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by 
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In this note we only consider graphs without loops and multiple edges. 
G. A. D I R A C proved the following theorem [1]. 

Let G(n) (n + 3) be a graph of n vertices. Assume that the valency of every 
vertex is n/2. Then G(n) is Hamiltonian. 

The valency v(x) of a vertex x is the number of edges incident to it. 
A graph is said to be Hamiltonian i f i t contains a Hamilton line (i. e. a circuit 
which contains every vertex of the graph). 

Several sharpenings of this theorem are known ([2], [4], [5]). We now 
prove the following theorem which contains [2]. 

Theorem. Let n ^ 3. Assume that for every 1c, 1 f . k <. (n —- l)/2, the 
number of vertices of G(n) of valency not exceeding к is less than к and for odd n 
the number of vertices of valency (n — l)/2 does not exceed (n — l)/2, then ( f n ) 

is Hamiltonian. 
Proof. (I). Assume that G("> satisfies the conditions of the Theorem 

and is not Hamiltonian. By connecting (by an edge) vertices of G(n) which 
were not connected in G(n) (by an edge) we obtain a graph which is not 
Hamiltonian but which becomes Hamiltonian if we connect any two vertices 
of which are not connected by an edge. Since every complete graph of 
n ^ 3 vertices is Hamiltonian, our graph G(f) exists. (A graph is said to be 
complete if every two of its vertices are connected by an edge.) Clearly G ^ 
has the same vertices as G(n) and Оф also satisfies the conditions of our Theo-
rem. Further if two vertices of G ^ are not connected by an edge they are 
connected by an open Hamilton line (i. e. by a pa th which contains every 
vertex of our graph, once and only once). 

(II). First we show that in G^ every vertex of valency ^ (n — l)/2 
is connected to every vertex of valency 4 n/2. To show this let ал and an 
be two vertices with v(ax) (n — l)/2, v(an) ;> n/2, which are not connected 
by an edge. Then by (I) there is an open Hamilton line (av a2, . . ., an) (i. e. the 
edges of the open Hamilton line are the edges connecting a, with aj+1, 1 f . i f 
f n—1). Let a ( i , . . . , a,д. к — v(aj), 2 = ix < . . . < ik ^ n — 1 be the vertices 
connected with ax in Gty by an edge. an can not be connected to aif_v  
l f j ç f k by an edge for otherwise (a , , . . . a n , an_x, an_2.. . .,aip ax) would 
be a Hamilton line of G<£\ Thus 

U ^ v(an) f n l k<^. 
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This contradiction establishes our assertion. 
(III). From (II) i t clearly follows that G<£) has vertices of valency < n/2 

(since the complete graph of n ^ 3 vertices is Hamiltonian). Let m be the 
maximal valency of these vertices and by a ver tex with v(bx) — m. By our 
assumptions there are at most m < и/2 vertices of valency g m, thus there 
are more than m vertices of valency > m, (by the maximality of m the valency 
of these vertices is ^ n/2). Thus there exists a vertex bn of valency ^ n/2 
which is not connected to by by an edge. Hence by (II) m < (и — l)/2 and 
therefore we can assume that the number of vertices of valency g m is less 
than m. 

Let now (by, b2, . . . ,bn) be an open Hamilton line connecting by and 
bn and let bh, . . ., bim (iy — 2 < i2 < . . . < im g n — 1) be the vertices con-
nected to by by an edge. As in (II) it follows t h a t bn can not be connected to 
bif_y, 1 g j g m by an edge. By our assumption a t least one of these vertices 
must have valency >> m and hence valency ^ и/2. But this contradicts (II) 
and our Theorem is proved. 

Remarks (1). Our Theorem is sharp. Let 1 g к < (и — l)/2 and G у 
be a complete graph of к + 1 vertices and G2 a complete graph of n — к 
vertices. We assume tha t G, and G2 have exactly one common vertex. Let 
G be the union of Gy and Ga. Clearly G is not Hamiltonian (it has a cut point) 
and G has exactly к vertices of valency k. Now let и odd and к = (и — l)/2. 
We define the graph G as follows: The vertices of G are Xy,. . ., x2k+x and its 
edges are (xt, xf), 1 g i g к < j g 2k + 1. G is not Hamiltonian and G 
has exactly (n + l)/2 vertices of valency (n — l)/2. 

(2). ( I ) and ( I I ) gives a very simple proof of D I R A C ' S theorem [ 1 ] . 

(Received August 2, 1962.) 
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ТЕОРЕМА, ОТНОСЯЩАЯСЯ К ГАМИЛЬТОНОВЫМ Л И Н И Я М 

L . P Ó S A  

Резюме 

Для графов, не содержащих петель и кратных ребер, имеет силу 
следующая 

Теорема. Пусть число точек графа G не менее трех. Если для любого 
к, где \ gk < (п — 1)/2, число тех точек G, степень которых g k меньше k 
и, в случае нечетного и, число тех точек, степень которых g (п — 1)/2, не долее 
(и — 1)/2, тогда G обладает Гамилыпоновой линией, то есть такой окруж-
ностью, которая содержит все точки G. Теорема точна. 
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