° then with probability tending to 1 

there will be no empty boxes at all. On the other hand if IV = o(^n) then it 
is almost sure that all balls are in different boxes and thus with probability 
tending to 1 the number of empty boxes will be exactly equal to n — N . 
Finally for N ^ b\n with A > 0 the quanti ty N — n + Л7 will have in the 

b2 

limit a Poisson distribution with mean value — . As these results are quite ele-
2 

mentary, we do not go into details. We wanted only to point out that from the 
results of the present paper a complete picture is obtained concerning the 
behaviour of the distribution of £n N in the limit if N = N(n) tends to infinity 
with n —>• -f- °° in an arbitrary manner. 

(Received April 9, 1962.) 
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ТРИ Н О В Ы Х ДОКАЗАТЕЛЬСТВА И ОБОБЩЕНИЕ ОДНОЙ 
ТЕОРЕМЫ I. WEISS-A 

A. RËNYI 

Резюме 

В п ящиков брошено наудачу N дробинок; пусть означает число 
пустых ящиков. В работе даны три новых доказательства теоремы, дока-
занной I. W E I S S - O M [ 1 ] , что если N = N(n) есть такая функция от п, что 

ЩП) /п , \ для п - у + оо имеем — ( 0 < а < + оо), тогда имеет место 

(I) lim Р 
П—> -f- оо 

А N ' 

_ N 
ne " 

< x 

\ 
ne п 

_ Ii 
e п 

L Г 
2я J 

2 du . 

При этом обобщается результат WEiss-a, так как доказывается, что (1) 
Щп) п N2(n) 

имеет место также в случае ——- -»• 0 если — — -> + оо и в случае п 
N(n) , Щп) . — i — + оо если — — — log п-п п 
характеристических функций. 

оо. Доказательства используют метод 
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