A THEOREM CONCERNING HAMILTON LINES

by L. PÓSA

In this note we only consider graphs without loops and multiple edges. G. A. DIRAC proved the following theorem [1].

Let $G^{(n)}$ $(n \geq 3)$ be a graph of n vertices. Assume that the valency of every

vertex is $\geq n/2$. Then $G^{(n)}$ is Hamiltonian.

The valency v(x) of a vertex x is the number of edges incident to it. A graph is said to be Hamiltonian if it contains a Hamilton line (i. e. a circuit which contains every vertex of the graph).

Several sharpenings of this theorem are known ([2], [4], [5]). We now

prove the following theorem which contains [2].

Theorem. Let $n \geq 3$. Assume that for every k, $1 \leq k < (n-1)/2$, the number of vertices of $G^{(n)}$ of valency not exceeding k is less than k and for odd n the number of vertices of valency (n-1)/2 does not exceed (n-1)/2, then $G^{(n)}$ is Hamiltonian.

Proof. (I). Assume that $G^{(n)}$ satisfies the conditions of the Theorem and is not Hamiltonian. By connecting (by an edge) vertices of $G^{(n)}$ which were not connected in $G^{(n)}$ (by an edge) we obtain a graph $G^{(n)}_*$ which is not Hamiltonian but which becomes Hamiltonian if we connect any two vertices of $G^{(n)}_*$ which are not connected by an edge. Since every complete graph of $n \geq 3$ vertices is Hamiltonian, our graph $G^{(n)}_*$ exists. (A graph is said to be complete if every two of its vertices are connected by an edge.) Clearly $G^{(n)}_*$ has the same vertices as $G^{(n)}$ and $G^{(n)}_*$ also satisfies the conditions of our Theorem. Further if two vertices of $G^{(n)}_*$ are not connected by an edge they are connected by an open Hamilton line (i. e. by a path which contains every vertex of our graph, once and only once).

(II). First we show that in $G_*^{(n)}$ every vertex of valency $\geq (n-1)/2$ is connected to every vertex of valency $\geq n/2$. To show this let a_1 and a_n be two vertices with $v(a_1) \geq (n-1)/2$, $v(a_n) \geq n/2$, which are not connected by an edge. Then by (I) there is an open Hamilton line (a_1, a_2, \ldots, a_n) (i. e. the edges of the open Hamilton line are the edges connecting a_i with a_{i+1} , $1 \leq i \leq n-1$). Let a_{i_1}, \ldots, a_{i_k} $k = v(a_1)$, $2 = i_1 < \ldots < i_k \leq n-1$ be the vertices connected with a_1 in $G_*^{(n)}$ by an edge. a_n can not be connected to a_{i_1-1} , $1 \leq j \leq k$ by an edge for otherwise $(a_1, \ldots, a_{i_{j-1}}, a_n, a_{n-1}, a_{n-2}, \ldots, a_{i_j}, a_1)$ would

be a Hamilton line of $G_*^{(n)}$. Thus

$$\frac{n}{2} \leq v(a_n) \leq n-1-k < \frac{n}{2}.$$

This contradiction establishes our assertion.

(III). From (II) it clearly follows that $G_*^{(n)}$ has vertices of valency < n/2 (since the complete graph of $n \ge 3$ vertices is Hamiltonian). Let m be the maximal valency of these vertices and b_1 a vertex with $v(b_1) = m$. By our assumptions there are at most m < n/2 vertices of valency $\le m$, thus there are more than m vertices of valency > m, (by the maximality of m the valency of these vertices is $\ge n/2$). Thus there exists a vertex b_n of valency $\ge n/2$ which is not connected to b_1 by an edge. Hence by (II) m < (n-1)/2 and therefore we can assume that the number of vertices of valency $\le m$ is less than m.

Let now (b_1,b_2,\ldots,b_n) be an open Hamilton line connecting b_1 and b_n and let b_i,\ldots,b_{i_m} $(i_1=2< i_2<\ldots< i_m\leq n-1)$ be the vertices connected to b_1 by an edge. As in (II) it follows that b_n can not be connected to b_{ij-1} , $1\leq j\leq m$ by an edge. By our assumption at least one of these vertices must have valency >m and hence valency $\geq n/2$. But this contradicts (II) and our Theorem is proved.

Remarks (1). Our Theorem is sharp. Let $1 \le k < (n-1)/2$ and G_1 be a complete graph of k+1 vertices and G_2 a complete graph of n-k vertices. We assume that G_1 and G_2 have exactly one common vertex. Let G be the union of G_1 and G_2 . Clearly G is not Hamiltonian (it has a cut point) and G has exactly k vertices of valency k. Now let n odd and k = (n-1)/2. We define the graph G as follows: The vertices of G are x_1, \ldots, x_{2k+1} and its edges are (x_i, x_j) , $1 \le i \le k < j \le 2k+1$. G is not Hamiltonian and G has exactly (n+1)/2 vertices of valency (n-1)/2.

(2). (I) and (II) gives a very simple proof of Dirac's theorem [1].

(Received August 2, 1962.)

REFERENCES

- [1] Dirac, G. A.: "Some theorems on abstract graphs." Proc. London math. Soc. (3), 2(1952)69—81.
- [2] Erdős, P.—Gallai, T.: "On maximal paths and circuits of graphs." Acta Math. Sci. Hung. 10(1959)337—356.
- [3] NEWMAN, D. J.: "A problem in graph theory." Amer. Math. Monthly 65(1958)611.
- [4] ORE, O.: "Note on Hamilton circuits." Amer. Math. Monthly 67(1960)55.
 [5] ORE, O.: "Theory of graphs." Amer. Math. Soc. Colloquium Publ. 38(1962)

ТЕОРЕМА, ОТНОСЯЩАЯСЯ К ГАМИЛЬТОНОВЫМ ЛИНИЯМ

L. PÓSA

Резюме

Для графов, не содержащих петель и кратных ребер, имеет силу

следующая

Теорема. Пусть число точек графа G не менее трех. Если для любого k, где $1 \le k < (n-1)/2$, число тех точек G, степень которых $\le k$ меньше k u, в случае нечетного n, число тех точек, степень которых $\le (n-1)/2$, не долее (n-1)/2, тогда G обладает Гамильтоновой линией, то есть такой окружностью, которая содержит все точки G. Теорема точна.